抽象代数课程教学大纲

合集下载

抽象代数I代数学基础课程设计

抽象代数I代数学基础课程设计

抽象代数I代数学基础课程设计一、课程简介抽象代数是数学中的一个重要分支,主要研究代数结构的一般理论。

本课程旨在向学生介绍代数学基础和代数结构的概念、性质、分类以及基本定理,让学生初步了解抽象代数的基础理论和应用。

二、课程目标本课程旨在让学生掌握抽象代数的基础理论和方法,理解代数结构的基本概念和性质,并能够运用所学知识解决简单的代数问题。

具体目标包括:1.熟悉群、环、域等基本代数结构的概念和性质;2.掌握基本的代数运算和基本定理;3.学会使用代数结构解决问题。

三、课程大纲1.代数基础知识–集合论基础–映射和函数–群的定义和基本性质2.环和域–环的定义和基本性质–域的定义和基本性质–例子分析3.同态与同构–同态的概念和基本性质–同构的概念和性质–例子分析4.有限群的分类–循环群–交错群–初步理解群表示论四、参考教材1.Dummit, D. S., & Foote, R. M. (2004). Abstractalgebra (3rd ed.).2.Hungerford, T. W. (2012). Algebra (Vol. 1).Springer Science & Business Media.3.Fraleigh, J. B., & Katz, V. J. (2019). A firstcourse in abstract algebra (8th ed.). Pearson.五、评分标准1.平时成绩:40%–准时上课–上课认真听讲–课堂讨论积极参与–课后作业完成情况2.期中考试:30%3.期末考试:30%六、教学方法1.讲授法:通过教师讲述、演示、举例以及激发学生提问和讨论等方式进行教学。

2.练习法:通过课堂练习、作业练习等方式提高学生对知识的理解和运用能力。

3.互动法:通过学生互动、讨论、小组合作等方式调动学生学习积极性和主动性。

4.归纳法:通过归纳总结、问题解决等方式培养学生的逻辑思维和创新意识。

抽象代数基础 教学大纲

抽象代数基础  教学大纲

抽象代数基础一、课程说明课程编号:130215Z10课程名称:抽象代数基础/Fundamental of Abstract Algebra课程类别:专业教育课程学时/学分:48/3先修课程:高等代数适用专业:信息与计算科学、数学与应用数学、统计学教材、教学参考书:1. 张禾瑞编,《近世代数基础》,高等教育出版社, 2010年;2. 丘维声编,《抽象代数基础》,高等教育出版社,2003年;3. 聂灵沼,丁石孙编,《代数学引论》,高等教育出版社,2000年。

二、课程设置的目的意义《抽象代数》是数学专业的专业选修课之一,它为现代数学、现代物理学、计算机科学、现代通信以及密码学等提供了语言、重要结论和研究方法。

该课程主要讲授群、环、域的基本理论和初步知识,培养学生的抽象思维和逻辑推理的能力、为后继课程学习奠定基础。

该课程的目的在于使学生初步掌握基本的抽象代数知识和抽象、严格的代数方法,培养学生的抽象思维和逻辑推理的能力;进一步理解具体与抽象、特殊与一般等辨证关系。

锻炼学生认识问题和研究问题的能力,提高学生的数学素质。

三、课程的基本要求知识:掌握群的定义,群的同态,变换群,置换群,循环群,子群,子群的陪集,不变子群、商群等; 掌握环的定义, 整环, 子环, 环同态, 剩余类环, 理想, 唯一分解整环, 主理想环, 欧式环,多项式环与因子分解等; 掌握域的定义, 域扩张, 分裂域、有限域的结构等。

进一步融合高等代数和抽象代数课程的内容,使之成为一个有机整体。

能力:通过对抽象代数基础知识的学习和基本技巧的训练,培养学生的理解能力和抽象思维能力;重视理论和具体实例之间的相互联系,培养运用抽象代数的方法分析问题和解决问题的能力。

素质:使学生初步掌握抽象代数基础理论知识,提高数学素养,为进一步学习现代数学与计算机科学等奠定基础素质;同时启发学生的科学思维方式,培养从事代数学、密码与编码等相关方向研究的科研素质。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求无六、考核方式及成绩评定教学过程中采取课前导学、讲授、分析、随堂提问的方式进行,注重过程考核,考核方式包括:笔试、作业、随堂小测、课程考勤等。

