山东省优质课比赛一等奖---《勾股定理》教学设计
认识勾股定理 公开课获奖【一等奖教案】

第一章勾股定理1.1 探索勾股定理第1课时认识勾股定理第一环节:创设情境,引入新课内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”有关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理1.探究活动一内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗?学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫.效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望. 2.探究活动二内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?(1)观察下面两幅图:(2)填表:(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)图1 图2 图3 学生的方法可能有: 方法一:如图1,将正方形C 分割为四个全等的直角三角形和一个小正方形,13132214=+⨯⨯⨯=C S .方法二:如图2,在正方形C 外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积,133221452=⨯⨯⨯-=C S .方法三:如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法,13542=+⨯=C S .(4)分析填表的数据,你发现了什么? 学生通过分析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C 的面积计算是一个难点,为此设计了一个交流环节.效果:学生通过充分讨论探究,在突破正方形C 的面积计算这一难点后得出结论2. 3.议一议内容:(1)你能用直角三角形的边长a ,b ,c 来表示上图中正方形的面积吗?(2)你能发现直角三角形三边长度之间存在什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名.(在西方文献中又称为毕达哥拉斯定理)意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理.效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力.第三环节:勾股定理的简单应用内容:例题 如图所示,一棵大树在一次强烈台风中于离地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?弦股勾(教师板演解题过程) 练习:1.基础巩固练习:求下列图形中未知正方形的面积或未知边的长度(口答):2.生活中的应用:小明妈妈买了一部29 in (74 cm )的电视机. 小明量了电视机的屏幕后,发现屏幕只有58 cm 长和46 cm 宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.第四环节:课堂小结内容: 教师提问:1.这一节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?与同伴进行交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用a ,b ,c 分别表示直角三角形的两直角边和斜边,那么222c b a =+.2.方法:(1) 观察—探索—猜想—验证—归纳—应用; (2)“割、补、拼、接”法.3.思想:(1) 特殊—一般—特殊; (2) 数形结合思想.225100x1517意图:鼓励学生积极大胆发言,可增进师生、生生之间的交流、互动. 效果:通过畅谈收获和体会,意在培养学生口头表达和交流的能力,增强不断反思总结的意识.第五环节:布置作业内容:布置作业:1.教科书习题1.1.2.观察下图,探究图中三角形的三边长是否满足222c b a =+?意图:课后作业设计包括了三个层面:作业1是为了巩固基础知识而设计;作业2是为了扩展学生的知识面;作业3是为了拓广知识,进行课后探究而设计,通过此题可让学生进一步认识勾股定理的前提条件.效果:学生进一步加强对本课知识的理解和掌握.