全光网络技术及其发展前景

合集下载

全光网调研报告

全光网调研报告

全光网调研报告全光网调研报告全光网是指利用光纤作为主要的传输媒介,实现信息传输和通信的网络系统。

随着技术的不断进步,全光网在各个领域的应用越来越广泛。

为了更好地了解全光网的发展和应用情况,我们进行了相关调研。

一、全光网的发展现状和趋势全光网作为一种高速、大容量、低延迟的传输方式,已经在通信、数据中心、智能交通等领域得到广泛应用。

全光网可以提供更快的数据传输速度和更大的带宽,能够满足不断增长的数据需求。

未来,随着5G网络的普及和云计算的发展,全光网将进一步提升传输速度和带宽,并拥有更广泛的应用前景。

二、全光网的应用领域1. 通信领域:全光网可以提供更快的传输速度和更大的带宽,满足不断增长的通信需求。

在光通信网络中,全光网可以实现海量数据的传输和分发,为用户提供高品质的通信服务。

2. 数据中心领域:全光网可以实现数据中心之间的高速连接,提供更快速的数据传输和更高效的数据处理能力。

全光网可以支持大规模的数据存储和处理,满足云计算和大数据分析的需求。

3. 智能交通领域:全光网可以实现智能交通系统中的高速数据传输和精确控制。

通过全光网,智能交通系统可以实现实时监控、智能调度和智能控制,提高交通的安全性和效率。

4. 公共安全领域:全光网可以提供高速、高可靠的通信支持,为公共安全系统提供稳定可靠的通信服务。

全光网可以实现视频监控、数据传输和指挥调度等功能,提高应急响应和管理效率。

三、全光网的优势和挑战1. 优势:a. 高速传输:全光网可以提供更快的传输速度,满足高速数据传输的需求。

b. 大带宽:全光网可以提供更大的带宽,支持海量数据的传输和存储。

c. 低延迟:全光网的传输延迟低,能够实现实时传输和精确控制。

d. 高安全性:全光网可以提供高度安全的通信环境,保护用户的数据安全和隐私。

2. 挑战:a. 技术难题:全光网的建设和维护需要专业的技术和设备支持,成本较高。

b. 基础设施建设:全光网需要大规模的光纤网络建设,对基础设施提出了更高的要求。

世界全光网络发展趋势分析报告

世界全光网络发展趋势分析报告

世界全光网络发展趋势分析报告20世纪90年代以来,随着光纤通信技术的迅速发展,许多学者提出了“全光网络”的概念,其本意是信号以光的形式穿过整个网络,直接在光域内进行信号的传输、再生和交换/选路,中间不经过任何光电转换,以达到全光透明性,实现在任意时间、任意地点、传送任意格式信号的理想目标。

全光网络由光传输系统和在光域内进行交换/选路的光节点组成,光传输系统的容量和光节点的处理能力非常大,电子处理通常在边缘网络进行,边缘网络中的节点或节点系统可采用光通道通过光网络进行直接连接。

光节点不进行按信元或按数据包的电子处理,因而具有很大的吞吐量,可大大地降低传输延迟。

不同类型的信号可以直接接入光网络。

光网络具有光通道的保护能力,以保证网络传输的可靠性。

为了提高传输效率,也可以简化或去掉SDH和ATM等中有关网络保护的功能,避免各个层次的功能重复。

由于光器件技术的局限性,目前全光网络的覆盖范围还很小,要扩大网络覆盖范围,必须要通过光电转换来消除光信号在传输过程中积累的损伤(色散、衰减、非线性效应等),进行网络维护、控制和管理。

因此,目前所说的“光网络”是由高性能的光电转换设备连接众多的全光透明子网的集合,是ITU-T有关“光传送网”概念的通俗说法。

ITU-T在G.872建议中定义光传送网为一组可为客户层信号提供主要在光域上进行传送复用、选路、监控和生存性处理的功能实体,它能够支持各种上层技术,是适应公用通信网络演进的理想基础传送网络。

2.光传送技术大容量光传送技术是最先应用于光网络中的技术,技术的发展主要围绕以下几点展开:2.1提高单信道速率主要有ETDM和OTDM方式,ETDM应用最广泛,目前40Gb/s 的ETDM系统即将进入实用,更高速率的系统也处在研发之中,其中的关键技术是色散补偿和偏振模色散补偿。