抽象代数基本教程第七版教学设计

抽象代数基本教程第七版教学设计

抽象代数基本教程第七版教学设计介绍抽象代数是一门基础数学课程,也是数学专业的重要课程之一。

在本教学设计中,将介绍如何教授抽象代数基本教程第七版。

该教材是经典的代数教材,内容丰富,适合初学者学习。

教学目标本教学设计旨在让学生掌握以下知识和技能:1.理解群、环、域等基本概念;2.熟悉代数运算规律,并能够进行相关计算;3.掌握代数结构的分类和特征;4.能够解决基本的抽象代数问题。

教学内容本教学设计中将涵盖以下教学内容:1.群的概念及相关性质;2.群的子群和商群;3.群同构和同态;4.环的概念及相关性质;5.等价关系和商环;6.域的概念及相关性质;7.扩域和代数闭包。

在教学过程中,将使用丰富的例题和练习题来巩固学习内容。

在本教学设计中,将采用以下教学方法:1.讲授和解释教材内容;2.举例说明概念和定理;3.引导学生自主思考和解决问题;4.课堂互动和讨论。

教学评估在本教学设计中,将采用以下教学评估方式:1.作业评分;2.小组讨论和展示;3.期中和期末考试;4.口头问答和课堂练习。

教师将根据学生的表现和绩效来评估教学效果。

教学资源在本教学设计中,将使用以下教学资源:1.教材《抽象代数基本教程第七版》;2.丰富的例题和练习题;3.PPT演示;4.手写板;5.教师编写的课堂讲义;6.学生笔记和教学演示视频。

本教学设计将分为以下五个模块进行:1.群的概念和相关性质;2.群的子群和商群;3.群同构和同态;4.环的概念和相关性质;5.域的概念和相关性质。

在每个模块中,将涵盖该模块内教材的所有内容,并加入相关例题和练习题。

总结抽象代数基本教程第七版是一本优秀的代数教材,内容丰富、系统完整,适合初学者和进阶者学习。

在本教学设计中,采用了多种教学方法和评估方式,旨在帮助学生掌握代数基本知识和技能,提高其求解代数问题的能力。

抽象代数教学大纲

抽象代数教学大纲

《抽象代数》课程教学大纲课程编号:总学时: 54 总学分: 3 开课学期:第5学期适用专业小学教育(理)一、课程性质、目的与任务本课程是小学教育(理)专业选修课,课程主要内容为集合与映射、群论初步、环与域。

整环的因子分解理论和域的扩张二、课程教学的基本要求通过对本课程的学习,使学生掌握《近世代数》的一系列基本概念与基本理论,掌握现代数学的基本方法,培养学生正确运用现代数学的知识和方法来解决实际问题的能力,并为进一步学习后续课程及相关课程打好基础。

三、课程的主要内容、重点和难点第一章基本概念(一)、教学内容集合:子集与真子集,并集、交集。

映射:映射的定义,以及象与逆象的概念。

代数运算:代数运算的定义及表示法,二元运算的概念。

结合律:结合律的定义。

交换律:交换律的定义。

分配律:分配律的定义。

一一映射:满射、单射、一一映射;变换、单射变换、满射变换及一一变换。

同态:同态映射、同态满射。

同构、自同构:同构映射、自同构。

等价关系与集合:关系、等价关系,分类、全体代表团、剩余类。

重点:一一映射、同态、同构、自同构、分类。

难点:建立映射关系与同构关系,等价关系与分类之间的相互转换。

(二)教学基本要求1、理解集合的概念,了解元素与集合之间的关系,以及集合之间的运算。

2、理解映射的概念,能在集合之间建立映射关系,并能判断两个映射是否相同。

3、掌握代数运算与映射的关系,能建立有限集合之间的运算表。

4、掌握将结合律、交换律、第一、第二分配律推广到n元的定理,并能判断给定的运算能否满足结合律、交换律以及两种分配律。

5、掌握一一映射的定义,并能建立两个集合之间的满射、单射、一一映射,能判定给定的映射是否是一一映射。

6、掌握同态映射的概念,理解同态与同态满射的关系,并能判定映射是否是同态满射,掌握具有同态满射的集合之间的联系。

7、掌握同构映射和自同构的概念,能区分同态与同构的差别,理解两个具有同构关系的集合之间的关系,并能判定给定的映射和运算是否是同构关系,能建立两个集合之间的同构映射。

