离心式压缩机的防喘振控制(正式版)

合集下载

离心式压缩机防喘振控制措施分析

离心式压缩机防喘振控制措施分析

离心式压缩机防喘振控制措施分析摘要:在化工企业生产过程中,离心式压缩机有着十分重要的作用和地位,其有着排气压力在,输送流量小的优势,但其在具体运行过程中也存在一定缺陷问题。

如喘振问题,发生喘振对压缩机会造成极大危害,所以,需要采取有效防控措施,以确保压缩机得以安全、稳定地运行。

有鉴于此,下文在充分结合相关文献研究以及自己多年工作实践经验情况下,先是对离心式压缩机喘振问题的成因展开了认真分析,进而探讨了几点离心式压缩机喘振防控的有效措施,以供借鉴。

关键词:离心式压缩机;防喘振;控制措施一、探析离心式压缩机发生喘振的原因通常生产装置运行中的压缩机在运作时,如果受到外部因素影响而致使流量减小并达到Qmin值时,则会致使压缩机流道发生旋转脱离问题。

如果气量继续减少,那么压缩机叶轮整体流道就会形成气体旋涡区,而此时压缩机出口压力则会发生及时降低。

而与此同时,与压缩机出口相互连接的管网系统压力并不断立刻降低,且管网内气体还会倒流到压缩机内。

当管网内压力比压缩机出口排气压力小时,气体就会停止倒流,此时压缩机就会向管网内进行排气。

但由于进气量不够,当压缩机出口管网恢复到一定压力时流道内就会发生旋涡。

在这种循环下,机组和管道内流量也会随着之出现周期性变化,机器进出口压力也会引发较大幅度脉动。

另外,因气体压缩机进出口部位发生倒流,与此同时还会有较大周期性气流声响以及大幅度振动现象。

喘振是离心式压缩机自身所固有的一种特性,其发生喘振的原因通常可以在对象特性方面找出来。

因压缩机压缩比和流量曲线上存在一个交点,当其在右面曲线上进行作业时,压缩机是处于稳定状态的。

如在曲线左面低流量范围内作业时,会受到气体所具有的可压缩性特征影响,而出现不稳定。

而如果流量降低到喘振线时,倘若压缩比降下,那么流量就会继续减少;再加上输出管线气体压力要比压缩机出口压力大,所以,已经被压缩气体就会迅速倒流到压缩机内,随后管线内压力会进一步减小,进而会致使气体流动方向发生反转,并最终引发周期性喘振。

浅谈离心式压缩机的防喘振控制

浅谈离心式压缩机的防喘振控制

浅谈离心式压缩机的防喘振控制摘要:受到大环境的影响,流量大幅度下降,压缩机排量逐渐减小,并对出口造成压力波动,导致机组整体发生强烈振动,同时会产生低吼声,就像人咳嗽一般,这种现象叫喘振,其会对离心式压缩机造成一定的危害,轻则导致离心式压缩机无法正常运行,而重则会引发爆炸甚至火灾等灾害,严重危害附近工作人员的生命安全,而造成离心式压缩机喘振的故障原因多半是由于扩压器腐蚀或磨损,进气温度过高,叶轮扩压器等中间存在缝隙,叶轮磨损或存在附着物,都会导致离心式压缩机出现喘振现象,而通过对离心式压缩机展开防喘振控制并加强故障诊断系统的有效应用,可以有效对喘振故障进行预防并展开科学治理。

关键词:离心式压缩机;防喘振;控制引言在离心式压缩机应用范围不断扩大的情况下,离心式压缩机已经成为空分行业制氧、制氮的主要设备,一旦离心式压缩机在应用过程中发生喘振现象,将会影响制氧、制氮的正常产量,也会降低压缩机使用寿命。

因此相关工作应该重点分析导致离心式压缩机出现喘振问题的基本原因,有针对性地设计一些问题预防措施,能够在提高离心式压缩机运行质量的基础上,有助于提升离心式压缩机的运行安全性。