此外,受“电子瓶颈”的限制,纯粹的ETDM方式发展潜力已不太大,今后的发展将是“ETDM+OTDM”方式。

全光网络技术及其应用

全光网络技术及其应用

全光网络技术及其应用随着互联网的普及和信息技术的发展,现代社会对于网络的需求越来越高。

而在网络系统中,传输技术起到了至关重要的作用。

近年来,随着全光网络技术的不断发展,许多传输问题迎刃而解,同时也有很多应用被广泛研究和开发,本文就对全光网络技术及其应用进行介绍和探讨。

一、全光网络技术全光网络是采用光作为传输媒介的网络系统。

相较于传统的电信网络,全光网络拥有更大的带宽、更高的信道容量和更低的传输损耗。

在全光网络中,信息采用光波通过光纤进行传输,从而避免了电波在传输过程中的损耗和电磁干扰。

在全光网络中,有三种主要的光传输技术:光纤传输、光波导传输和自由空间光传输。

其中,光纤传输是应用最为广泛的一种技术,它是采用光纤作为传输媒介,利用光纤对光信号进行传输和调制。

同时,在光通信中,也有一些基本的传输技术,例如波分复用技术(Wavelength Division Multiplexing,WDM)、时分复用技术(Time Division Multiplexing,TDM)和频分复用技术(Frequency Division Multiplexing,FDM)等。

这些技术的应用,可以在同一根光纤上实现多路复用,从而提高了光通信的带宽和效率。

二、全光网络的应用1. 全光网络通信随着手机、电脑等智能终端的普及,人们对于网络通信的需求越来越高。

而全光网络通信技术,以其高速率、高安全性和高可靠性,成为了未来网络通信的发展趋势。

目前,全光通信已经应用于许多领域,例如公共通信、局域网、数据中心等。

同时,光通信也成为了物联网、云服务等兴起领域的重要技术。

2. 全光网络储存除了网络通信,全光网络技术还被应用于大规模数据存储。

传统的数据存储往往采用硬盘或者闪存作为储存介质,随着数据量的不断增加,这种储存方式越来越难以满足需求。

而全光网络储存,以其高速度、高容量和高密度的特点,成为了储存技术的发展方向。

全光网络储存技术已经取得了一定的进展,在不同领域都得到了应用,例如数据中心、高性能计算等。

分享全光网络的创新及应用

分享全光网络的创新及应用

分享全光网络的创新及应用全光网络是一种利用光信号传输数据的新型网络体系结构,它具有高存储和传输容量、低延迟、低消耗和高可靠性等优点,可以应用于各种领域,如通信、物联网、云计算、医疗和科学研究等。