教学设计反思 (一)设计理念依据“学生是学习的主体”这一理念,在探索勾股定理的整个过程中,本节课始终采用学生自主探索和与同伴合作交流相结合的方式进行主动学习.教师只在学生遇到困难时,进行引导或组织学生通过讨论来突破难点.(二)突出重点、突破难点的策略为了让学生在学习过程中自我发现勾股定理,本节课首先情景创设激发兴趣,再通过几个探究活动引导学生从探究等腰直角三角形这一特殊情形入手,自然过渡到探究一般直角三角形,学生通过观察图形,计算面积,分析数据,发现直角三角形三边的关系,进而得到勾股定理.a bcabc4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22.方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】 含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -1+3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.数量x/千克售价y/元 1 8+0.4 2 16+0.8 3 24+1.2 4 32+1.6 5 40+2.0 ……解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
11 勾股定理》一等奖创新教学设计_2

11 勾股定理》一等奖创新教学设计勾股定理(1)一、教材分析:勾股定理历史悠久,不仅被认为是平面几何中最重要的定理之一,也被认为是数学中最重要的定理之一,它揭示的是直角三角形三边的数量关系,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
也为后面学习直角三角形的相似、锐角三角函数、解直角三角形的学习打下坚实的基础。
2、学情分析:初二学生已经具备一定的几何证明基础,但是思维偏重于直观。
而勾股定理的证明是先构造图形,数形结合,再进行证明。
与以往的几何题目证明相差甚远,有很大的难度。
由此本课的设计注重从学生的动手操作开始,从作图猜想再由特殊到一般的验证,证明层层递进,引导学生亲历定理的产生和证明过程,且能初步运用,为以后相关知识的继续学习奠定良好的基础。
三、教学目标:认知目标:了解勾股定理的发现过程。
会用面积法证明勾股定理。
并且能初步运用勾股定理解决问题。
技能目标:在探索过程中,让学生亲历“观察—猜想—归纳—证明”的过程,并且能体会特殊到一般、数形结合的数学思想和方法。
情感目标:通过了解与定理有关的中外数学史,激发学生的学习兴趣和研究精神。
特别是通过了解中国古代的数学成就,激发学生的民族自豪感。
教学重点:勾股定理的证明和运用教学难点:勾股定理的证明教学方法:小组合作、教师点拨教学准备:已剪好的4个全等的直角三角形、课件教学过程:教学内容教师活动学生活动设计意图一、探究新知:活动一、尺规作直角边分别为为3cm、4cm和6cm、8cm和5cm、12cm三个直角三角形,用刻度尺量出斜边的长并观察三边数量上有什么规律?(课下完成作图)活动二:探究等腰直角三角形的情况(图1)如图1 如图2 (图2)由上面你得到的结论:一般的直角三角形是否也具有该性质呢?猜想:直角三角形两直角边的平方和等于斜边的平方。
活动三:拼图证明:1.用4个全等的直角三角形来拼成一个正方形(中间可以留白)2.能用不同的方法表示这个正方形的面积吗?证明方法一:大正方形的面积可以表为;也可以表示为___ 。
勾股定理教学设计省一等奖

勾股定理教学设计省一等奖《勾股定理教学设计省一等奖》这是优秀的教学设计一等奖文章,希望可以对您的学习工作中带来帮助!第1篇勾股定理教学设计省一等奖教学目标:一知识技能1.理解勾股定理的逆定理的证明方法和证明过程;2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是直角三角形;二数学思考1.通过勾股定理的逆定理的探索,经历知识的发生发展与形成的过程;2.通过三角形三边的数量关系来判断三角形的形状,体验数形结合法的应用.三解决问题通过勾股定理的逆定理的证明及其应用,体会数形结合法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题.四情感态度1.通过三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一关系;2.在探究勾股定理的逆定理的证明及应用的活动中,通过一系列富有探究性的问题,渗透与他人交流合作的意识和探究精神.教学重难点:一重点:勾股定理的逆定理及其应用.二难点:勾股定理的逆定理的.证明.教学方法启发引导分组讨论合作交流等。
