向量的概念及几何表示PPT课件
合集下载
2.1向量的物理背景与概念及向量的几何表示222.ppt

A
ABCDEF的中心,分别写出
O
图中与向量 OA、OB、OC C
F
相等的向量.
D
E
变式一:与向量 OA长度相等的向量有多
少个?
变式二:是否存在与向量长度相等、方向
相反的向量?
变式三:与向量共线的向量有哪些?
隆回二中
讲授新课
例2. 判断: (1) 不相等的向量是否一定不平行?
不一定 (2) 与零向量相等的向量必定是什么向量?
A B
C
隆回二中
讲授新课
例2. 判断:
(1) 平行向量是否一定方向相同? 不一定
(2) 与任意向量都平行的向量是什么向量?
零向量
(3) 若两个向量在同一直线上,则这两个向
量一定是什么向量?
平行向量
隆回二中
课堂小结
1.描述向量的两个指标:模和方向. 2. 平面向量的概念和向量的几何表示; 3. 向量的模、零向量、单位向量、平行 向量等概念.
说明:
零向量、单位向量的定义都只是限制 了大小.
隆回二中
讲授新课
6.平行向量定义: ①方向相同或相反的非零向量叫平行向量; ②我们规定0与任一向量平行. a
b c
说明:
(1) 综合①、②才是平行向量的完整定义; (2) 向量a、b、c平行,记作a∥b∥c.
隆回二中
讲授新课
例1. 如图,试根据图 中的比例尺以及三地 的位置,在图中分别 用向量表示A地至B、 C两地的位移,并求 出A地至B、C两地的 实际距离(精确到1km).
a A(起点)
B (终点)
隆回二中
讲授新课
3. 向量的表示方法: ①用有向线段表示; ②用字母 a,b, c 等表示; ③用有向线段的起点与终点字母:AB; 向量 AB 的大小——长度称为向量的模, 记作 AB ,向量的模可以比较大小。
平面向量PPT课件

01
A
01
B
01
课后作业
练习:
3.(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同?
(2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同?
是
不是
2.如图,D,E,F分别是各边的中点,写出图中与 相等的向量.
(无数个)
问题6:零向量可用 表示那么单位向量能否用 表示?
(不能)
问题7:单位向量是否一定相等?它的大小是否一定相等?
(不一定,一定)
问题8:零向量小于单位向量吗?
(不,向量不能比较大小)
问题:一组向量它们的方向相同或相反,那么这组向量有什么关系?
01
问题:若两个向量相等,那么它们必须具备什么条件? (长度相等,方向相同)
A
F
C
E
B
D
位移是一个既有大小又有方向的量,这种量就是本章所要研究的向量。
如图中的小船,由A地向西北方向航行15n mile (海里)到达B地。在这里,如果仅指出“由A地航行15n mile”,而不指明“向西北方向”航行,那么小船就不一定到达B地了。
向量表示法:
定义:既有大小又有方向的量.
有向线段法——-有向线段的方向表示向量的大小,箭头所指的方向表示向量的方向. 其他表示法——-用字母a,b,c等表示,或用表示向量的有向线段的起点和终点字母表示. 有关向量的概念: 向量长度:向量的大小,亦称模. 零向量:长度为零的向量. 单位向量:长度等于1个单位长度的向量. 相等向量:长度相等且方向相等的向量.
(11个)
(存在)
01
向量及其表示方法.
两个特殊向量:零向量,单位向量.
中职教育数学《向量的概念》课件

解:OA CB DO
OB DC EO
OC AB ED FO
练习∶上题中 11
(1)与向量 OA长度相等的向量有多少个?
(2)是否存在与向量
OA
长度相等,
方向相反的向量?
FE
(3)与向量OA 共线的向量有哪些?