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)

《抽象代数》课程大纲(草稿-细节待完善)一、课程简介课程名称:抽象代数学时/学分:68/4先修课程:线性代数(E)面向对象:致远学院本科生(计算机班)教学目标:本课程是为致远学院(计算机班)开设的系列代数课程的第二部分。

通过整个课程的学习使学生掌握近世代数学(又叫抽象代数)的基本理论、思想与方法,使学生的计算能力和抽象思维能力得到系统的训练和提高,为将来进一步学习其它专业课程和将来的应用奠定坚实的代数基础。

在教学过程中特别强调结合具体的例子来理解近世代数学的数学思想和思维方法,注意介绍最新的科研成果以开阔同学的视野。

主要内容:群(子群、群同态及基本定理、 Sylow定理、群作用及其应用),环(环同态、理想、商环、 多项式环与矩阵环),域(素子域,域的扩张, 可裂域与有限域)二、教学内容第一章 预备知识主要内容:等价关系、等价类、商集合与满映射; 数论中的整除与同余:Euler定理与Fermat小定理重点与难点:商集合与满映射的一一对应性第二章群与对称性主要内容:群的定义以及重要例子(循环群、二面体群与其他旋转群);子群与旁集(Coset): Lagrange定理,计数公式(1);正规子群与商群;群同态基本定理重点与难点:群同态基本定理;商群第三章群作用主要内容:群作用与群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用);Burnside引理及其应用;Sylow定理及其应用重点与难点:群作用;轨道个数的计数公式(即群方程)第四章环主要内容:子环与理想、商环;多项式环及其商环;模n的剩余类环;PID与欧氏整环;整环中的素元与不可约元;UFD重点与难点:理想与商环;环的特征;分解问题第五章域主要内容:素域与域扩张; 单扩域;代数扩域:定义及例子;分裂域、正规扩域; 有限域:重点是分裂域和有限域重点与难点:域扩张;分裂域三、教学进度安排第一章.预备知识(6课时)1.1.等价关系、等价类、商集合与满映射(4学时)1.2.初等数论中的整除与同余:Euler定理与Fermat小定理(2学时)习题课(2学时)第二章. 群与对称性(20学时)2.1.群的定义以及重要例子(循环群、二面体群与其他旋转群;置换群) (4学时)2.2.子群与旁集(Coset): Lagrange定理,计数公式(1);由子集生成的子群;群的表达式(generators and relations)(6学时)2.3.正规子群与商群: 定义;重要例子;Cauchy引理(作为商群的应用)(4学时)2.4. 群同态基本定理以及第一第二同构定理; (2学时)2.5. 自同构与内自同构(2学时)2.6. 群的内、外直积(2学时)习题课(2学时)第三章. 群作用(共10学时)3.1抽象群作用: 轨道; 稳定化子; 计数公式(2)(2学时)3.2 群方程;各种具体的群作用(共轭作用;Cayley定理;抽象群作用)(3学时)3.3 Burnside引理及其应用(2学时)3.4 Sylow定理及其应用(3学时)习题课(2学时)第四章.环(16学时)4.1 定义(均有单位元且为结合环)以及重要例子(矩阵环,多项式环,形式幂级数环, 整数剩余类环) (2学时)4.2子环与理想: 重点是理想; 理想的生成问题;(2学时)4.3商环与环同态:同态基本定理及其应用(4学时)4.4 素理想与整环;最大理想与域 (2学时)4.5 多项式环及其商环的表达(与多项式带余除法的联系)(2学时)4.6. PID与欧氏环(2学时)4.7. 整环中的不可约元与素元;UFD理论介绍(2学时)习题课(2学时)第五章. 域(共12学时)5.1素域与域扩张: 强调与线性代数的联系(2学时)5.2单扩域;代数扩域: 强调与多项式环商环构造的联系(4学时)5.3 分裂域与正规扩域(2学时)5.4有限域(4)习题课(2学时)第六章. 偏序集、格与Bool代数(共4学时)6.1 偏序集与格 (2学时)6.2 Bool代数(2学时)习题课-总复习(2学时)四、课程考核及说明(1) 20%为平时成绩20%为大作业(小论文)60%为考试成绩(2)总课时(68学时)之外安排大约12学时习题课,由助教唱主角;另有若干次答疑(一般放在第8周后的周六或者周日进行)。