教学媒体多媒体课件演示。
教学过程:一复习孕新,引入课题问题:(1) 勾股定理的内容是什么?(2) 求以线段ab为直角边的直角三角形的斜边c的长:① a=3,b=4② a=2.5,b=6③ a=4,b=7.5(3) 分别以上述abc为边的三角形的形状会是什么样的呢?二动手实践,检验推测1.把准备好的一根打了13个等距离结的绳子,按3个结4个结5个结的长度为边摆放成一个三角形,请观察并说出此三角形的形状?学生分组活动,动手操作,并在组内进行交流讨论的基础上,作出实践性预测.教师深入小组参与活动,并帮助指导部分学生完成任务,得出勾股定理的逆命题.在此基础上,介绍:古埃及和我国古代大禹治水都是用这种方法来确定直角的.2.分别以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边画出两个三角形,请观察并说出此三角形的形状?3.结合三角形三边长度的平方关系,你能猜一猜三角形的三边长度与三角形的形状之间有怎样的关系吗?三探索归纳,证明猜想问题1.三边长度分别为3 cm4 cm5 cm的三角形与以3 cm4 cm为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以2.5cm6cm6.5cm和4cm7.5cm8.5cm为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC的三边长满足,试证明△ABC是直角三角形,请简要地写出证明过程.教师提出问题,并适时诱导,指导学生完成问题3的证明.之后,归纳得出勾股定理的逆定理.四尝试运用,熟悉定理问题1例1:判断由线段组成的三角形是不是直角三角形:(1)(2)2三角形的两边长分别为3和4,要使这个三角形是直角三角形,则第三条边长是多少?教师巡视,了解学生对知识的掌握情况.特别关注学生在练习中反映出的问题,有针对性地讲解,学生能否熟练地应用勾股定理的逆定理去分析和解决问题五类比模仿,巩固新知1.练习:练习题13.2.思考:习题18.2第5题.部分学生演板,剩余学生在课堂练习本上独立完成.小结梳理,内化新知六1.小结:教师引导学生回忆本节课所学的知识.2.作业:(1)必做题:习题18.2第1题(2)(4)和第3题;(2)选做题:习题18.2第46题.第2篇勾股定理教学设计省一等奖在教学工作者开展教学活动前,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。
初中数学 教学设计2:勾股定理 省赛一等奖

c b
a c
b a
E D
B A
C 5、如图,这是美国第20届总统加菲尔德的构图,其中Rt △ABC 和Rt △BDE 是完全相同的.AC=BD=b,CB=DE=a,∠C=∠D=90°, AB=BE=c.。
请你试用此图形验证勾股定理的正确性.
四、 谈谈你的体会:
五、 自我检测:
1、填空
在Rt ΔABC 中,∠C=900.
①若a=6,c=10 ,则b=____.
②若a:b=3:4,c=10,则a=____,b=____.
③若a=6,b=8,则斜边c 上的高h=______.
2、选择:
①若直角三角形的三边为6、8、x ,则x 的长为 ( )
.8 C D.以上答案均不对
②如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P 到各边的距离相等,则这个距离为
( ) A .1 B .3
C .4
D .5 ③如图所示,有一块直角三角形纸片,两直角边AB=6,BC=8,将三角形ABC 折叠,使AB 落在斜边AC 上,折痕为AD,则BD 的长为
( ) A .3
B .4
C .5
D .6
3、①如图3,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长是7cm,则正方形A 、B 、C 、D 的面积之和是______。
②如图4,小方格的面积为1,找出图中以格点为端点且长度为5的线段。
3解答题
1、如图 ,以ΔABC 的三边为直径的3个半圆的面积有什么关系?请你说明理由。
B
A C 图4 A D 7cm C
B 图3。
勾股定理教学设计(优秀3篇)

勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
(最新)数学八年级下册第十七章《勾股定理》省优质课一等奖教案