单击动画演示 CB DO FE
课堂 小结
向量
向量的定义 向量的表示
字母表示 几何表示
B
a
AB
三、与向量有关的基本概念
1、向量的大小(长度)叫向量的模: 向量 AB 的模
表示: | AB | 模可以比较大小
2、零向量与单位向量
零向量: 长度为零的向量(方向任意).
表示:0或 0, | 0 | 0 a a
3、单位向量: 长度为1个单位长度的向量.
P26例1
3、向量之间的关系
(1)平行向量:方向相同或相反的非零向量.
注意:数量与向量的区别:
1.数量只有大小,是一个代数量,可 以比较大小.
2.向量有方向、大小,双重属性,而 方向是不能比较大小的,因此向量 不能比较大小. 向量不能比较大小.
问题:温度是不是向量? 重量呢?身高?海拔?速度?
向量的表示
a
1.几何法:用有向线段表示
A
2.字母法:用小写字母表示
3.用表示向量的有向线段的起点 和终点字母表示
等.
表示平面上的六个平行四边形,问图中
哪些向量分别与向量 AB、AD、AE 相等?
那些向量与它们互为相反向量?
A
B
D
C
E
F
H
G
例1.判断下列命题真假或给出问题的答案:
(1)平行向量的方向一定相同. × (2)不相等的向量一定不平行. ×
向量概念课件

讨论:平面直角坐标系内,起点在原点的单位向量, 它们的终点构成的集合是什么图形?
a
b
c
知识建构
2.相等向量: 长度相等且方向相同的向量叫做 相等向量。记作:a d
a 3.相等向量: 长度相等且方向相反的向量叫做 C B 思考:单位向量和单位向量一定相等吗? 相反向量。记作: b a c d c AB DC a b d c
请结合向量的两个要素: 大小、方向及平行(共线 )向量、相等向量、相反 向量、模相等的向量等相 关概念提出新的问题!
例2.在如图所示的向量 a ,b , c ,d ,e
正方形的边长为1),是否存在: (1)共线向量? (3)相等向量?
中( 小
(2)相反向量? (4)模相等的向量?
D 规定:零向量和零向量相等。 A
知识建构
4.共线向量与平行向量的关系
a,b,c为 共 线 向量
a// b// c
b c bc a
a
平行向量就是共线向量, 共线向量就是平行向量!
说明:我们所研究的向量为自由向量,只与大小 和方向有关,与有向线段的起点位置无关,有向线 段只是向量的一种几何表示!
向量的概念
带着问题奔向课堂
向量的定义? 向量的表示? 特殊的向量? 几种向量间的关系?
知识建构
一.向量的概念及表示 既有大小又有方向的量称为向量 1.定义: 1)几何方法——如何画 2.表示方法: 2)代数方法——如何写
3.向量的长度:即向量的大小(或称为模)
记作 | AB | 或 | a |
讨论:已知 1. | a || b | ,是否有 a b? 2)单位向量
空间向量及其运算(共22张PPT)

向量场的点乘
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS
两个向量场进行点乘运算,得到一个标量场,其 每个标量是原来两个向量场的对应向量的点乘结 果。
向量场的几何意义
向量场表示了空间中某一点受到的力或速度等物理量的分布情况,可以通 过图形表示出来。
向量场的方向表示了该点受到的力的方向或速度的方向,向量的大小表示 了力的大小或速度的大小。
通过观察图形可以直观地了解向量场的分布情况,从而更好地理解物理现 象和问题。
向量的模
向量的模定义为从起点到终点距离的 长度,记作|a|。
向量的模具有以下性质:|a + b| ≤ |a| + |b|,|a - b| ≤ |a| + |b|,|λa| = |λ||a| (λ为实数)。
向量的加法
向量的加法定义为同起点同终点的向量相加,即a + b = b + a(交换律),(λ + μ)a = λa + μa(结合律)。
向量场具有方向性和大小,表 示了空间中某一点受到的力或 速度等物理量的分布情况。
向量场的运算律
1 2 3
向量场的加法
将两个向量场叠加,得到一个新的向量场,其每 个向量是原来两个向量场的对应向量的和。
向量场的数乘
将一个标量与一个向量场中的每个向量相乘,得 到一个新的向量场,其每个向量是原来向量场的 对应向量与该标量的乘积。
向量在其他领域的应用
经济学
在经济学中,例如在市场分析和供需关系中,可以使用向量来表示不同因素之间的关系,通过向量的运算来分析 这些因素之间的关系。
生物学
在生物学中,例如在生态学和生物力学中,可以使用向量来描述生物体的运动、方向和力的作用,通过向量的运 算来分析这些力的作用和影响。
THANKS
向量的概念及表示ppt

20122012-3-5
良辰美景惜时如金敢与金鸡争晨晖 书山学海甘之若饴誓同峨眉共比高
高一( ) 高一(15)班欢迎您
20122012-3-5
金钱豹以5m/s的速度追赶一只以 金钱豹以 的速度追赶一只以2m/s逃跑的小狗 逃跑的小狗…… 的速度追赶一只以 逃跑的小狗
请问: 能追上小狗吗 为什么? 小狗吗? 请问:金钱豹 能追上小狗吗?为什么?
