天然气压缩因子的分析及其计算

合集下载

一种新型天然气压缩因子数值计算方法

一种新型天然气压缩因子数值计算方法

0. 99
1. 58
2. 59
4. 30
6. 00
9. 33
由表 3 可以看出,在对比温度为 1. 05 时,本文
计算方法与其他计算方法一样误差较大,最大误差
达到了 60% 。从压缩因子三维图可以看出,对比
温度在 1. 05 ~ 1. 10 之间时,Z 值曲面表现出了较
强的扭曲性,这也是造成各方法预测精度均较低的
近几年国内相继发现了一批高温高压天然气 田[8]。原有压缩因子计算方法适用压力范围低的 弊端逐渐暴露。石油大学郭绪强教授针对这一问 题进行了相关试验,取得了丰富的高压天然气实验 数据[9]。
将郭绪强教授发表的高压天然气实验数据与 传统天然气 压 缩 因 子 图 版[10] 叠 加,发 现 天 然 气 压 缩因子在高压阶段具有较强的延展性,表现出了较 好的规律。利用三维绘图软件将数据进行处理,可 以发现天然气压缩因子曲面较为复杂。因此,本文 利用传统压缩因子图版与郭绪强教授发表的高压 天然气实验数据进行拟合,尝试找到高精度的能够
引言
目前使用较多的天然气压缩因子计算方法,包 括 Dranchk - Abu - Kassem 方 法 ( DAK) [1 - 2],Hankinson - Thomas - Phillips 方 法 ( HTP ) [3],Dranchuk - Purvis - Robinson 方法( DPR) [4],以及由石 油大学李相方教授根据天然气压缩因子图版拟合 的李 相 方 方 法 ( LXF) 。这 些 计 算 公 式 均 是 根 据 Standing 和 KatZ 1942 年提出的压缩因子图版[5]采 用不同拟合方法拟合得到的[6]。在不同的对比压 力及对比温度下,误差均较大。根据李相方教授的 统计,各方法的最大误差均超过了 55%[7]。

AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算(最漂亮的)

AGA8—92DC计算方法天然气压缩因子计算摘要:按照GB/T 17747.2—1999《天然气压缩因子的计算第2部分:用摩尔组成进行计算》,采用AGA8—92DC计算方法,用VB编程计算了天然气压缩因子。

用二分法求解状态方程,精度满足工程需要。

关键词:压缩因子;AGA8—92DC计算方法;二分法1概述工作状态下的压缩因子是天然气最重要的物性参数之一,涉及到天然气的勘探、开发、输送、计量和利用等各个方面。

实测天然气压缩因子所需的仪器设备价格高,不易推广,因此计算方法发展很快,主要为经验公式和状态方程计算方法。

1992年6月26日,国际标准化组织(ISO)天然气技术委员会(TC193)及分析技术分委员会(TC193/SC1)在挪威斯泰万格(Stavanger)召开了第四次全体会议,会上推荐了两个精度较高的计算工作状态下天然气压缩因子的方程,目PAGA8-92DC方程、SGERG-88方程[1]。

随后,国际标准化组织于1994年形成了国际标准草案[2]。

AGA8-92DC方程来自美国煤气协会(AGA)。

美国煤气协会在天然气压缩因子和超压缩因子表的基础上,开展了大量研究,于1992年发表了以状态方程为基础计算压缩因子的AGA No.8报告及AGA8-92DC方程[2]。

1994年,四川石油管理局天然气研究所遵照中国石油天然气总公司技术监督局的指示,对国际标准化组织1992年挪威斯泰万格会议推荐的AGA8-92DC 方程、SGERG-88方程进行验证研究,于1996年底基本完成[2]。

1999年,四川石油管理局天然气研究院(前身为四川石油管理局天然气研究所)起草的《天然气压缩因子的计算》GB/T 17747.1~3—1999被批准、发布。

《天然气压缩因子的计算》GB/T 17747.1~3—1999包括3个部分:《天然气压缩因子的计算第1部分:导论和指南》GB/T 17747.1—1999,《天然气压缩因子的计算第2部分:用摩尔组成进行计算》GB/T 17747.2—1999,《天然气压缩因子的计算第3部分:用物性值进行计算》GB/T 17747.3—1999。