1离心式压缩机出现的喘振问题1.1扩压器腐蚀或磨损而造成离心式压缩机出现喘振的原因具有多种因素,而扩压器受到腐蚀或磨损就是其中一种,离心式压缩机体积较小,结果相对来说比较简单,但同时排放量极大,效率较高,且不受润滑油污染,在我国生产活动当中得以广泛使用,并取得了显著的应用效果,但扩压机内部磨损或腐蚀一直没有得到很好地解决,而且由于磨损与腐蚀是扩压器运行的必然现象,无法做到彻底杜绝,扩压器是离心式压缩机内部的重要组成部分,所以在一定程度上降低叶轮压出气体的流速,提高气体压力,而扩压器一旦发生磨损和腐蚀,就无法正确地发挥效用提高气体压力,从而引发离心式压缩机产生喘振故障。

在面对这项原因时需要工作人员定期对扩压器进行检修,对扩压器腐蚀或磨损部位进行及时更换或修复并做好一系列的防腐措施。

离心式压缩机的防喘振控制

离心式压缩机的防喘振控制

离心式压缩机的防喘振控制离心式压缩机是一种常见的工业设备,广泛应用于制冷、空调、石化、化工和能源等领域。

但离心式压缩机在高速旋转过程中,易发生喘振现象,严重影响设备的可靠性和运行效率。

因此,实现离心式压缩机的防喘振控制,成为压缩机研发领域的热门话题。

喘振的概念和机理喘振是指机械系统在一定运行工况下,出现自激振动和自我放大的现象。

具体表现为设备发出高频噪声、振幅剧烈震动、设备受到损坏等。

离心式压缩机的喘振主要由两种类型引起,分别是稳定喘振和非稳定喘振。

稳定喘振是指设备在一定工况下,由于颤振力和阻尼力平衡不稳定而发生振动。

非稳定喘振则是指由于系统参数的变化而导致的振动,如流量、压力、转速等。

喘振的机理比较复杂,通常是由流体特性、机械特性和控制策略等多个因素综合作用形成。

针对离心式压缩机,具体原因如下:•离心式压缩机转子和静子间的流体动力学作用•离心式压缩机转子的惯性力和弹力•离心式压缩机流量的变化导致的系统不稳定防喘振的控制为了防止离心式压缩机的喘振,降低因喘振而引起的振动、噪声、能耗和设备损坏等问题,可以采用以下控制策略:转子动平衡离心式压缩机转子的动平衡是减少振动和噪声的有效措施。

动平衡可以通过加装质量均匀化转子重量分布,减少旋转惯量差异,使转子自身的振动减少。

减弱单元耦合离心式压缩机中存在转子和静子的相互作用,转子运转时的振动会将振动传递到静子中,同时静子的反作用力也会反过来影响转子。

因此,为了减小单元之间的耦合作用,需要采用合适的材料和合理的结构设计。

控制喘振频率喘振频率是指转子和压气机系统之间的谐振频率。

为了控制喘振,可以借助传感器、控制系统和信号处理技术,实时检测喘振频率,调节系统工况,减小喘振频率。

同时还可以采用创建额外的泄放卡止或捆绑物来改变系统频率。

控制驱动力离心式压缩机喘振的发生和发展与外界激励力有关。

为了降低驱动力,需要在系统中加入有阻尼的弹簧,将外部力矩转换为电信号或机械压力信号,并将信号传输到控制系统中,调节工况,实现防喘振。

离心式压缩机喘振故障分析与防喘振控制措施

离心式压缩机喘振故障分析与防喘振控制措施

离心式压缩机喘振故障分析与防喘振控制措施摘要:喘振是离心式压缩机非常典型的故障类型之一。

离心压缩机在日常运行过程中,如果发生喘振故障,那么就会影响其运行的稳定性,导致其性能缺失,最终致使生产无法正常进行。

文章探讨了离心压缩机喘振控制的重要性,总结了喘振故障的判定方法,分析了压缩机发生喘振的原因,并提出了防喘振控制措施。

关键词:离心式压缩机;喘振;流量;叶轮离心式压缩机在现代工业生产中发挥着重要作用,防喘振控制及逆流保护历贯穿其管理的全过程。

为了防止压缩机出现喘振故障,除了自控角度选择相应的控制策略、控制系统及现场仪表外,还可以从工艺管道设计选型、设备参数选择及运行过程中的操作和维护这几个方面综合考虑,最终才能确保压缩机能安全、平稳运行。

1离心式压缩机喘振故障控制的重要性化石能源输送、化工生产、钢铁冶炼、化肥生产等国家重点项目中都离不开基于离心式压缩机对气体的压缩与输送,可以说离心式压缩机是工业设计、生产、工程改造的重点对象。