4.相等向量的定义: 长度相等且方向相同的向量 4.相等向量的定义: 相等向量的定义
A B D
uuu uuur r 记作: = DC AB
C
相反向量的定义: 相反向量的定义: 的定义
r 们 与a 长 度 r 叫 a
等,
r a
20122012-3-5
r c
r r c = -a
r r a = -c
r . 记做: a -
一、向量的定义
既有大小又有方向的量 既有大小又有方向的量 大小又有方向
向量的长度
向量的模
二、向量的表示方法
向量常用有向线段表示 ①几何表示——向量常用有向线段表示:有向线段的 几何表示 向量常用有向线段表示: 长度表示向量的大小 箭头所指的方向表示 向量的大小, 方向表示向量的方 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为: AB。 为起点、 为终点的向量记为: 为起点 为终点的向量记为 大小记着: 大小记着:│AB│
有向线段:有固定起点、大小、 有向线段 有固定起点、大小、方向 有固定起点 向量:可选任意点作为向量的起点、有大小、 向量 可选任意点作为向量的起点、有大小、有 可选任意点作为向量的起点 方向。 方向。
B D B
D
A
良辰美景惜时如金敢与金鸡争晨晖 书山学海甘之若饴誓同峨眉共比高
高一( ) 高一(15)班欢迎您
20122012-3-5
金钱豹以5m/s的速度追赶一只以 金钱豹以 的速度追赶一只以2m/s逃跑的小狗 逃跑的小狗…… 的速度追赶一只以 逃跑的小狗
请问: 能追上小狗吗 为什么? 小狗吗? 请问:金钱豹 能追上小狗吗?为什么?
4.相等向量的定义: 长度相等且方向相同的向量 4.相等向量的定义: 相等向量的定义
A B D
uuu uuur r 记作: = DC AB
C
相反向量的定义: 相反向量的定义: 的定义
r 们 与a 长 度 r 叫 a
等,
r a
20122012-3-5
r c
r r c = -a
r r a = -c
r . 记做: a -
一、向量的定义
既有大小又有方向的量 既有大小又有方向的量 大小又有方向
向量的长度
向量的模
二、向量的表示方法
向量常用有向线段表示 ①几何表示——向量常用有向线段表示:有向线段的 几何表示 向量常用有向线段表示: 长度表示向量的大小 箭头所指的方向表示 向量的大小, 方向表示向量的方 长度表示向量的大小,箭头所指的方向表示向量的方 向。以A为起点、B为终点的向量记为: AB。 为起点、 为终点的向量记为: 为起点 为终点的向量记为 大小记着: 大小记着:│AB│
有向线段:有固定起点、大小、 有向线段 有固定起点、大小、方向 有固定起点 向量:可选任意点作为向量的起点、有大小、 向量 可选任意点作为向量的起点、有大小、有 可选任意点作为向量的起点 方向。 方向。
B D B
D
A
向量的概念 课件 高中数学人教A版(2019)必修第二册

①要注意0和
且|
的区别及联系:0是一个实数, 是一个向量,并
|=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
②单位向量有无数个,它们大小相等,但是方向不一定相同.