(最新)数学⼋年级下册第⼗七章《勾股定理》省优质课⼀等奖教案《勾股定理》教学设计第⼀课时⼀、教学⽬标1.了解勾股定理的发现过程,掌握勾股定理的内容,会⽤⾯积法证明勾股定理. 2.培养在实际⽣活中发现问题总结规律的意识和能⼒.3.介绍我国古代在勾股定理研究⽅⾯所取得的成就,激发学⽣的爱国热情,促其勤奋学习.⼆、重点、难点1.重点:勾股定理的内容及证明.2.难点:勾股定理的证明.三、例题的意图分析例1(补充)通过对定理的证明,让学⽣确信定理的正确性;通过拼图,发散学⽣的思维,锻炼学⽣的动⼿实践能⼒;这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2使学⽣明确,图形经过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变.进⼀步让学⽣确信勾股定理的正确性.四、课堂引⼊⽬前世界上许多科学家正在试图寻找其他星球的“⼈”,为此向宇宙发出了许多信号,如地球上⼈类的语⾔、⾳乐、各种图形等.我国数学家华罗庚曾建议,发射⼀种反映勾股定理的图形,如果宇宙⼈是“⽂明⼈”,那么他们⼀定会识别这种语⾔的.这个事实可以说明勾股定理的重⼤意义.尤其是在两千年前,是⾮常了不起的成就.让学⽣画⼀个直⾓边为3cm和4cm的直⾓△ABC,⽤刻度尺量出AB的长.以上这个事实是我国古代3000多年前有⼀个叫商⾼的⼈发现的,他说:“把⼀根直尺折成直⾓,两段连结得⼀直⾓三⾓形,勾⼴三,股修四,弦隅五.”这句话意思是说⼀个直⾓三⾓形较短直⾓边(勾)的长是3,长的直⾓边(股)的长是4,那么斜边(弦)的长是5.再画⼀个两直⾓边为5和12的直⾓△ABC ,⽤刻度尺量AB 的长.你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直⾓三⾓形也有这个性质吗?五、例习题分析例1(补充)已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c . 求证:a 2+b 2=c 2.分析:(1)让学⽣准备多个三⾓形模型,最好是有颜⾊的吹塑纸,让学⽣拼摆不同的形状,利⽤⾯积相等进⾏证明.(2)拼成如图所⽰,其等量关系为:4S △+S ⼩正=S ⼤正 4×21ab +(b -a )2=c 2,化简可证.(3)发挥学⽣的想象能⼒拼出不同的图形,进⾏证明.(4)勾股定理的证明⽅法,达300余种.这个古⽼的精彩的证法,出⾃我国古代⽆名数学家之⼿.激发学⽣的民族⾃豪感,和爱国情怀.例2已知:在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边为a 、b 、c .AB求证:a 2+b 2=c 2.分析:左右两边的正⽅形边长相等,则两个正⽅形的⾯积相等. 左边S =4×21ab +c 2 右边S =(a +b )2 左边和右边⾯积相等,即 4×21ab +c 2=(a +b )2 化简可证. 六、课堂练习 1.勾股定理的具体内容是: . 2.如图,直⾓△ABC 的主要性质是:∠C =90°.(⽤⼏何语⾔表⽰)(1)两锐⾓之间的关系:;(2)若D 为斜边中点,则斜边中线;(3)若∠B =30°,则∠B 的对边和斜边:;(4)三边之间的关系: .bbbaAB3.△ABC 的三边a 、b 、c ,若满⾜b 2= a 2+c 2,则 =90°;若满⾜b 2>c 2+a 2,则∠B 是⾓;若满⾜b 2<c 2+a 2,则∠B 是⾓. 4.根据如图所⽰,利⽤⾯积法证明勾股定理.七、课后练习1.已知在Rt △ABC 中,∠B =90°,a 、b 、c 是△ABC 的三边,则(1)c = .(已知a 、b ,求c )(2)a = .(已知b 、c ,求a )(3)b = .(已知a 、c ,求b )2.如下表,表中所给的每⾏的三个数a 、b 、c ,有a <b <c ,试根据表中已有数的规律,写出当a =19时,b ,c 的值,并把b 、c ⽤含a 的代数式表⽰出来.3.在△从B 向C 以每秒2cm 的速度移动,问当P 点移动多少秒时,PA 与腰垂直. 4.已知:如图,在△ABC 中,AB =AC ,D 在CB 的延长线上.b EB求证:(1)AD 2-AB 2=BD ·CD(2)若D 在CB 上,结论如何,试证明你的结论.第⼆课时⼀、教学⽬标1.会⽤勾股定理进⾏简单的计算. 2.树⽴数形结合的思想、分类讨论思想. ⼆、重点、难点1.重点:勾股定理的简单计算. 2.难点:勾股定理的灵活运⽤. 三、例题的意图分析例1(补充)使学⽣熟悉定理的使⽤,刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.