离心式压缩机是一种基于回转运动原理的设备,其具有空间占地小、设备密度低、结构单元紧凑、运行稳定、输送压缩气体流量大等特点。

但是离心式压缩机运行时也会面对如喘振、稳定工作区域窄等技术问题,一方面会影响压缩机工作性能造成装置运行波动,另一方面也会造成压缩机故障或者寿命缩减。

例如喘振会导致离心式压缩机轴承润滑液体被破坏,导致轴瓦过电压损坏;离心式压缩机密封设备损坏,造成气体泄漏。

因此,准确的掌握离心式压缩机工作原理,掌握离心式压缩机出现喘振故障的诱导因素,制定采取一系列防止喘振的措施,保障离心式压缩机脱离喘振工作范围,是保证工业生产的关键手段。

2 离心式压缩机喘振故障的判断方法离心式压缩机发生喘振现象时会伴随着明显的机组和管道异常特征:(1)离心式压缩机和管道会发生周期性、高频率振动,这种震动会产生振动噪音,严重时整个离心式压缩机机组会发生激烈的“吼叫”噪音。

(2)机组外壳、轴承、机组配件等发生剧烈振动,振动频率、幅度随机变化,并伴随着剧烈、周期性的气流声。

离心式压缩机防喘振控制设计

离心式压缩机防喘振控制设计

1 概述1.1压缩机喘振及其危害压缩机运行中一个特殊现象就是喘振。

防止喘振是压缩机运行中极其重要的问题。

许多事实证明,压缩机大量事故都与喘振有关。

喘振所以能造成极大的危害,是因为在喘振时气流产生强烈的往复脉冲,来回冲击压缩机转子及其他部件;气流强烈的无规律的震荡引起机组强烈振动,从而造成各种严重后果。

喘振会造成转子大轴弯曲;密封损坏,造成严重的漏气,漏油;喘振的出现轻则使压缩机停机,中断生产过程造成经济损失,重则造成压缩机叶片损坏,造成人员伤害;喘振使轴向推力增大,烧坏止推轴瓦;破坏对中与安装质量,使振动加剧;强烈的振动可造成仪表失灵;严重持久的喘振可使转子与静止部分相撞,主轴和隔板断裂,甚至整个压缩机报废。

1.2喘振的工作原理及防治压缩机在运行中,当管路系统阻力升高时,流量将随之减小,有可能降低到允许值以下。

防喘振系统的任务就是在流量降到某一安全下限时,自动地将通大气的放空阀或回流到进口的旁通阀打开,增大经过空压机的流量,防止进入喘振区。

取流量安全下限作为调节器的规定值。

当流量测量值高于规定值时,放空阀全关:当测量值低于规定值时,调节器输出信号,将放空阀开启,使流量增加。

压缩机工作效率高,在正常工况条件下运行平稳,压缩气流无脉动,对其所输送介质的压力、流量、温度变化的敏感性相对较大,容易发生喘振造成严重事故。

所以应尽力防止压缩机进入喘振工况。

喘振现象是完全可以得到有效控制的,如图(1)所示,根据离心压缩机在不同工况条件下的性能曲线,只要我们把压缩机的最小流量控制在工作区(控制线内),压缩机即可正常工作。

喘振的标志是一最小流量点,低于这个流量即出现喘振。

因此需要有一个防止压缩机发生喘振的控制系统,限制压缩机的流量不会降低到这种工况下的最低允许值。

即不会使压缩机进入喘振工况区域内。

图1压缩机性能曲线与防喘振控制原理图压缩机的防喘振条件为:△P≥a(p2±bp1)式中:△p——进口管路内测量流量的孔板前后压差p1——进口处压力p2——出口处压力a、b——与压比、温度、孔板流量计的孔板系数有关的参数,可通过热工计算机和实验取得。

离心式压缩机的防喘振控制(正式版)

离心式压缩机的防喘振控制(正式版)

文件编号:TP-AR-L6485In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编订:_______________审核:_______________单位:_______________离心式压缩机的防喘振控制(正式版)离心式压缩机的防喘振控制(正式版)使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