《抽象代数》课程教学大纲

《抽象代数》课程教学大纲

《抽象代数》课程教学大纲Abstract Algebra课程代码:课程性质:专业基础理论课/必修适用专业:开课学期:4总学时数:56总学分数:3.5编写年月:2004年7月修订年月:2007年7月执笔:陈建新一、课程的性质和目的抽象代数是信息安全方向的重要基础课程之一,主要介绍群,环,域(以及模)的基本概念和基本理论。

通过以上知识的学习和习题的训练,培养学生的抽象思维能力和严密的逻辑推理能力,使学生们将受到良好的代数训练,并为进一步学习数学得到一个扎实的代数基础。

二、课程教学内容及学时分配1. 基本概念(12学时)了解变换的概念,区分变换与映射的不同。

理解代数运算的概念,会判断给定的运算是否代数运算。

对于给定的代数运算,会验证是否满足结合律,交换律以及左右分配律。

给定两个不同的代数系统,会判断二者是否同态或者同构。

最后,在这一部分还要求理解等价关系和集合分类之间的关系,对给定的等价关系,如何确定一个集合的分类,反之,给定一个集合的分类又掌握确定怎样的一个等价关系的方法。

2.群(12学时)理解群和交换群的定义,群的一些简单的性质以及逆元和单位元在群中的作用。

了解同群有密切关系但比群更广泛的代数系统半群。

掌握群中元素的阶的概念和表示方法。

会求一些简单群中的指定元素的阶。

理解子群的概念,和群的分类:平凡子群及真子群。

知道给定群的子群的单位元和逆元与该群的关系。

掌握非空子集做成子群的充要条件。

知道中心元素的概念,会找一些简单群的中心。

理解循环群的生成,循环群的子群和循环群的关系。

会判断n阶循环群中的一个元素是否可以生成这个循环群。

了解变换群的概念,理解抽象群和变化群之间的联系。

理解置换群,循环和对换的定义,会用循环和循环的乘积来表示置换。

了解奇置换和偶置换的概念和它们之间的关系。

掌握置换的简单运算:置换间的相乘,置换逆的求法和置换的阶。

理解陪集,指数的定义和Lagrange定理的内容。

了解Lagrange定理所给出的陪集和指数与群的阶之间的关系。

《抽象代数基础》教案

《抽象代数基础》教案

《抽象代数基础》教案第一章:引言1.1 课程简介介绍抽象代数的基础知识和重要地位解释抽象代数与其他数学分支的关系1.2 抽象代数的基本概念定义集合、元素和运算举例说明一些基本的抽象代数结构1.3 抽象代数的历史发展回顾代数的发展历程介绍抽象代数的起源和发展趋势第二章:群论基础2.1 群的定义与性质引入群的定义和表示方法探讨群的性质,如封闭性、结合律等2.2 子群与陪集定义子群和陪集的概念研究子群与原群的关系以及陪集的性质2.3 群的同态与同构引入群同态和同构的概念探讨同态和同构的性质和条件第三章:环与域3.1 环的定义与性质引入环的定义和表示方法探讨环的性质,如加法封闭性、乘法结合律等3.2 素环与最大素环定义素环和最大素环的概念探讨素环和最大素环的性质和判定条件3.3 域的概念与性质引入域的概念和表示方法探讨域的性质,如乘法封闭性和零因子性等第四章:域扩张与伽罗瓦理论4.1 域扩张的定义与性质引入域扩张的概念和表示方法探讨域扩张的性质和条件4.2 