第三讲 激光稳频技术要点

合集下载

激光器的稳频

激光器的稳频

用频率的稳定度和复现性这两个物理量来表示激光频率稳定的 用频率的稳定度和复现性这两个物理量来表示激光频率稳定的 稳定度 程度。 程度。 频率稳定度——激光器在一次连续工作时间内的频率漂移与振 激光器在一次连续工作时间内的频率漂移与振 频率稳定度 荡频率之比 S = ∆ ν
ν
频率复现性——激光器在不同地点、时间、环境下使用时频率 激光器在不同地点、时间、 频率复现性 激光器在不同地点 的相对变化量 R = δ ν
βT = µ ( ) = −9.3 ×10 / C
1 −7 0
dµ dT
β p = µ ( ) = 5 ×10 / Pa
1 −5
dµ dp
β H = µ ( ) = −8 ×10 / Pa
1 −6
dµ dH
又设测量中温度、 又设测量中温度、气压及湿度的时间变化率分别为
dT dt dp dt dH dt
兰姆凹陷法稳频激光器的基本结构
当压电陶瓷外表面加正电压、内表面加负电压时压电陶瓷伸长, 当压电陶瓷外表面加正电压、内表面加负电压时压电陶瓷伸长, 反之则缩短,因而可利用压电陶瓷的伸缩来控制腔长。 反之则缩短,因而可利用压电陶瓷的伸缩来控制腔长。
二.腔长自动补偿系统的方框图

兰姆凹陷法稳频方框图
选频放大器只是对某一特定频率信号进行有选择性的放大 选频放大器只是对某一特定频率信号进行有选择性的放大 与输出。 与输出。相敏检波器的作用是将选频放大后的信号电压与参考 信号电压进行相位比较。当选频放大信号为零时, 信号电压进行相位比较。当选频放大信号为零时,相敏输出为 当选频放大信号和参考信号同相位时 同相位时, 零;当选频放大信号和参考信号同相位时,相敏输出的直流电 压为负,反之则为正。 压为负,反之则为正。振荡器除供给相敏检波器以参考信号电 压外, 约为l 压外,还给出一个频率为 f [(约为lkHz)、幅度很小(只有零点 ) 幅度很小( 几伏)的交流讯号,称为“搜索讯号” 几伏)的交流讯号,称为“搜索讯号”]的正弦调制信号加到压 电陶瓷环上对腔长进行调制。 电陶瓷环上对腔长进行调制。

激光稳频(讲稿)讲解

激光稳频(讲稿)讲解
●激光新技术: 引力辐射相干探测、激光冷却、
原子俘获
二、影响激光频率稳定的因素
激光频率由谐振腔振荡频率c和 原子跃迁谱线频率m共同决定:
m
m
c
c
1
m
1
c
c 和 m分别是谐振腔线宽和 跃迁谱线线宽。
通常 c << m
c ( m c ) c m
第二项很小,所以: c 激光频率由谐振腔决定:
q c
2nL
腔长L或折射率n发生变化,多会导 致激光频率变化:
L n Ln
影响激光频率稳定的因素:
外部因素:温度、大气变化、机械 振动、 磁场
内部因素:工作气压、放电电流、 自发辐射无规噪声
三、激光稳频技术
●被动稳频法:
针对上述诸因素,采取恒温、膨胀系 数匹配、防振、密封、隔离、稳定电源 等措施,使激光稳频。
F-P腔镜反射率为R,腔长为d,折 射率n,当调制光束垂直入射时,反射 传递函数:
i 2nd
f r R( 1 e c )
i 2nd
(1 Re c )
反射传递函数改写成:
f r Aei
得F-P腔反射光场:
E E0[J 0 A0e i(t 0 ) J1 A1e i[( m )t 1 ] J1 A1e i[( m ] )t 1 ] c.c.
探测器上边带与载波外差拍频得到 频率为m的光电流信号为:
i 2kE02J0J1 A0{[ A1 cos(0 1 ) A1 cos(1 0 )]cosmt [ A1 sin(0 1 ) A1 sin(1 0 )]sinmt}
利用位相检测可分别探测到上式中 的二项,当F-P腔长或激光频率扫描时, 对应第一项和第二项分别得到吸收型谱 线和色散型谱线。