下面,我将重点介绍全光网络的创新及应用。

一、全光网络的创新1. 光信号传输技术利用光信号传输数据是全光网络最重要的创新之一。

其传输速度可达数百Gbps、数Tbps,能够满足大规模数据通信要求,同时减少带宽拥塞和信噪比失真等问题。

2. 波分复用技术波分复用技术是全光网络的另一个重要创新。

通过使用不同波长的光信号传输数据,可以实现高效的频谱利用。

此外,波分复用技术还可以实现多信道复用,提高了全光网络的容量和灵活性。

3. 分组光交换技术分组光交换技术是实现全光网络数据交换的一种新型技术。

它可以实现接近无延迟的数据交换,提高了网络的响应速度和实时性。

与传统的电力交换网络相比,分组光交换技术还具有更低的延迟和更高的可靠性。

4. 全光纤接入技术全光纤接入技术是实现全光网络构建的一种新型技术,它可以实现家庭、企业和机构等不同用户之间的高速数据交换。

相比传统的电力线接入方式,全光纤接入技术具有更高的容量和更高的速度,同时也具有更低的信道噪声。

二、全光网络的应用1. 通信全光网络作为高速数据传输的新型体系结构,可以广泛应用于通信领域。

在数据中心通信中,全光网络可以实现高带宽、低延迟的数据传输,同时实现多虚拟网络之间的高效划分。

在郊区或乡村地区的通信中,全光网络可以实现真正的光纤接入,提高了数据传输速度。

2. 云计算在云计算中,全光网络可以实现高速计算、高效存储和数据交换,提高了计算效率、可扩展性和安全性。

另外,全光网络还可以应用于云计算的数据备份、恢复和管理等领域,提高了数据安全性和可靠性。

3. 物联网在物联网中,全光网络可以实现智能物体之间的高速数据交换和通信。

全光网络可以提高智能终端设备的响应速度和处理能力,使智能物体之间的数据传输实现高效和顺畅。

有线电视全光网络的关键技术及发展前景

有线电视全光网络的关键技术及发展前景

反 射 叠 加 , 大 提 高 了输 出 功 率 , 具 大 还
第二 步是在 现有 技术 的基 础上 . 不 有 较 强 的选 频 功 能 . 本 满 足 有 线 电视 基
传 输 过 程 都 在 光 域 内进 行 。 缆 传 输 与 断 研 究 开 发 新 技 术 。 在 光 技 术 的 研 究 光 纤 网 对光 源 的 要 求 。 光 发 展 方 面 .存 在 以 下 几 个 亟 待 解 决 的
传 输 较 宽 频 带 等 优 点 , 合 了有 线 电视 迎
全 光 网 就 是 使 用 光 纤 作 为 传 输 介 质 组 建 的 网 络 。它 用光 波 技 术 代 替 了 用 以市 郊 原 有 的 光 节 点 为 基 础 .使 光 干
系统 多 频 道 传 输 的需 要 。目前 有 线 电视
依 次 减 小 。 现 在 使 用 较 多 的 是 1 5r . u 5 n
单模光 纤 , 种光 纤 中的色散 为零 , 这 失
例 如 加 在 光 缆 上 的 力 不 能 超 过 光 缆 的 真 较 小 , 距 离 传 输 效 果 好 . 地 方 建 近 在 最 大 允 许 张 力 ; 施 工 中 光 缆 拐 弯 的 曲 设 的 光 纤 有 线 电 视 网 中 得 到 广 泛 应 率 半 径要 大于 光 缆 外景 的二 十 倍 : 光 用 。 随 着 技 术 的 发 展 . 出 现 了 解 决
新 术 窗I 技视
I 传 与术 播 技
有 线 电视 全 光 网络 的关 刖 E j 键 技 术 及 发 展 秉
口 邱 铉 张 莛
可 。因 此 在 建 设 全 光 网络 的过 程 中 , 以
光纤 通 信 逐 步取 代 电缆通 信 为 原 则 ,

什么是全光网络技术

什么是全光网络技术

什么是全光网络技术什么是全光网络技术?所谓全光网络,是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。