并学会利⽤不同的条件转化为已知两边求第三边.例2(补充)让学⽣注意所给条件的不确定性,知道考虑问题要全⾯,体会分类讨论思想.例3(补充)勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼综合能⼒. 四、课堂引⼊复习勾股定理的⽂字叙述;勾股定理的符号语⾔及变形.学习勾股定理重在应⽤. 五、例习题分析DCB例1(补充)在Rt △ABC ,∠C =90°. (1)已知a =b =5,求c . (2)已知a =1,c =2, 求b . (3)已知c =17,b =8, 求a . (4)已知a :b =1:2,c =5, 求a . (5)已知b =15,∠A =30°,求a ,c .分析:刚开始使⽤定理,让学⽣画好图形,并标好图形,理清边之间的关系.(1)已知两直⾓边,求斜边直接⽤勾股定理.(2)已知斜边和⼀直⾓边,求另⼀直⾓边,⽤勾股定理的简便形式.(3)已知⼀边和两边⽐,求未知边.通过前三题让学⽣明确在直⾓三⾓形中,已知任意两边都可以求出第三边.后两题让学⽣明确已知⼀边和两边关系,也可以求出未知边,学会见⽐设参的数学⽅法,体会由⾓转化为边的关系的转化思想.例2(补充)已知直⾓三⾓形的两边长分别为5和12,求第三边.分析:已知两边中较⼤边12可能是直⾓边,也可能是斜边,因此应分两种情况分别进⾏计算.让学⽣知道考虑问题要全⾯,体会分类讨论思想. 例3(补充)已知:如图,等边△ABC 的边长是6cm .DBA(1)求等边△ABC 的⾼. (2)求S △ABC .分析:勾股定理的使⽤范围是在直⾓三⾓形中,因此注意要创造直⾓三⾓形,作⾼是常⽤的创造直⾓三⾓形的辅助线做法.欲求⾼CD ,可将其置⾝于Rt △ADC 或Rt △BDC 中,但只有⼀边已知,根据等腰三⾓形三线合⼀性质,可求AD =CD =21AB =3cm ,则此题可解.六、课堂练习 1.填空题(1)在Rt △ABC ,∠C =90°,a =8,b =15,则c = . (2)在Rt △ABC ,∠B =90°,a =3,b =4,则c = .(3)在Rt △ABC ,∠C =90°,c =10,a :b =3:4,则a = ,b = . (4)⼀个直⾓三⾓形的三边为三个连续偶数,则它的三边长分别为 .(5)已知直⾓三⾓形的两边长分别为3cm 和5cm ,则第三边长为 . (6)已知等边三⾓形的边长为2cm ,则它的⾼为,⾯积为 . 2.已知:如图,在△ABC 中,∠C =60°,AB =34,AC =4,AD 是BC 边上的⾼,求BC 的长.3.已知等腰三⾓形腰长是10,底边长是16,求这个等腰三⾓形的⾯积. 七、课后练习 1.填空题.在Rt △ABC ,∠C =90°,(1)如果a =7,c =25,则b = . (2)如果∠A =30°,a =4,则b = . (3)如果∠A =45°,a =3,则c = . (4)如果c =10,a -b =2,则b = .(5)如果a 、b 、c 是连续整数,则a +b +c = .AB(6)如果b =8,a :c =3:5,则c = .2.已知:如图,四边形ABCD 中,AD ∥BC ,AD ⊥DC ,AB ⊥AC ,∠B =60°,CD =1cm ,求BC 的长.第三课时⼀、教学⽬标1.会⽤勾股定理解决较综合的问题. 2.树⽴数形结合的思想. ⼆、重点、难点1.重点:勾股定理的综合应⽤. 2.难点:勾股定理的综合应⽤. 三、例题的意图分析例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学⽣能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.例2(补充)让学⽣注意所求结论的开放性,根据已知条件,作适当辅助线求出三⾓形中的边和⾓.让学⽣掌握解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.使学⽣清楚作辅助线不能破坏已知⾓.例3(补充)让学⽣掌握不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差.在转化的过程中注意条件的合理运⽤.让学⽣把前⾯学过的知识和新知识综合运⽤,提⾼解题的综合能⼒.B例4(教材P 76页探究3)让学⽣利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点与实数⼀⼀对应的理论. 四、课堂引⼊复习勾股定理的内容.本节课探究勾股定理的综合应⽤. 