激光稳频(讲稿)

激光稳频(讲稿)

1)、激光位相调制光谱
激光位相调制过程如图:
RF
Ein
EOM
Eout
it
入射光波场为: E in E0 e 出射光场为:
c .c .
c .c.
外加调制电场为: Emod Em sin m t
Eout E0e
i [t ]
根据电光效应理论,用折射率椭球 方程计算位相延迟,将Eout记为E:
J 1 A1e
]
探测器上边带与载波外差拍频得到 频率为m的光电流信号为:
i 2kE J 0 J 1 A0 {[ A1 cos( 0 1 )
2 0
A1 cos( 1 0 )] cos m t [ A1 sin( 0 1 ) A1 sin( 1 0 )] sin m t }
●装置
PZT
激光器 振荡器
反馈控制
光电接收
选频放大 相敏检波
2、塞曼效应(吸收)稳频法 ●原理 I
左旋光 右旋光
纵向塞曼效应
0

吸收
左旋光
右旋光
0
吸收线的塞曼分裂

●装置
PZT
激光器
电光晶体
矩形波发生器
吸收
光电接收
调谐放大器
直流放大器
相敏检波器
3、无源腔稳频法 ●原理:以外界无源腔谐振频率作为参考
一个通道输入探测到的透射信号可得调制光谱线另一通道输入探测到的反射信号取不同的相移可分别得到色散型谱线或吸收型仔细调节光路和相移得到稳定对称线型完好的色散型谱线然后以伺服系统取代扫描电源调节伺服系统输出直流电平当调到色散谱线中心零点即获得共振透射时闭上环路
激光稳频技术

激光稳频技术

激光稳频技术

所示的饱和吸收谱,分别对应 Fg=4Fe=3,4 和 Fg=3Fe=3,4。在图中发现,不同的共振
频率对应的谱线强度不同,这主要是由于原子在不同的能级之间跃迁时有不同的跃迁几
率造成的结果。同理,扫描 852.3nm 的激光器频率得到如图 3.5 所示 Cs 原子 D2 线饱和
吸收谱,a 图和 b 图分别对应 Fg=4Fe=3,4,5 和 Fg=3Fe=2,3,4 跃迁。在图中不仅包含
mg
me q
Fe ,me
me
Fg
Fe
Fg ,mg
Fe
Fe Fg 1me mg 1
(3-1)
dQme Fe
dt
s Fe ,me 2 (P Q ) Q Fg ,mg q
mg q Fg
me 1
me
Fe ,me
me
Fe
Fg ,mg
Fe
Fg Fg 1,Fg mg me 1
(3-2)
s
s0
45
45
6 s g 3 ( f3 g3 ) g3
45 2
f 3
6
s
28
21
( f3 g3 ) g1 g2
6
g 3
45 2
45
45
45
10 s
g 4
45
2
( f4
g4 ) g4
f 4
10
45
s 2
( f4
g4)
21 45 g 2
24 45 g3
10 45 g 4
15 s g 5 ( f5 g5 ) g5
3-2 .16
.14
.12 -800 -700 -600 -500 -400 -300 -200 -100 0

激光稳频技术简析

激光稳频技术简析

激光稳频技术简析
黄治涵
【期刊名称】《现代信息科技》
【年(卷),期】2018(002)009
【摘要】激光稳频技术是激光物理学、光谱学和电子学高度结合的产物,它随着激光应用的发展而发展.本文概述了激光稳频技术的基本原理,分析了各种影响He-Ne 激光光源频率稳定性的因素,并介绍了He-Ne激光器单模双模稳定技术以及国内外一些常见的稳频技术.
【总页数】3页(P40-42)
【作者】黄治涵
【作者单位】中南大学物理与电子学院,湖南长沙 410012
【正文语种】中文
【中图分类】TN248
【相关文献】
1.基于激光自稳频技术的分布式多点甲烷检测系统研究 [J], 郭清华;于庆;苟怡
2.用于POP铷原子钟的DFB激光器自动稳频技术研究 [J], 鱼志健;薛文祥;赵文宇;李孝峰;陈江;阮军;杜志静;张首刚
3.亚赫兹线宽稳频激光技术 [J], 蒋燕义;毕志毅;马龙生
4.激光稳频技术简析 [J], 黄治涵;
5.He-Ne激光的波长检测及稳频技术——激光干涉仪技术综述之二 [J], 羡一民
因版权原因,仅展示原文概要,查看原文内容请购买。