因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。

下面就由小编来给大家说说什么是全光网络技术吧。

什么是全光网络技术(全光网络示意图)1、首先小编要给大家介绍下什么是全光网络先。

1.1、全光网络所谓全光网络,是指信号只是在进出网络时才进行电/光和光/电的变换,而在网络中传输和交换的过程中始终以光的形式存在。

因为在整个传输过程中没有电的处理,所以PDH、SDH、ATM等各种传送方式均可使用,提高了网络资源的利用率。

1.2、全光网络技术全光网络的相关技术主要包括全光交换、光交叉连接、全光中继和光复用/去复用等。

全光网络技术承诺的美好前景很简单: 数据将以更快的速度传输,因为数据仅以光的形式进行编码。

“仅”是个关键字。

目前,光网络设备从光缆中接收光脉冲,将它转换为电信号进行处理,然后将电信号还原为光进行传输。

即使处理时间为零,这种转换也会增加时延。

光技术鼓吹者说,消除光电转换将使数据传输速率达到万亿位级。

一个经常引用的统计数据说光纤具有25万亿到75万亿位/秒的理论容量,并把这个数据与数据速率通常以百万位计的铜线进行比较,体现其优势。

但是,这种论点没有涉及全光网络的两个基本要求:路由和缓冲。

现在全光网络中没有路由协议这类东西。

目前,光网络设备运行在点到点或环路拓扑结构中。

点到点是指,光脉冲要么由设备A 传送到设备B,要么不传送。

如果电缆出现中断,点到点方式没有后备连接。

像SONET的自动保护交换这样的环路技术提供了略好一些的冗余性:一旦电缆出现中断,环路可以绕过去。

而任何更复杂的拓扑结构都需要路由技术。

一些光网络技术鼓吹者说,路由决策属于光网络的边缘。

的确如此,只要全光网络很小并且简单。

如果交换机制造商真正想增加销售量,他们就需要在他们的设备中提供更多的智能。

全光网的发展前景及关键技术

全光网的发展前景及关键技术

输网 具有动态建立连接的功能. 在全光网(AON) 中, 络,
它包括提供 SDH 连接、 波长连接以及潜在的光纤连接业 务, 这样的一个功能可以带来许多价值: 第一, 光通道的流量工程:在这里带宽的分配是基于实
[ 收稿日 2007- 01- 01 期] 〔 作者简介I 沈淑红( 1969- ) , 河北滦县人, 女, 唐山学院计算中心实脸师; 甘丽( 1972- ) , 广东中山人, 女, 唐山学院计
2007 年第 3 期 ( 总第 10 3期)
牡丹江教 育学比学报
J O U RN AL O F M U DA NJ IA N G CO LL EGE O F E DU CA T IO N
N o . 3 , 07 20
Se r ial N o. 10 3
全光 网的发展前 景及关键技术
沈淑红 甘 丽 陈 颖
1. 全光通倍发展的必要性 光纤通信是 目前最主要的信息传输技术 , 迄今为止 , 尚 未发现可以替代它的技术. 即使在世界通信低谷时期, 各 公司在资金极其短缺、 研发投人相对紧张的情况下, 对光纤 通信新技术的研究仍然没有停止和放松, 创造出实验室 4 X 40Gb/ s 无电再生传输 10000km 的最高记录。从我国网 络业务量变化的趋势来看, 目前我国干线网数据带宽已超 过话音, 预计今后 5 到 6 年全网的数据业务量将会超过话 音业务量; IP 业务将最终成为主导的联网协议 , 年 内 IP 5 用户年增长接近 50% , 趋近摩尔定律, 5 年内省际干线网带 宽年增长约 100写, 相当于 12 个月翻番, 远高于摩尔定律; 3 年内中美国际通信带宽将从 3Gb/ s 增加到 32Gb/ s, 年增 长约 130% , 相当于 10 个月翻番。 2005 年, SDXC 年节点容量超过 5Tb/ s, 如果仅仅通过 芯片密度和性能改进来提高节点容量, 2- 3 年翻番, 大约 这 个速度相对来说太慢了, 如果采用分布式交换结构来提供高 密度低成本节点, 其容量扩展难以靠非阻塞在线方式实现, 多个 DXC 直接互连会引人连接阻塞, 且节点吞吐量和效率 迅速减少。因此, 从长远看电节点无法解决容量瓶颈问题。 2. 全光通信网的概念和特性 通信业务需求的飞速发展对通信容量提出了越来越高 的要求。目 , 前 基于 DWDM 的光纤通信系统 已经达到了 实用化水平 . 在进行交换和上下话路时受到“ 电子瓶颈” 的 限制, 为此, 提出了“ 全光 网" (AON) 的概念。“ " 全光网” 即 数据从源节点到 目 的节点的传输过程中始终在光域内, 这 就避免了在所经过的各个节点上的光电一电光转换, 电 即“