五、例习题分析例1(补充)1.已知:在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学⽣对图形及性质掌握⾮常熟练,能够灵活应⽤.⽬前“双垂图”需要掌握的知识点有:3个直⾓三⾓形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐⾓,四对互余⾓,及30°或45°特殊⾓的特殊性质等.要求学⽣能够⾃⼰画图,并正确标图.引导学⽣分析:欲求AB ,可由AB =BD +CD ,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出BD =3和AD =1.或欲求AB ,可由22BC AC AB +=,分别在两个三⾓形中利⽤勾股定理和特殊⾓,求出AC =2和BC =6.例2(补充)已知:如图,△ABC 中,AC =4,∠B =45°,∠A =60°,根据题设可知什么?分析:由于本题中的△ABC 不是直⾓三⾓形,所以根据题设只能直接求得∠CDDACB =75°.在学⽣充分思考和讨论后,发现添置AB 边上的⾼这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC .让学⽣充分讨论还可以作其它辅助线吗?为什么?⼩结:可见解⼀般三⾓形的问题常常通过作⾼转化为直⾓三⾓形的问题.并指出如何作辅助线?解略.例3(补充)已知:如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2.求:四边形ABCD 的⾯积.分析:如何构造直⾓三⾓形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的⾓应选后两种,进⼀步根据本题给定的边选第三种较为简单.教学中要逐层展⽰给学⽣,让学⽣深⼊体会. 解:延长AD 、BC 交于E .∵∠A =∠60°,∠B =90°,∴∠E =30°. ∴AE =2AB =8,CE =2CD =4,∴BE 2=AE 2-AB 2=82-42=48,BE =48=34. ∵DE 2= CE 2-CD 2=42-22=12,∴DE =12=32. ∴S 四边形ABCD =S △ABE -S△CDE =21AB ·BE -21CD ·DE =36.⼩结:不规则图形的⾯积,可转化为特殊图形求解,本题通过将图形转化为直⾓三⾓形的⽅法,把四边形⾯积转化为三⾓形⾯积之差. 例4(教材P 76页探究3).分析:利⽤尺规作图和勾股定理画出数轴上的⽆理数点,进⼀步体会数轴上的点BC与实数⼀⼀对应的理论. 六、课堂练习1.△ABC 中,AB =AC =25cm ,⾼AD =20cm ,则BC = ,S △ABC = . 2.△ABC 中,若∠A =2∠B =3∠C ,AC =32cm ,则∠A = 度,∠B = 度,∠C = 度,BC = ,S △ABC = .3.△ABC 中,∠C =90°,AB =4,BC =32,CD ⊥AB 于D ,则AC = ,CD = ,BD = ,AD = ,S △ABC = .4.已知:如图,△ABC 中,AB =26,BC =25,AC =17,求S △ABC .七、课后练习.1.在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,AB = . 2.在Rt △ABC 中,∠C =90°,S △ABC =30,c =13,且a <b ,则a = ,b = . 3.已知:如图,在△ABC 中,∠B =30°,∠C =45°,AC =22,求(1)AB 的长;(2)S△ABC .C C。
1.1勾股定理 一等奖创新教学设计

1.1勾股定理一等奖创新教学设计《17.1 勾股定理》第一课时教学设计教学内容:人教版八年级数学下册《17.1 勾股定理》第1课时.教材分析:勾股定理是学生在掌握了直角三角形有关性质的基础上进行学习的,在学习中起到承上启下的作用。
勾股定理是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了直角三角形三边之间的数量关系,可以解决直角三角形中的计算问题,是解直角三角形的主要依据之一。
勾股定理的探索和证明蕴含着丰富的数学思想和科学方法,是培养学生良好思想品质的载体,它在数学的发展过程中起着重要的作用,勾股定理是数与形结合的优美典范。
学情分析:从学生的身心发展特点以及认知水平来看,八年级的学生逻辑思维还是比较薄弱的,但是他们已经具备一定的观察、归纳、探索和推理的能力。