天然气偏差因子

天然气偏差因子

偏差因子(deviation factor of gas)。

把理想气体定律用于实际气体时必须考虑的一个校正因子,用Z表示。

用以表示实际气体受到压缩后与理想气体受到同样的压力压缩后在体积上的偏差。

天然气偏差系数又称压缩因子,是指在相同温度、压力下,真实气体所占体积与相同量理想气体所占体积的比值。

天然气的偏差系数随气体组分的不同及压力和温度的变化而变化。

天然气偏差系数的确定除了pVT实验法外,还有若干不同的计算关系式。

在低压下,天然气也密切遵循理想气体定律。

但是,当气体压力上升,尤其当气体接近临界温度时,其真实体积和理想气体之间就产生很大的偏离,这种偏差称之为偏差系数,用符号Z表示。

换言之,某压力p和温度T时,n摩尔气体的实际体积除以在相同压力p 和温度T时n摩尔气体的理想体积之商,即为该天然气的偏差系数。

天然气流量计量中压缩因子的分析与计算

天然气流量计量中压缩因子的分析与计算

天然气流量计量中压缩因子的分析与计算冷溧;李沐雨;吕天志;冯钧;王强【摘要】天然气压缩因子的计算结果直接影响了天然气流量的计算精度,因此要提高天然气流量的计算精度首先应提高压缩因子的计算精度。

针对现行的国家标准和国际标准进行比较,并用Lab VIEW分别编写了程序进行计算。

计算结果与附录给出的标准结果比较,得出了精确计算天然气压缩因子所应采用的方法,即应尽量使用ISO 12213-2:2006附录中的参考Fortran程序的计算方法进行计算。

【期刊名称】《油气田地面工程》【年(卷),期】2013(000)010【总页数】2页(P41-42)【关键词】天然气;压缩因子;国家标准【作者】冷溧;李沐雨;吕天志;冯钧;王强【作者单位】大庆油田技术监督中心;中国科学技术大学;哈尔滨工业大学;大庆油田技术监督中心;哈尔滨工业大学【正文语种】中文1 压缩因子各版本之间的差异《天然气压缩因子的计算——第2 部分:用摩尔组成进行计算》 GB/T 17747.2—2011 和GB/T 17747.2—1999,二者的主要区别在于U 和G 参数的求解。

GB/T 17747.2 参考了ISO 12213—2:2006,ISO 12213—2:2006给出的计算公式与GB/T 17747.2—2011相同[1-2]。