全光网络的概念和特点

全光网络的概念和特点

全光网络的概念和特点在当今数字化、信息化高速发展的时代,网络通信技术日新月异,其中全光网络作为一种具有革命性的通信技术,正逐渐展现出其强大的优势和潜力。

那么,究竟什么是全光网络?它又具有哪些显著的特点呢?全光网络,简单来说,是指在通信网络的传输和交换过程中,信号始终以光的形式存在,无需进行光电、电光的转换。

传统的通信网络中,数据在传输过程中往往会经历多次光电、电光转换,这不仅增加了信号的损耗和延迟,还降低了网络的传输效率和可靠性。

而全光网络则打破了这一限制,实现了真正意义上的“光进光出”。

全光网络具有以下几个突出的特点。

首先,极高的传输速率是全光网络的显著优势之一。

由于信号在网络中始终以光的形式传输,避免了传统转换过程中的损耗和延迟,能够实现超大容量的数据传输。

这意味着可以在更短的时间内传输更多的数据,满足日益增长的信息需求。

无论是高清视频的实时播放、大规模的数据备份还是云计算中的海量数据处理,全光网络都能够提供稳定、高速的支持。

其次,全光网络具有出色的可靠性和稳定性。

没有了频繁的光电、电光转换环节,减少了故障点的出现,降低了信号出错的概率。

同时,光信号在传输过程中受外界干扰较小,能够保持信号的完整性和准确性,为各种关键业务和应用提供了可靠的通信保障。

再者,全光网络的扩展性非常强。

随着用户数量的增加和业务需求的不断变化,网络需要不断扩展和升级。

在全光网络中,新增节点和链路相对容易,只需通过光分插复用器(OADM)和光交叉连接器(OXC)等设备进行灵活配置,即可实现网络的快速扩展,无需对整个网络架构进行大规模的改动。

此外,全光网络还具有低能耗的特点。

传统的通信网络中,光电、电光转换设备需要消耗大量的电能。

而全光网络由于减少了这些转换环节,大大降低了网络的能耗,符合当今社会对绿色环保和节能减排的要求。

在安全性方面,全光网络也表现出色。

光信号难以被窃听和干扰,为数据传输提供了更高的安全性保障。

这对于金融、军事、政务等对信息安全要求极高的领域具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全光网络技术及其发展前景
摘要
随着光纤通信的飞速进展,光纤通信有向全光网进展的趋势。

文中介绍了全光网的概念、优点及一些关键技术,展望了未来光通信的进展前景。

在以光的复用技术为基础的现有通信网中,网络的各个节点要完成光/电/光的转换,仍以电信号处理信息的速度进行交换,而其中的电子件在习惯高速、大容量的需求上,存在着诸如带宽限制、时钟偏移、严重串话、高功耗等缺点,由此产生了通信网中的“电子瓶颈”现象。

为熟悉决这个问题,人们提出了全光网(AON)的概念,全光网以其良好的透明性、波长路由特性、兼容性与可扩展性,已成为下一代高速宽带网络的首选。

1、全光网的概念
所谓全光网,是指从源节点到终端用户节点之间的数据传输与交换的整个过程均在光域内进行,即端到端的完全的光路,中间没有电信号的介入。

全光网的结构示意如图1所示。

图1 全光网的结构示意图
2、全光网的优点
基于波分复用的全光通信网可使通信网具备更强的可管理性、灵活性、透明性。

它具备如下以往通信网与现行光通信系统所不具备的优点:
(1)省掉了大量电子器件。

全光网中光信号的流淌不再有光电转换的障碍,克服了途中由于电子器件处理信号速率难以提高的困难,省掉了大量电子器件,大大提高了传输速率。

(2)提供多种协议的业务。

全光网使用波分复用技术,以波长选择路由,可方便地提供多种协议的业务。

(3)组网灵活性高。

全光网组网极具灵活性,在任何节点能够抽出或者加入某个波长。

(4)可靠性高。

由于沿途没有变换与存储,全光网中许多光器件都是无源的,因而可靠性高。

3、全光网中的关键技术
3.1光交换技术
光交换技术能够分成光路交换技术与分组交换技术。

光路交换又可分成3种类型,即空分(SD)、时分(TD)与波分/频分(WD/FD)光交换,与由这些交换形式组合而成的结合型。

其中空分交换按光矩阵开关所使用的技术又分成两类,一是基于波导技术的波导空分,另一个是使用自由空间光传播技术的自由空分光交换。

光分组交换中,异步传送模式是近年来广泛研究的一种方式。

3.2光交叉连接(OXC)技术
OXC是用于光纤网络节点的设备,通过对光信号进行交叉连接,能够灵活有效地管理光纤传输网络,是实现可靠的网络保护/恢复与自动配线与监控的重要手段。