激光技术及控制基础(精)

激光技术及控制基础(精)

3.工作过程:
dI是极重要的参量,叫误差信号。它是由激光器输出的 光强和标准频率 输出的光强比较得到的信号。 不同I不 同,可用曲线的斜率 dI / d 表示。 dI的大小表明 d 的大小,相位表明 偏离 0的方向。
dI由在压电陶瓷上加一调制电压得到,加一直流偏压和 频率为f的调制电压。 加偏压的目的是在工作前调整激光器的振荡频率为凹 陷的中心频率 ,因为标准频率并不是固定不变的。 加调制电压的目的是给出dI的大小和方向,对光强进 行低频调制。
塞曼效应吸收稳频: 利用吸收介质的吸收中心 0 作标准频率,在吸收管上加 一磁场,产生塞曼效应,结果对不同旋光的光吸收差别 来稳定频率。 结构原理:吸收管中充有低压的Ne气,加磁场以后,由 于塞曼效应,吸收曲线分离成左右旋光的两条吸收线, 它对频率相同、旋光方向不同的圆偏光吸收不同。 稳频过程:利用吸收曲线的中心频率作标准频率,利用 左右旋光的光强差作误差信号dI,采用一套负反馈电路 控制系统。从激光器输出的线偏光通过加有交变的矩形 电压Vλ /4晶体,变成左右旋光。又因右旋光和调制讯号 同相位,dI大小和相位即可判别。
第六章 稳频技术
激光技术及控制基础
第六章
稳频技术
基本概念 稳频方法


稳频目的:使频率本身稳定,即不随时间、地点变化, 稳频是实际的要求。 频率的稳定性和复现性 1.频率的稳定性 激光器连续运转时,在一定的时间间隔内平均频率 v 与该时间内频率的变化量 v之比,用s表示。 2.频率的复现性 激光器在不同的时间、地点等条件下频率重复或再 现的精度,用R表示。 结论:频率稳定性表示激光频率在平均频率附近的漂 移,频率的再现性表示平均频率本身的变化。
激光强度的稳定
稳频实质是稳定腔长,而在稳频中通过激光输出光 强的变化作误差信号-通过电路的处理控制腔长从 而达到稳频的目的。 为了达到稳频的目的,要求激光输出的强度除了频 率的漂移造成的光强度变化之外,其他因素造成的 光强变化应该尽力避免。如放电电流、电压变化造 成的光强变化,否则干扰频率的稳定-甚至无法稳 频。 为了排除其他因素造成的激光强度变化采取的措施: 1.激光器的电源加稳压稳流装置。激光强度稳定到n% 2.采用稳定激光强度控制装置。

激光器的稳频ppt课件

激光器的稳频ppt课件

4.2.2 稳频方法概述
被动式稳频: 利用热膨胀系数低的材料制作谐振腔的间隔器;或用膨胀系数为 负值的材料和膨胀系数为正值的材料按一定长度配合,以便热膨 胀互相抵消,实现稳频。这种办法一般用于工程上稳频精度要求 不高的情况。
主动式稳频: 把单频激光器的频率与某个稳定的参考频率相比较,当振荡频率 偏离参考频率时,鉴别器就产生一个正比于偏离量的误差信号。 ➢ 把激光器中原子跃迁的中心频率做为参考频率,把激光频率锁定 到跃迁的中心频率上,如兰姆凹陷法、塞曼效应法。 ➢ 把振荡频率锁定在外界的参考频率上,例如用分子或原子的吸收 线作为参考频率,是目前水平最高的一种稳频方法。选取的吸收 物质的吸收频率必须与激光频率相重合。如饱和吸收法。
L
温度变化:一般选用热膨胀系数小的材料做为谐振腔
机械振动:采取减震措施
折射率变化的影响
内腔激光器: 温度T、气压P、湿度h的变化很小,可以忽略
外腔和半外腔激光器: 腔的一部分处于大气之中,温度T、
气压P、湿度h的变化较放电管内显著。应尽量减小暴露于
大气的部分,同时还要屏蔽通风以减小T 、 P、 h的脉动
4.2.4 饱和吸收法稳频
饱和吸收法稳频的示意装置如图4-12所示。
图4-12 饱和吸收法稳频的装置示意图
图4-13 吸收介质的吸收曲线
吸收管内充特定的气体,此气体在激光谐振频率处应有一个强吸收线。
与激光输出功率曲线的兰姆凹陷相似,在吸收介质的吸收曲线上也有一
个吸收凹陷,如图4-13所示。(原因:在中心频率处只有沿激光管轴方
二、氖的不同同位素的原子谱线中心有 一定频差。充普通氖气(包含Ne20及Ne22 两种同位素)的氦氖激光器兰姆凹陷曲线 不对称且不够尖锐,输出频率就不能准 确地调到凹陷的中心频率。因此,稳频 激光器都是采用单一氖的同位素来制造 的,且对同位素的纯度有较高要求。