因此本节课需要通过形象直观的图形去感受发现新知识。
在小学,他们已经学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补法解决问题的意识和能力还远远不够,因此我采用直观教具、学具,多媒体演示等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
教学目标分析:初中数学课程标准中对勾股定理部分提出如下要求:在研究图形性质和运动等过程中,进一步发展空间观念在多种形式的数学活动中,发展合情推理能力经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
依据对课标、教材及学生的认知特点,确定本节课的教学目标如下:知识与技能目标:了解勾股定理的文化背景,经历探索发现并验证勾股定理的过程。
过程与方法目标:在勾股定理的探索过程中,发展合情推理能力,体会数学思维的严谨性数形结合的数学思想,发展形象思维。
同时,在探究活动中感受解决问题方法的多样性。
情感态度与价值观目标:通过对勾股定理发展历史的了解,尤其是对中国古代数学家对勾股定理的研究,使学生感受数学文化的魅力,激发学生的民族自豪感和学习热情。
山东省优质课比赛一等奖勾股定理教学设计

义务教育课程标准实验教科书(人教版)18.1.1勾股定理(说案)临沂市苍山县实验中学宋宁课题:18.1.1 勾股定理临沂市苍山县实验中学宋宁一、教材分析1、地位和作用本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时爱国主义教育的良好素材。
2、 学习目标【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理;2、学会运用勾股定理进行简单的计算。
【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。
【问题解决】 1、通过拼图活动,体验解决问题方法的多样性;2、在探索活动中,培养学生的自主性与合作性。
【情感态度】 激发学生热爱祖国悠久文化的情感。
3、重点、难点重点:勾股定理的探索过程;难点:面积法(拼图法)发现勾股定理。
二、教法与学法分析学法指导动手实践、自主探索、合作交流三、教学过程几何直观引导实验思想方法探索验证 直角三角形三边之间数量关系 解直角三角形 广泛应用形 数 几何 代数教学方法活动1:等腰入手发现新知等腰直角三角形三边满足什么关系?方案二:4、学生总结归纳勾股定理,板书勾股定理并给出字母表示。
教师对“勾股弦”的含义以及3、台风来袭,一棵大树在离地面9米处断裂,树的顶部四、评价分析五、设计说明1、探究体验贯穿始终2、展示交流贯穿始终3、习惯养成贯穿始终4、情感教育贯穿始终5、文化育人贯穿始终。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
义务教育课程标准实验教科书(人教版)
18.1.1勾股定理
(说案)
临沂市苍山县实验中学
宋宁
课题:18.1.1 勾股定理
临沂市苍山县实验中学 宋 宁
一、教材分析
1、地位和作用
本节课选自人教版《数学》八年级下册第十八章第一节勾股定理第一课时
爱国主义教育的良好素材。
2、 学习目标
【知识技能】 1、经历勾股定理的探索过程,理解并掌握勾股定理;
2、学会运用勾股定理进行简单的计算。
【数学思考】 1、让学生切实经历“观察-探索-猜想-验证-归纳”的探索过程;
2、发展合情推理能力,并体会数形结合、由特殊到一般、转化的思想方法。
【问题解决】 1、通过拼图活动,体验解决问题方法的多样性;
2、在探索活动中,培养学生的自主性与合作性。
【情感态度】 激发学生热爱祖国悠久文化的情感。
3、重点、难点
重点:勾股定理的探索过程;
难点:面积法(拼图法)发现勾股定理。
二、教法与学法分析
几何直观
引导
实验
思想方法
探索
验证
直角三角形三边之间数量关系 解直角三角形 广泛应用
形 数 几何 代数
教学方法
学法指导
动手实践、自主探索、合作交流
三、教学过程
教学
环节
教学内容师生互动设计意图
情境导入
古韵今风拼图游戏
一千多年前,中国人发
明了七巧板,外国人管它叫
“中国魔板”、“唐图”。
1、教师出示《七巧八分图》.
2、学生利用两组七巧板进行合
作拼图。
3、学生利用几何直观进行合情
推理并大胆猜测。
通过情景创
设,寓教于乐,激
发学生好奇、探究
的欲望。
追溯历史
解密真相活动1:等腰入手发现新知
等腰直角三角形三边满足
什么关系?