③在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
牛刀小试
问题:“向量就是有向线段,有向线段就是向量”的说法对吗?
定的,而向量是可以自由移动的;向量可以用有向线段表示,但并不能
说向量就是有向线段
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一
条直线上.当然,同一直线上的向量也是平行向量
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,
单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一
个单位圆
得正确选项.
测验
【例2】(2020·全国高一专题练习)某人从A点出发向东走了5米到达B点,然后改
变方向沿东北方向走了10 2 米到达C点,到达C点后又改变方向向西走了10米到达
D点.
(1)作出向量AB,BC,CD ;
(2)求AD 的模.
(1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量
(速度为10海里/小时).如果只是给出指令:
“由A地航行15 海里”,小船能否到达B地?
• 如果不指明“向东南方向”航行,小船不一定到达B地
• 给出指令:“向东南方向航行”呢?
• 方向和距离缺一不可
新知探究
(1)向量的实际背景与概念
• 物理中我们学习了位移、速度、力等既有大小、又有方向的量,
在物理中被称为“矢量”,
B.②④⑥是数量,①③⑤是向量
且|
的区别及联系:0是一个实数, 是一个向量,并
|=0,书写时 0 表示零向量,一定不能忘记上面的箭头.
②单位向量有无数个,它们大小相等,但是方向不一定相同.
③在平面内,将表示所有单位向量的有向线段的起点平移到
同一点,则它们的终点就会构成一个半径为1的圆.
牛刀小试
问题:“向量就是有向线段,有向线段就是向量”的说法对吗?
定的,而向量是可以自由移动的;向量可以用有向线段表示,但并不能
说向量就是有向线段
3.共线向量与平行向量是一组等价的概念.两个共线向量不一定要在一
条直线上.当然,同一直线上的向量也是平行向量
4.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,
单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一
个单位圆
得正确选项.
测验
【例2】(2020·全国高一专题练习)某人从A点出发向东走了5米到达B点,然后改
变方向沿东北方向走了10 2 米到达C点,到达C点后又改变方向向西走了10米到达
D点.
(1)作出向量AB,BC,CD ;
(2)求AD 的模.
(1)不一定;(2)不一定;(3)零向量;(4)平行(共线)向量
(速度为10海里/小时).如果只是给出指令:
“由A地航行15 海里”,小船能否到达B地?
• 如果不指明“向东南方向”航行,小船不一定到达B地
• 给出指令:“向东南方向航行”呢?
• 方向和距离缺一不可
新知探究
(1)向量的实际背景与概念
• 物理中我们学习了位移、速度、力等既有大小、又有方向的量,
在物理中被称为“矢量”,
B.②④⑥是数量,①③⑤是向量
向量的概念(第1课时)(课件)高一数学(沪教版2020必修第二册)

8.1 向量的概念和线性运算
向量的概念
图8-1-1展示了国产大飞机C919在蓝天翱翔的雄姿.飞机 从A飞行到B.它的位移是一个既有大小又有方向的量,它的大 小是A、B间的距离,方向由A到B 像 “ 一点相对于另一点的位移 ” 这种既有大小又有方向的量叫 做 向量 ( vector ) . 准确地说 , 一个向量由两个要素 定义 , 一是它的大小 ( 一个非负实数 ), 一是它的方向
第 8 章 平面向量
8.1向量的概念(第1课时)
学习目标
1.理解向量的有关概念及向量的几何表示.(重点) 2.理解共线向量、相等向量的概念.(难点) 3.正确区分向量平行与直线平行.(易混点)
平面向量
在现实世界和科学问题中,常常会见到既有大小又有方向的量,如位移、 速度、力等. 数学中的“向量”概念就是从中抽象出来的.向量不仅 有丰富的几何内涵,向量及其线性运算与数量积运算还构成了精致且有 广泛应用的代数结构,可把有关的几何问题简便地转化为相应代数问题 来处理.本章只讨论平面上的向量, 选择性必修课程第3章还将把这 一讨论推广到(三维)空间中,至于更一般性的推广则是大学线性代数 课程的核心内容. 高中阶段向量的学习重在为解决代数、几何、三角 及物理等领域中的问题提供一个简捷有效的工具
例2在图814中,写出向量 AE的负向量.