一、离心式压缩机的特性曲线与喘振离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。

对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。

离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的“喘振”。

喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。

离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。

因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。

对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。

第一章离心压缩机防喘振控制

第一章离心压缩机防喘振控制

4.2 离心压缩机防喘振控制4.2.1 离心压缩机的喘振1.离心压缩机喘振现象及原因离心式压缩机在运行过程中,可能会出现这样一种现象,即当负荷低于某一定值时,气体的正常输送遭到破坏,气体的排出量时多时少,忽进忽出,发生强烈震荡,并发出如同哮喘病人“喘气”的噪声。

此时可看到气体出口压力表、流量表的指示大幅波动。

随之,机身也会剧烈震动,并带动出口管道、厂房震动,压缩机会发出周期性间断的吼响声。

如不及时采取措施,将使压缩机遭到严重破坏。

例如压缩机部件、密封环、轴承、叶轮、管线等设备和部件的损坏,这种现象就是离心式压缩机的喘振,或称飞动。

下面以图4.2-1 所示为离心压缩机的特性曲线来说明喘振现象的原因。

离心压缩机的特性曲线显示压缩机压缩比与进口容积流量间的关系。

当转速一定时,曲线上点有最大压缩比,对应流量设n c 为,该点称为喘振点。

如果工作点为点,要P Q B 求压缩机流量继续下降,则压缩机吸入流量,工作点从点突跳到点,压缩机出P Q Q <C D 口压力从突然下降到,而出口管网压力仍为C PD P ,因此气体回流,表现为流量为零 同时管网压力 图4.2-1 离心压缩机的特性曲线C P 也下降到,一旦管网压力与压缩机出口压力相等,压缩机由输送气体到管网,流量达到D P 。

因流量大于点的流量,因此压力憋高到,而流量的继续下降,又使压缩机A Q A Q B B P 重复上述过程,出现工作点从的反复循环,由于这种循环过程极B A D C B →→→→迅速,因此也称为“飞动”。

由于飞动时机体的震动发出类似哮喘病人的喘气吼声,因此,将这种由于飞动而造成离心压缩机流量呈现脉动的现象,称为离心压缩机的防喘振现象。

2.喘振线方程喘振是离心压缩机的固有特性。

离心压缩机的喘振点与被压缩机介质的特性、转速等有关。

将不同转速下的喘振点连接,组成该压缩机的喘振线。

实际应用时,需要考虑安全余量。

喘振线方程可近似用抛物线方程描述为:(4.2-θ2121Q b a p p +=1)式中,下标1表示入口参数;、、分别表示压力、流p Q θ量和温度;是压缩机系数,由压缩机厂商提供。

【专业知识】离心式制冷压缩机防喘振措施

【专业知识】离心式制冷压缩机防喘振措施

【专业知识】离心式制冷压缩机防喘振措施【学员问题】离心式制冷压缩机防喘振措施?【解答】1、喘振产生的机理离心压缩机的基本工作原理是利用高速回转的叶轮对气体做功,将机械能加给气体,负气体压力升高,速度增大,气体获得压力能和速度能。

在叶轮后面设置有通流面积逐渐扩大的扩压元件,高压气体从叶轮流出后,再流经扩压器进行降速扩压,负气体流速降低,压力继续升高,即把气体的一部分速度能转变为压力能,完成了压缩过程。

扩压器流道内的边界层分离现象:扩压器流道内气流的活动,来自叶轮对气流所做功转变成的动能,边界层内气流活动,主要靠主流中传递来的动能,边界层内气流活动时,要克服壁面的摩擦力,由于沿流道方向速度降低,压力增大,主流的动能也不断减小。

当主流传递给边界层的动能不足以使之克服压力差继续前进时,终极边界层的气流停滞下来,进而发生旋涡和倒流,负气流边界层分离。

气体在叶轮中的活动也是一种扩压活动,当流量减小或压差增大时也会出现这种边界层分离现象。

当流道内气体流量减少到某一值后,叶道进口气流的方向就和叶片进口角很不一致,冲角&alpha;大大增加,在非工作面引起流道中气流边界层严重分离,使流道进出口出现强烈的气流脉动。