伽罗瓦理论的基本概念引入伽罗瓦理论的基本概念,如伽罗瓦群、伽罗瓦扩展等探讨伽罗瓦理论的应用和意义4.3 域扩张的判定定理介绍判定域扩张的一些重要定理,如伽罗瓦定理等举例说明这些定理的应用和证明过程第五章:线性代数基础5.1 线性空间与线性映射引入线性空间和线性映射的概念探讨线性空间和线性映射的性质和运算5.2 矩阵与行列式引入矩阵和行列式的概念探讨矩阵和行列式的性质和运算规则5.3 特征值与特征向量引入特征值和特征向量的概念探讨特征值和特征向量的性质和应用第六章:向量空间与线性变换6.1 向量空间的概念与性质定义向量空间和子空间探讨向量空间的性质,如基的概念和维数6.2 线性变换与线性映射引入线性变换和线性映射的概念探讨线性变换的性质和运算规则6.3 特征值与特征向量进一步探讨特征值和特征向量的性质应用特征值和特征向量解决线性变换的问题第七章:特征值问题的应用7.1 特征值问题的解法介绍特征值问题的解法,如幂法和特征值算法探讨解法的有效性和适用条件7.2 特征值在实际问题中的应用举例说明特征值在物理学、工程学和经济学等领域中的应用分析特征值问题在实际问题中的解法和效果7.3 特征值问题的进一步研究介绍特征值问题的进一步研究方向,如谱理论和解的存在性等探讨特征值问题在科学研究中的重要性和挑战性第八章:向量空间的同构与对偶性8.1 向量空间的同构定义向量空间的同构和等价探讨同构的性质和判定条件8.2 向量空间的对偶性引入向量空间的对偶性和对偶空间探讨对偶性的性质和应用8.3 对偶性与共轭性探讨对偶性与共轭性的关系和联系应用对偶性和共轭性解决向量空间的问题第九章:张量分析基础9.1 张量的定义与运算引入张量的概念和表示方法探讨张量的运算规则和性质9.2 张量空间与张量映射定义张量空间和张量映射探讨张量空间和张量映射的性质和运算9.3 张量分析的应用举例说明张量分析在物理学、工程学和计算机科学等领域中的应用分析张量分析在实际问题中的解法和效果回顾本课程的主要概念、定理和方法10.2 抽象代数的进一步研究介绍抽象代数进一步研究的主要方向和热点问题探讨抽象代数在科学研究和应用中的前景和挑战10.3 课程学习评价与反思分析学生在本课程学习中的表现和收获提出学生应如何继续学习和提高自己在抽象代数方面的能力重点和难点解析重点环节1:群的定义与性质群的定义和表示方法是理解抽象代数结构的基础,需要重点掌握。

抽象代数第二版课程设计

抽象代数第二版课程设计

抽象代数第二版课程设计一、课程背景抽象代数是现代数学的一个重要分支,是数学的一种高度抽象和理论化的体现。

抽象代数的发展历程关联到数学中许多基础问题的解决,如方程的求解、多项式的因式分解等等。

抽象代数的概念和理论在各种领域都有广泛的应用,如在密码学、编码理论、通讯等领域。

《抽象代数》(第二版)是一本经典的教材,该课程以该教材为主要教材,旨在让学生了解抽象代数这一重要分支,并掌握其基本理论和方法。

二、课程目标本课程旨在使学生:1.掌握抽象代数的基础理论和方法;2.理解群、环、域等基本代数结构的概念、性质及其在数学中的应用;3.理解群作用的概念和性质;4.掌握基本的代数计算方法;5.培养学生抽象思维和逻辑思维能力;6.培养学生分析问题和解决问题的能力。