解 根据负向量的定义,可知向量EA、BE和DF均为AE的负向量
尽管可以画出一个向量的许多负向量,但由于它们彼此都相 等,因此一个向量的负向量在相等的意义下是唯一的.
课本练习
练习8.1(1)
1.指出下列各种量中的向量:
(1)密度; (2)体积; (3)速度; (4)能量; (5)电阻; (6)加速度; (7)功; (8)力矩.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
例1.如图设O是正六边形ABCDEF的中心,写出图中
与向量OA相等的向量。
OA = DO = CB
变式一:与向量OA长度相等的向量 有多少个?
11个
变式二:是否存在与向量OA长度相等,方向 相反的向量?
存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些?
CB、DCHOEN、LI FE
9
1.判断下列命题是否正确,若不正确,请 简述理由.
CHENLI
16
过关竞技场5
1、若两个向量在同一直线上,则这两个向 量是什么向量?
共线向量 或者说平行向量
2、共线向量一定在一条直线上吗?
不一定
CHENLI
BACK 17
过关竞技场6
如图,D、E、F分别是△ABC各边上的中点,四边形 BCMF是平行四边形,请分别写出:
(1)与CM模相等且共线的向量; (2)与ED相等
①向量 A B 与 C D 是共线向量,则A、B、C、D
四点必在一直线上;
(×)
②单位向量都相等;
(×)
③任一向量与它的相反向量(长度相同,方向相
反的向量)不相等;
(对)
④共线的向量,若起点不同,则终点一定不同。
(×)
CHENLI
10
2.下面几个命题:
(1)若a = b,b = c,则a = c。
不一定
CHENLI
BACK
14
过关竞技场3
下列结论正确吗? (1)如果两个向量相等,那么它们的起点 和终点分别重合.
不正确
(3)两个相等向量的模相等。
正确
CHENLI
15
过关竞技场4
设O为正△ABC的中心,则向量 AO, BO, CO 是 B( )
A.相等向量 B.模相等的向量 C.共线向量 D.共起点的向量
CHENLI
5
判断题
1.温度含零上和零下温度,所以温度是向量( ) 2.向量的模是一个正实数。( )
3.若|a|>|b| ,则a > b ( )
注:向量不能比较大小
长度相等且方向相同的两个向量表示相等向量,但
是两个向量之间只有相等关系,没有大小之分,“
对于向量 ,a ,b >a ,b 或 <a ”b 这种说法是错
-1 0 1 2 3
对于向量,我们常用带箭头的线段来表示,线段按 一定比例(标度)画出,它的长度表示向量的大小,箭头 表示向量的方向。
CHENLI
3
B(终点)
有向线段:在线段AB的两个端点
中,规定一个顺序,假设A为起点,
B为终点,我们就说线段AB具有方
A(起点)
向。具有方向的线段叫做有向线段。
有向线段的三个要素:起点、方向、长度
CHENLI
4
1、向量的几何表示:用有向线段表示。
向量AB的大小,也就是向量AB的长度 (或称模),记作|AB|。
长度为0的向量叫做零向量,记作0。
长度等于1个单位的向量,叫做单位向量。
2、向量的字母表示:(1)a , b , c , . . .