当流量大大减小时,由于气流活动的不均匀性及流道型线的不均匀性,假定在B流道发生气流分离的现象,这样B流道的有效通流面积减小,使原来要流过B流道的气流有一部分要流向相邻的A流道和C流道,这样就改变了A流道,C流道原来气流的方向,它使C流道的冲角有所减小,A流道的冲角更加增大,从而使A流道中的气流分离,反过来使B流道冲角减小而消除了分离现象,于是分离现象由B流道转移到A流道。

这样分离区就以和叶轮旋转方向相反的方向旋转移动,这种现象称为旋转脱离。

扩压器同样存在旋转脱离。

在压缩机的运转过程中,流量不断减小到Qmin值时,在压缩机流道中出现如上所述严重的旋转脱离,活动严重恶化,使压缩机出口压力忽然大大下降,低于冷凝器的压力,气流就倒流向压缩机,一直到冷凝压力低于压缩机出口压力为止,这时倒流停止,压缩机的排量增加,压缩机恢复正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文件编号:TP-AR-L6485
In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.
(示范文本)
编订:_______________
审核:_______________
单位:_______________
离心式压缩机的防喘振
控制(正式版)
离心式压缩机的防喘振控制(正式版)
使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

一、离心式压缩机的特性曲线与喘振
离心式压缩机的特性曲线通常指:出口绝对压力户2与人口绝对压力p1之比(或称压缩比)和入口体积流量的关系曲线;效率和流量或功率和流量之间的关系曲线。

对于控制系统的设计而言,则主要用到压缩比和入口体积流量的特性曲线,见图6—20中实线。

离心式压缩机在运行过程中,有可能会出现这样一种现象,即当负荷降低到一定程度时,气体的排出量会出现强烈振荡,同时机身也会剧烈振动,并发出“哮喘”或吼叫声,这种现象就叫做离心式压缩机的
“喘振”。

喘振是离心式压缩机的固有特性,而事实上少数离心泵也可能喘振。

离心泵工作中产生不稳定工况需要两个条件:一是泵的玎—Q特性曲线呈驼峰状;二是管路系统中要有能自由升降的液位或其他能贮存和放出能量的部分。

因此,对离心泵的情况,当遇到具有这种特点的管路装置时,则应避免选用具有驼峰型特性的泵。

对离心压缩机,由于它的性能曲线大多呈驼峰型,并且输送的介质是可压缩的气体,因此,只要串联着的管路容积较大,就能起到贮放能量的作用,故发生不稳定跳动的工作情况便更为容易。

连接离心式压缩机不同转速下的特性曲线的最高点,所得曲线称喘振极限线,其左侧部分称为喘振区,如图6—20中
阴影部分。

喘振情况与管网特性有关。

管网容量越大,喘振的振幅越大,而频率越低;管网容量越小,则相反。

二、引起喘振的因素
如上所述,当离心式压缩机的负荷减小到一定程度时,会造成压缩机的喘振,这是引起喘振的最常见因素。

除此之外,被压缩气体的吸入状态,如分子量、温度、压力等的变化,也是造成压缩机喘振的因素。

吸入压力的变化,会影响压缩机的实际压缩比。

当吸人压力》l降低,所需压缩比增大,压缩机易进入喘振区。

对于吸人气体的分子量变化,压缩机特性曲线的改变情况如图6—21所示。

图中清楚地表明,在同样的吸入气体流量QA下,分子量大,压缩机易进入喘
振区。

当吸人气体温度变化时,它的特性曲线将如图6—22所示。

显然,当温度降低,压缩机易出现喘振。

在实际生产过程中,被压缩的气体往往来自上一工序,该工序的操作情况会影响分子量和温度的变化,从而可能引起压缩机的喘振。

鉴于目前的防喘振控制系统一般只是为了防止负荷的减小,且分子量的变化也无法进行在线测量,所以,在上述情况下,防喘振控制系统会“失灵”。

对此需要特别加以重视。

三、喘振的极限方程及安全操作线
(1)经验公式将在不同转速下的压缩机特性曲线最高点连接起来所得的一条曲线,称为压缩机喘振的极限线,如图6—23所示。

对于喘振极限线,可以通过理论推导获得数学表达式。

在工程上,为了安全上的原因,在喘振极限线右边,建立一条“安全操作线”,作为压缩机允许工作的界限。

这条安全操作线可与一个抛物线方向近似,其经验公式为
式中,Q1为吸人口气体的体积流量;丁l为吸人口气体的绝对温度;p1、p2分别为吸入口、排出口的绝对压力;K,a均为常数,一般由压缩机制造厂家给出,a有等于0、大于0和小于0三种情况。