三、教学内容及安排第一部分:群论(30学时)1.群的基本概念–群的定义、群的性质;–子群的定义和性质;–同态、同构等基本概念。

2.群的分类–有限群、无限群;–阿贝尔群、非阿贝尔群;–单群、可解群等。

3.群作用–群作用的定义、性质和基本例子;–圆周排列群、对称群、线性群等的群作用;–Burnside引理的证明。

第二部分:环论(20学时)1.环的基本概念–定义和性质;–整环、域、布尔环等。

2.环与矩阵–环的基本运算、理想和同态等;–线性方程组、矩阵的秩等基本概念及其代数表示。

3.环的进一步理解–Euclid算法、唯一分解定理等;–四平方定理等。

第三部分:域论(20学时)1.域的基本概念–定义和性质;–代数闭包、三次以上方程的解法、高次方程的构造等。

2.有限域–二元有限域、线性码、考虑F_p[x]中的多项式的统计。

3.Galois理论–Galois群和Galois扩张的基本概念;–Galois定理及其推论。

第四部分:选修(10学时)1.线性群的性质及其应用;2.代数数论的基本概念和方法。

四、教学方法本课程采用讲授、练习相结合的教学方法。

在课堂上,重点讲授群论、环论、域论的基本理论,通过举例及问题讨论巩固学生的理解,激发学生对数学的兴趣和思考;同时,安排一定量的习题课,引导学生主动思考,通过问题解决和相互讨论的方式深化对知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对应目标体系的代码的标注方法:在以下课程教学大纲中,我们在每一章题 目后的括号中标注适用于该章每一节的代码;只有当某一节需要特别标注新 的代码时,我们才会在该节后的括号中重新加以标注。 第 1 章 群论(28 学时,对应代码 A4, A5,B1, B2, B3, C1, C2, C4) 1.1 群的定义(2 学时, 对应代码 A2, A3) 课程简介(历史演变与研究对象,特点与重要性,要求与学习方法提示) 对称性与群概念的引入(GL(n, C), 变换“群”,美的基本要素,怎样数学地描 述现实世界中对称性? 引出群的观念) 什么是群;简单性质(单位元与逆元的唯一性;左右消去律;穿脱原理) ; 举例; 稍进一步的性质(单边定义;除法定义;有限半群成群的充要条件) 1.2 子群与 Lagrange 定理(4 学时)
抽象代数课程教学大纲
课程基本信息(Course Information) 课程代码 (Course Code) *学时 (Credit Hours) *学分 (Credits)
MA2111/MA204
64
4
抽象代数 *课程名称 (Course Name) Abstract Algebra 课程性质 (Course Type) 授课对象 (Audience) 授课语言 (Language of Instruction) *开课院系 (School) 先修课程 (Prerequisite) 授课教师 (Instructor) 专业必修课 数学与应用数学专业本科生;信息与计算科学专业本科生
*课程简介 the basic structural theory of groups, permutation groups, groups’ actions on sets and applications of these actions, Sylow Theorems, the structure of finitely generated abelian groups, properties of solvable groups; the basic structures of rings, the Chinese Remainder with applications, the properties of uniquely factorized domains, and polynomial rings; the extensions of fields, finite fields with applications; and the basic Galois theory with applications. The aim of the course is to make students to acquire the fundamental theories and tools; to train and strengthen their interest and ability of abstract thinking, such that a solid foundation in algebra will be built for their further studies. We emphasize that it is important to understand Abstract Algebras via concrete examples and backgrounds; and also we stress the applications of ideals and tools in this course. 课程教学大纲(course syllabus)
中文 (如果需要,亦可用英文教学)
数学系 数学分析,高等代数 (包括多项式理论和空间解析几何),初等数论 课程网址 (Course Webpage)
章璞
/course/cxds/index.htm
*课程简介 (Description)
“抽象代数”(通常又称为“近世代数”)是现代数学的重要基础之一,并且 在计算机科学、信息与通讯、物理、化学等领域有广泛的应用。它是高等学 校数学类各专业的必修课。这门课程研究群、环、域这三种基本的代数结构 的结构理论(由于课程的时间所限,作为本科生的抽象代数课程,一般不涉及 群和环的表示理论。 群表示论是本科生的另一课程;而模论一般是研究生阶段 的基础课程)。主要内容包括群的基本结构理论、置换群、群在集合上的作用 及其在计数中的应用、Sylow 定理、有限生成 Abel 群的结构、可解群的性质; 环的基本结构、中国剩余定理及其应用、环的因子分解理论、多项式环;域 的扩张理论、有限域及其应用、基本的 Galois 理论及应用。通过这门课的教 学,要使学生掌握抽象代数的基本理论与方法,结合具体的例子理解抽象代 数中的数学思想和思维方法, 使学生的抽象思维能力得到系统的训练和提高, 为进一步学习数学和其它学科奠定坚实的代数学基础。
Abstract Algebra (also called Modern Algebra) is an important basis of modern mathematics, and is widely used, such as in computer science, information and communication, physics, and chemistry. The course Abstract Algebra is one of the main required courses for undergraduates in mathematics. It studies the fundamental algebraic structures of groups, rings, and fields (for the limited time, as a course for undergraduates, it will not deal with the representation theory of groups and rings. In fact, Representation Theory of Groups is another course for undergraduates; and Module Theory will be a basic course of graduates). The main
相关文档
最新文档