(2)用表思向示考线:段向“就向量是量的向就有量是向.有”的线向说段线法段的对,起有 点和终点字母 表示,例吗如?,AB,CD
CHENLI
20
CHENLI
A
B
B
当b ≠ 0时成立。
11
A
过关竞技场
★题: 1
2
3
★★题:
4
5
★★★题:
6
CHENLI
12
过关竞技场1
下列结论正确吗? 向量 AB 和 BA 是同一个向量.
不正确
模相等的两个平行向量是相等的向量.
不正确
CHENLI
BACK
13
过关竞技场2
1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b |a|=|b|
(4)两个向量a、b相等的充要条件是 a ∥b
(5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中正确的个数是(
)
A.0 B. 1
D
C
C. 2
D. 3
C
D
变:若 a ∥ b, b ∥ c, 则a ∥c
误的.
CHENLI
6
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
如: a
平行向规定:0与任一向量平行。
C
o
A
B
l
OA = a OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的 一点O ,这时它们是不是平行向量?
各向量的终点与直线l之间有CH什EN么LI 关系?
7
1.若非零向量AB//CD ,那么AB//CD吗?
2.若a//b ,则a与b的方向一定相同或相反吗? (2)相等向量:长度相等且方向相同的向量叫做相等向量。
记作:a = b
D
C
规定:0 = 0
A
B
A
B
D
a b
.
o
相等向量一定是平行向量吗?
向量相等 平行向量一定是相等向量CH吗EN?LI
C
向量平行
的向量;
A
解:(1)DE、BF、FB、FA、
AF、ED、MC
F
E
M
(2)FB、AF、MC
B
D
CHENLI
C
18
BACK
四、小结:
向量的概念; 本 节向量的表示方法; 内向量的模, 容
零向量、单位向量;
平行向量、共线向量、相等向量。
五、作业:
课本77页 练习第3题
课本78页 习题第6题
CHENLI
19
《平面向量的实际背景及基本概念》
CHENLI
1
思考:时间,路程,功是向量吗? 速度,加速度是向量吗?
向量:既有大小,又有方向的量。
向量的两要素:方向、大小
数量:只有大小CHE,NLI 没有方向的量。
2
由于实数与数轴上的点一一对应,所以数量常常 用数轴上的一个点表示,如3,2,-1,…而且不同的点 表示不同的数量。
例1.如图设O是正六边形ABCDEF的中心,写出图中
与向量OA相等的向量。
OA = DO = CB
变式一:与向量OA长度相等的向量 有多少个?
11个
变式二:是否存在与向量OA长度相等,方向 相反的向量?
存在,为 FE
变式三:与向量OA长度相等的共线向量有哪些?
CB、DCHOEN、LI FE
9
1.判断下列命题是否正确,若不正确,请 简述理由.
CHENLI
16
过关竞技场5
1、若两个向量在同一直线上,则这两个向 量是什么向量?
共线向量 或者说平行向量
2、共线向量一定在一条直线上吗?
不一定
CHENLI
BACK 17
过关竞技场6
如图,D、E、F分别是△ABC各边上的中点,四边形 BCMF是平行四边形,请分别写出:
(1)与CM模相等且共线的向量; (2)与ED相等
①向量 A B 与 C D 是共线向量,则A、B、C、D
四点必在一直线上;
(×)
②单位向量都相等;
(×)
③任一向量与它的相反向量(长度相同,方向相
反的向量)不相等;
(对)
④共线的向量,若起点不同,则终点一定不同。
(×)
CHENLI
10
2.下面几个命题:
(1)若a = b,b = c,则a = c。
不一定
CHENLI
BACK
14
过关竞技场3
下列结论正确吗? (1)如果两个向量相等,那么它们的起点 和终点分别重合.