由于式(6—7)中的吸入口气体的体积流量Ql、绝对压力》p1和绝对温度T1有一定关系,而且还可以依照不同的测量方法和仪表,将经验公式表达成更加实用的公式。

(2)用差压计测量流量时的安全操作线表达
式假如在压缩机人口处用差压计测量流量Ql,测得的差压为p1d,由标准节流装置流量测量公式
式中,o为常数;c为气体压缩系数;ρ1为人口处气体的密度。

根据气体方程
式中,z为气体压缩修正系数;及为气体常数;M为气体分子量。

将式(6—9)代入式(6—8)并简化后,得
式(6—13)和式(6—14)就是用差压计测量入口处气体流量时喘振安全操作线的表达式。

四、防喘振控制系统
由前述可知,在通常情况下,压缩机的喘振主要是负荷减少所致,而负荷的升降则是由工艺所决定的。

为使压缩机不出现喘振,需要确保任何转速下,通过压缩机的实际流量都不小于喘振极限线所对应的最小流量QB。

根据这一思路,可采取如图6—24所示的循环流量法,来设计固定极限流量法和可变极限流量法等两种防喘振控制系统。

(1)固定极限流量法采用部分循环法,始终使压缩机流量保持大于某一定值流量,从而避免进入喘振区运行,这种方法叫做固定极限流量防喘振控制。

图6—25中Qn即为固定极限流量值。

显然,压缩机不论运行在哪一档转速下,只要满足Q≥QB的条件,压缩机就不会出现喘振。

用固定极限法所设计的控制方案结构简单,如图6—26所示。

图中的流量控制器,即以Qu值作为其固定设定值的防喘振控制器。

QB的取值应以现场
压缩机能达到的最高转速所对应的喘振极限流量为好。

压缩机正常运行时,控制器的测量值恒大于设定值,而旁路控制阀是气关阀,此时控制器具有正向作用和PI特性,输出达最大值时使阀关闭。

当压缩机吸气量小于设定值时,旁路阀打开,压缩机出口气体经旁路返回至压缩机人口,气量又增大到大于Qu 值。

这时虽然压缩机向外供气量减少了,但防止了喘振的发生。

这种固定极限流量法不足之处在于当压缩机低速运行时(如图6—25中的n₁,n₂转速情况下),压缩机的能耗过大,这对压缩机负荷需经常改变的生产装置就不够经济;但从另一方面讲,则有控制方案简单、系统可靠性高、投资少等优点。

(2)可变极限流量法为了减少压缩机的能量消
耗,在压缩机负荷有可能经常波动的场合,可以采用调节转速的办法来保证压缩机的负荷满足工艺上的要求。

因为在不同转速下,其喘振极限流量是一个变数,它随转速的下降而变小。

所以最合理的防喘振控制方案应是在整个压缩机负荷变化范围内,使它的工作点沿着如图6—23所示的喘振安全操作线而变化,根据这一思路设计的防喘振控制系统,就称为可变极限流量法防喘振控制系统,它的原理如图6—27所示。

在设计防喘振控制系统时,尚需注意如下几点。

①旁路控制阀在压缩机正常运行的整个过程中,测量值始终大于设定值,因此必须考虑防喘振控制器的防积分饱和问题。

否则就会造成防喘振控制系统的动作不及时而引起事故。

内部管理系列 | INTERNAL MANAGEMENT 编号:TP-AR-L6485
②在实际的工业设备上,有时不能在压缩机入口处测量流量,而必须改为在出口处,但压缩机制造厂所给的特性曲线往往是规定测量人口流量的,这时就需要将喘振安全操作线方程进行改写。

可以从人口、出口质量流量相等这一等式出发,写出pld与出口流量的差压值p2d之间的关系式,然后把安全操作线方程式中p1d替换掉,再以此方程进行防喘振控制系统的设计。

③喘振安全操作线方程式中的压缩机出、人口处的压力p₁、p₂均指绝对压九因此,若所用的压力变送器不是绝压变送器,则必须考虑相对压力和绝对压力的转换问题。

此处输入对应的公司或组织名字
Enter The Corresponding Company Or Organization Name Here
第2页。

相关文档
最新文档