图1(每个小方格代表1个单位
面积)
1、教师展示图片并提出问题。
2、学生观察图形,在自主探究的
基础上合作交流。
完成表格
边的关系:
3、引导学生利用“割”“补”思
想计算正方形C的面积。
A的
面积
B的
面积
C的
面积
图1
三者
关系
将面积的关系
转化为边长之间的
关系体现了转化的
思想。
将图形转化为
边在格线上的图
形,以便于计算图
形面积,体现了数
形结合的思想。
为下一步探索
复杂图形的面积做
铺垫。
活动2:探究一般构建模型
一般的直角三角形是否
存在这一结论?
图2(每个小方格代表1个单位
面积)
1、教师出示图片并提出问题
2、学生自主探究,小组间合作交
流,并完成表格。
3、教师鼓励学生用尽可能多的方
法求正方形C的面积。
A的
面积
B的
面积
C的
面积
图2
三者
关系
渗透“从特殊
到一般”的认知规
律,
为“勾三、股
四、弦五”的提出
埋下伏笔。
培养学生的类
比、迁移及探索问
题的能力。
A
B
C
B
C
A
活动3:实验演示加深认识
利用几何画板动态演示。
教师操作演示,改变三边的长,
改变∠α的度数,让学生观察边长
之间的关系。
加深学生对勾
股定理理解的同时
也拓展了学生的视
野。
形成猜想教师引导学生分别从文字语
言、符号语言、数学图形语言归纳
命题1,学生充分交流、表达、总
结。
培养学生的合情推理能力以及语言表达能力。
推陈出新
借古鼎新
用准备好的四个全等的
直角三角形拼成一个正方
形。
(内部可以中空)
(1)你能求出大正方形的面
积吗?
(2)你又有什么发现?
勾股定理
1、教师提出问题,学生自主探究
并小组合作交流,动手验证。
2、教师深入到学生中间,参与小
组活动,用心倾听学生意见,关注
不同认知水平的学生。
3、学生展示两种不同的方案:
方案一:
方案二:
4、学生总结归纳勾股定理,教师
板书勾股定理并给出字母表示。
教师创新使用
教材,利用拼图活
动解放学生的大
脑,让学生发挥自
己的聪明才智证明
勾股定理。
让学生经历由
表面到本质,由合
情推理到演绎推理
的发掘过程,体会
数学的严谨性。
培养学生符号
意识。
勾股史话教师对“勾股弦”的含义以及
古今中外对勾股定理的研究作一介
绍
动态演示勾股树
使学生感受数
学文化,培养民族
自豪感和爱国主义
精神。
体会数学的精
巧、优美。
a
b c
取其精华
古为今用1、求图中字母A、B所代表
的正方形的面积.
教师出示题目,学生思考并抢
答。
这组题由本节
课的难点演变而
来,巩固了所学,
又对知识进行了延
伸。
2、求下列直角三角形中未知
边的长.
1、教师规范板书一题.
2、学生板演解答另外两题。
这组题考察本
节课的重点勾股定
理,使学生的知识
进一步深化。
3、台风来袭,一棵大树在离
地面9米处断裂,树的顶部
落在离树根底部12米处。
这
棵树原来有多高?
学生板演并由学生纠错这道题是实际
问题,让学生感受
勾股定理在生活中
的广泛应用。
温故反思
任务后延
一个定理
两个方案
三种思想
四种经验
教师鼓励学生从基本知识、基
本技能、基本数学思想和方法、基
本数学活动经验四个方面对本节课
进行小结。
鼓励学生畅所
欲言,补充、完善
本节课的知识脉
络,进而总结出本
节课的知识要点。
分层作业学生课后完成。
分层作业体现
了教育面向全体学
生的理念。
9
米
12米
B
A
c
四、评价分析
五、设计说明
1、探究体验贯穿始终
2、展示交流贯穿始终
3、习惯养成贯穿始终
4、情感教育贯穿始终
5、文化育人贯穿始终。