不正确
(3)两个相等向量的模相等。
正确
CHENLI
15
过关竞技场4
设O为正△ABC的中心,则向量 AO, BO, CO 是 B( )
A.相等向量 B.模相等的向量 C.共线向量 D.共起点的向量
CHENLI
5
判断题
1.温度含零上和零下温度,所以温度是向量( ) 2.向量的模是一个正实数。( )
3.若|a|>|b| ,则a > b ( )
注:向量不能比较大小
长度相等且方向相同的两个向量表示相等向量,但
是两个向量之间只有相等关系,没有大小之分,“
对于向量 ,a ,b >a ,b 或 <a ”b 这种说法是错
-1 0 1 2 3
对于向量,我们常用带箭头的线段来表示,线段按 一定比例(标度)画出,它的长度表示向量的大小,箭头 表示向量的方向。
CHENLI
3
B(终点)
有向线段:在线段AB的两个端点
中,规定一个顺序,假设A为起点,
B为终点,我们就说线段AB具有方
A(起点)
向。具有方向的线段叫做有向线段。
有向线段的三个要素:起点、方向、长度
CHENLI
4
1、向量的几何表示:用有向线段表示。
向量AB的大小,也就是向量AB的长度 (或称模),记作|AB|。
长度为0的向量叫做零向量,记作0。
长度等于1个单位的向量,叫做单位向量。
2、向量的字母表示:(1)a , b , c , . . .
(2)用表思向示考线:段向“就向量是量的向就有量是向.有”的线向说段线法段的对,起有 点和终点字母 表示,例吗如?,AB,CD
CHENLI
20
CHENLI
A
B
B
当b ≠ 0时成立。
11
A
过关竞技场
★题: 1
2
3
★★题:
4
5
★★★题:
6
CHENLI
12
过关竞技场1
下列结论正确吗? 向量 AB 和 BA 是同一个向量.
不正确
模相等的两个平行向量是相等的向量.
不正确
CHENLI
BACK
13
过关竞技场2
1、平行向量是否一定方向相同?
不一定
2、不相等的向量一定不平行吗?
(2)若|a|=0,则a = 0
(3)若|a|=|b|,则a = b |a|=|b|
(4)两个向量a、b相等的充要条件是 a ∥b
(5)若A、B、C、D是不共线的四点,则AB=DC是
四边形ABCD是平形四边形的充要条件。
其中正确的个数是(
)
A.0 B. 1
D
C
C. 2
D. 3
C
D
变:若 a ∥ b, b ∥ c, 则a ∥c
误的.
CHENLI
6
(1)平行向量:方向相同或相反的非零向量叫做平行向量。
如: a
平行向规定:0与任一向量平行。
C
o
A
B
l
OA = a OB = b
OC = c
问:把一组平行于直线l的向量的起点平移到直线l上的 一点O ,这时它们是不是平行向量?
各向量的终点与直线l之间有CH什EN么LI 关系?
7
1.若非零向量AB//CD ,那么AB//CD吗?
2.若a//b ,则a与b的方向一定相同或相反吗? (2)相等向量:长度相等且方向相同的向量叫做相等向量。
记作:a = b
D
C
规定:0 = 0
A
B
A
B
D
a b
.
o
相等向量一定是平行向量吗?
向量相等 平行向量一定是相等向量CH吗EN?LI
C
向量平行
的向量;
A
解:(1)DE、BF、FB、FA、
AF、ED、MC
F
E
M
(2)FB、AF、MC
B
D
CHENLI
C
18
BACK
四、小结:
向量的概念; 本 节向量的表示方法; 内向量的模, 容
零向量、单位向量;
平行向量、共线向量、相等向量。
五、作业:
课本77页 练习第3题
课本78页 习题第6题
CHENLI
19
《平面向量的实际背景及基本概念》
CHENLI
1
思考:时间,路程,功是向量吗? 速度,加速度是向量吗?
向量:既有大小,又有方向的量。
向量的两要素:方向、大小
数量:只有大小CHE,NLI 没有方向的量。
2
由于实数与数轴上的点一一对应,所以数量常常 用数轴上的一个点表示,如3,2,-1,…而且不同的点 表示不同的数量。