在GB/T 17747.2—1999中:ISO 12213—2:2006的附录中给出了压缩因子计算的Fortran 子程序。

与标准公式不一致的地方是参数U、K、J 和B 的计算。

1.1 U、K、G 的计算标准中给出的公式为变量i 从1到N-1,变量j 从i+1 到N 。

从程序得到的计算公式为变量i 从1到8,变量j 从i+1 到19;U 的计算中后半部分多乘了2倍。

1.2 B 的计算标准中给出的公式为变量i 从1到N ,变量j 从1到N 。

从程序得到的计算公式为当i=j 时,当i ≠j 时,变量i 从1到N ,变量j 从i 到N 。

管输天然气贸易计量中压缩因子的计算

管输天然气贸易计量中压缩因子的计算

管输天然气贸易计量中压缩因子的计算肖迪;巩大利【摘要】管输天然气的贸易结算经常采用体积计量和能量计量两种方式,压缩因子作为计算参数直接影响到计量准确度.国家标准GB/T 17747提供了天然气压缩因子的两种计算方法:摩尔组成法和物性值法.目前国内管输天然气压力普遍在6 MPa 以上、12 MPa以下,在这种工况条件下,物性值法计算压缩因子与摩尔组成法计算结果偏差比较大,尤其是非烃含量高(高含N2或CO2)的气体,采用物性值法更需慎重.在管输天然气贸易计量中,应采用适用范围更广,计算精度更高的摩尔组成法;物性值法是在现场增设在线物性参数测量仪器而采用的简单方法,此方法适用于无法得到气体组成且对计量准确度要求不高的情况.【期刊名称】《油气田地面工程》【年(卷),期】2011(030)009【总页数】1页(P24)【关键词】天然气;压缩因子;摩尔组成法;物性值法【作者】肖迪;巩大利【作者单位】国家石油天然气大流量计量站;国家石油天然气大流量计量站【正文语种】中文近年来,我国天然气工业迅速发展,建设了一批管道工程项目,引进了多条跨国管道。

管输天然气的贸易结算经常采用体积计量和能量计量两种方式,压缩因子作为计算参数直接影响到计量准确度。

国家标准《天然气压缩因子的计算(GB/T17747-1999)》规定了天然气压缩因子的两种计算方法,通过对两种方法比较,可明确各自的适用范围,确保国家和企业的合法权益。

国家标准《天然气压缩因子的计算GB/T 17747)》提供了天然气的压缩因子的两种计算方法:摩尔组成法和物性值法。

摩尔组成法也叫详细特征法(源自AGA8-92DC),采用已知天然气的详细摩尔组成和相关压力、温度计算压缩因子;物性值法,又称为总体特征法(源自SGERG-88),通过获取天然气的高位发热量、相对密度、CO2含量和N2含量中任意3个变量作为输入变量的压缩因子计算方法。

利用物性值计算压缩因子时,GB/T 17747不推荐采用N2含量作为输入变量之一,只给出了前3个变量作为输入变量时的压缩因子计算方法。

压缩因子计算

压缩因子计算

天然气压缩因子的计算气田上大多数在高压下生产,为控制其流动需要安装节流阀。

当气流经过节流阀时,气体产生膨胀,其温度降低。

如果气体温度变得足够低,将形成水合物(一种固体结晶状的冰雪物质)。

这就会导致管道和设备的堵塞。

【1】从而,在天然气的集输过程当中,不管对天然气或天然气管道进行怎样的处理,都离不开气体的三个状态参数:压力P 、体积V、温度T。

而根据真实气体状态方程PV ZnRT =可知,在确定某个状态参数的时候需要先计算一个压缩因子Z。

如果能够更精确的确定压缩因子,从而确定气体的状态参数,对于研究天然气的收集、预处理和输送等问题具有重要意义。

下面简要介绍下压缩因子及其计算方法。

真实气体是实实在在的气体,它是为了区别于理想气体而引人的。

真实气体占有一定空间,分子之间存在作用力,因此真实气体性质与理想气体性质就有偏离。

压缩因子就是反映这种真实气体对理想气体的偏离程度大小。

在温度比临界温度高的多、压力很小时,偏离不太显著;反之偏离就很显著。

下面将介绍一种计算压缩因子的方法(Dranchuk-Purvis-Robinson 法)。

压缩因子的关系式如下:5635214373831()()()(1)exp()pr pr pr pr pr A A A A A Z A A T T T T A A A T =++++++++-52pr pr pr 222prpr pr ρρρρρρ (1)式中A 1到A 8都是常数,具体数据可到参考文献上查阅,ρpr 为无因次拟对比密度,它和压缩因子满足关系式: 0.27prpr pr p ZT ρ= (2)其中p pr 和T pr 分别为拟对比压力和拟对比温度。

由于式(2)为非线性方程,欲计算Z ,可采用牛顿迭代法(Newton-Raphson )。

在已知p pr 和T pr 的情况下,需经过迭代过程求解ρpr ,其公式如下:()(1)()'()()()i pr i i pr pr i pr f f ρρρρ+=- (3)迭代求得拟对比密度ρpr ,即可易求得压缩因子。