OXC要紧由光交叉连接矩阵、输入接口、输出接口、管理操纵单元等模块构成。

为增加OXC的可靠性,每个模块都具有主用与备用的冗余结构,OXC自动进行主备倒换。

输入输出接口直接与光纤链路相连,分别对输入输出信号进行适配、放大。

管理操纵单元通过编程对光交叉连接矩阵、输入输出接口模块进行监测与操纵、光交叉连接矩阵是OXC的核心,它要求无堵塞、低延迟、宽带与高可靠,同时要具有单向、双向与广播形式的功能。

OXC 也有空分、时分与波分3种类型。

3.3光分插复用
在波分复用(WDM)光网络领域,人们的兴趣越来越集中到光分插复用器上。

这些设备在光波长领域内具有传统SDH分插复用器(SDHADM)在时域内的功能。

特别是OADM能够从一个WDM光束中分出一个信道(分出功能),同时通常是以相同波长往光载波上插入新的信息(插入功能)。

关于OADM,在分出口与插入口之间与输入口与输出口之间务必有很高的隔离度,以最大限度地减少同波长干涉效应,否则将严重影响
传输性能。

已经提出了实现OADM的几种技术:WDMDE-MUX与MUX的组合;光循环器或者在Mach-Zehnder结构中的光纤光栅;用集成光学技术实现的串联Mach-Zehnder 结构中的干涉滤波器。

前两种方式使隔离度达到最高,但需要昂贵的设备如WDMMUX /DE MUX或者光循环器。

Mach-Zehnder结构(用光纤光栅或者光集成技术)还在开发之中,并需要进一步改进以达到所要求的隔离度。

上面几种OADM都被设计成以固定的波长工作。

3.4光放大技术
光纤放大器是建立全光通信网的核心技术之一,也是密集波分复用(DWDM)系统进展的关键要素。

DWDM系统的传统基础是掺饵光纤放大器(EDFA)。

光纤在1550nm 窗口有一较宽的低损耗带宽,能够容纳DWDM的光信号同时在一根光纤上传输。

使用这种放大器的多路传输系统能够扩展,经济合理。

EDFA出现以后,迅速取代了电的信号再生放大器,大大简化了整个光传输网。

但随着系统带宽需求的不断上升,EDFA也开始显示出它的局限性。

由于可用的带宽只有30nm,同时又希望传输尽可能多的信道,故每个信道间的距离非常小,通常只有O.8~1.6nm,这很容易造成相邻信道间的串话。

因此,实际上EDFA的带宽限制了DWDM系统的容量。

最近研究说明,1590nm宽波段光纤放大器能够把DWDM系统的工作窗口扩展到1600nm以上。

贝尔实验室与NH 的研究人员已研制成功实验性的DBFA。

这是一种基于二氧化硅与饵的双波段光纤放大器。

它由两个单独的子带放大器构成:传统1550nmEDFA(1530nm~1560nm);1590nm 的扩展波段光纤放大器EBFA。

EBFA与EDFA的结合使用,可使DWDM系统的带宽增加一倍以上(75nm),为信道提供更大的空间,从而减少甚至消除了串话。

因此,1590nmEBFA对满足不断增长的高容量光纤系统的需求迈出了重要的一步。

4、全光网面临的挑战及进展前景
4.1面临的挑战
(1)网络管理。

除了基本的功能外,核心光网络的网络管理应包含光层波长路由管理、端到端性能监控、保护与恢复、疏导与资源分配策略管理。

(2)互连与互操作。

ITU与光互连网论坛(OIF)正致力于互操作与互连的研究,已取得了一些进展。

ITU的研究集中在开发光层内实现互操作的标准。

OIF则更多的关注光层与网络其他层之间的互操作,集中进行客户层与光层之间接口定义的开发。

(3)光性能监视与测试。

目前光层的性能监视与性能管理大部分还没有标准定义,但正在开发之中。

4.2进展前景
全光网是通信网进展的目标,分两个阶段完成。

第一个阶段为全光传送网,即在点对点光纤传输系统中,全程不需要任何光电转换。

长距离传输完全靠光波沿光纤传播,称之发端与收端间点对点全光传输。

第二个阶段为完整的全光网。

在完成上述用户间全程光传送网后,有很多的信号处理、储存、交换与多路复用/分用、进网/出网等功能都要由光子技术完成。

完成端到瑞的光传输、交换与处理等功能,这是全光网进展的第二阶段,即完整的全光网。

相关文档
最新文档