天然气压缩因子计算

天然气压缩因子计算

1.天然气相关物性参数计算密度计算: TZR PM m =ρ ρ——气体密度,Kg/m 3;P ——压力,Pa ;M ——气体千摩尔质量,Kg/Kmol ;Z ——气体压缩因子;T ——气体温度,K ;R m ——通用气体常数,8314.4J/Kmol·K 。

2.压缩因子计算:已知天然气相对密度∆时。

96.28M =∆ M ——天然气的摩尔质量。

∆+=62.17065.94pc T510)05.493.48(⨯∆-=pc P ;pc pr P P P = pcpr T T T =; P ——工况下天然气的压力,Pa ;T ——工况下天然气的温度,k ;P Pc —临界压力;T Tc ——临界温度。

对于长距离干线输气管道,压缩因子常用以下两式计算:668.34273.01--=prpr T P Z 320107.078.068.110241.01prpr pr pr T T T P Z ++--=对于干燥天然气也可用经验公式估算: 15.1117.0100100P Z +=标况流量和工况流量转换。

为了控制Welas 的5L/min 既 0.3立方米每小时的工况流量。

Q 2------流量计需要调节的流量值P 2------0.1MpaT 2------293.15K (20℃ )Z 2------标况压缩因子Q 1------0.3m 3/hP 1------ 工况压力(绝对压力MPa )T 1------开尔文KZ 1-------工况压缩因子转换公式为12221211p T Z Q Q p T Z。

天然气压缩因子及标准体积计算

天然气压缩因子及标准体积计算

天然气压缩因子及标准体积计算天然气压缩因子及标准体积计算导语:天然气是一种重要的能源资源,广泛应用于工业、民用和交通领域。

在储存和运输过程中,天然气往往会受到压缩或膨胀的影响。

为了更准确地计量天然气的数量,我们需要了解天然气压缩因子和标准体积的概念,并掌握相关的计算方法。

一、天然气压缩因子的概念天然气的体积与压力、温度以及成分有关,而天然气的压缩因子则是描述天然气体积变化的重要参数。

压缩因子是指实际天然气体积与理论天然气体积之间的比值。

天然气在不同压力和温度下的压缩因子是不同的,通常用Z表示。

当Z=1时,说明天然气符合理想状态,即PV=ZnRT,其中P是天然气的压力,V是天然气的体积,n是物质的摩尔数,R是气体常数,T是天然气的温度。

当Z小于1时,说明天然气存在压缩,体积变小;当Z大于1时,说明天然气存在膨胀,体积变大。

二、天然气压缩因子的计算方法天然气压缩因子的值受到很多因素的影响,如压力、温度、天然气的成分和田间条件等。

常见的计算方法有实验法和经验法。

实验法是通过实验测定压缩因子的值。

实验室通常使用高精度的实验装置,将天然气在不同压力和温度下进行测量,并计算出相应的压缩因子。

这种方法准确度高,但时间成本较高,不适合大规模应用。

经验法是通过统计数据建立的数学模型来计算压缩因子。

常用的经验法有很多,如Dranchuk-Abou-Kassem (DAK)模型、Peng-Robinson (PR)模型等。

这些模型基于一定的假设和实验数据,通过计算方程以及相似物性参数,预测天然气的压缩因子。

经验法计算速度较快,适用于大规模计算,但存在一定的误差。

三、标准体积的概念和计算标准体积是指天然气在标准条件下的体积,常用单位是立方米(m³)。

标准条件一般指标准大气压(101.325千帕)和摄氏度为15℃(或20℃)的状态。

天然气的实际体积与标准体积之间存在一定的关系,可以通过压缩因子进行计算。

标准体积与实际体积之间的关系可以用以下公式表示:V_std = V_actual * Z * (P_std / P_actual) * (T_actual / T_std)其中,V_std是标准体积,V_actual是实际体积,Z是压缩因子,P_std和P_actual分别是标准压力和实际压力,T_actual和T_std分别是实际温度和标准温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档