第二章第三节激光器的稳频

第二章第三节激光器的稳频

激光器频率的不稳定因素
环境温度的起伏、激光管的发热及机械振动都会引起谐振 腔几何长度的改变。温度的变化、介质中反转集居数的起
伏以及大气的气压、湿度变化都会影响激光工作物质及谐 振腔裸露于大气部分的折射率。以上因素使腔长L及折射率 市都在一定范围ΔL,Δη内变化,因此频率νq也在Δν范围内 漂移。Δν可表示为:
唐山师范学院物理系
这时工作频率为f的选 频放大器输出为零,没 有附加的电压输送到 压电陶瓷上,因而激光 器继续工作于νo.如果 激光频率ν大于ν。,则 激光输出功率的调制 频率为f,相位与调制电 压相同。于是光电接 收器输出一频率为f的 信号,经选频放大器放 大后送入相敏检波器 。相敏检波器输出一 个负的直流电压。
唐山师范学院物理系
左图给出充普通氛气与 单一同位素Ne20的氦氖 激光器的输出功率曲线, 普通氖气包含Ne20及 Ne22两种同位素,二者谱 线中心频率之差为:
图8.2.3输出功率曲线圃 (a)单一同位素Ne20 (b)普通氖气。
22 20 890 MHz
因此,充普通氖气的氦氖激光器兰姆凹陷曲线不对称且 不够尖锐,制作单频稳频激光器时应充以单一同位素 Ne20或Ne22。兰姆凹陷法稳频可获得优于10-9的频率稳 定性。由于谱线中心频率ν。随激光器放电条件而改变, 频率复现性仅达10-7~10-8。此外,这种激光器的输出激 光的光强和频率均有微小的音频调制。
大于线宽极限。在精密干涉测量、光频标、光通信、激光
陀螺及精密光谱研究等应朗领域中,需要频率稳定的激光 。
当谐振腔内折射率均匀时,单纵模单横模激光器的纵模频
率νq为:
q
q
c
2L
可见,实际激光器谐振腔的腔长L及腔内介质的折射率可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
料随着温度的改变而伸缩,以致引起频率的漂移,即
T LL
式中,△T为温度的变化量;α为谐振腔间隔材料的线膨胀 系数,硬质玻璃α=10-5/oC,石英玻璃α=6×10-7/oC,殷钢
α=9×10-7/oC。一般难以获得优于10-8的频率稳定度。
2)大气变化的影响
对于外腔式激光器,设谐振腔长为L,放电管长度为L0, 则暴露在大气中部分的相对长度为(L- L0)/L,大气的温度、 气压、湿度的变化都会引起大气折射率的变化,从而导致 激光振荡频率的变动。设环境温度T=20oC,气压 p=1.013×105Pa,湿度H=1.133kPa,则大气对633nm波长光的 折射率变化系数分别为
S ( ) ( )
显然,变化量 Δυ(τ)越小,则S越大,表示频率的稳定性 越好。习惯上,有时把S的倒数作为稳定度的量度,即
S
1 ( )

( )

常说稳定度为10-8,10-9等,就是这个意思。
激光的频率或波长随时间变化,既表现为短期抖动, 又表现为长期漂移。 频率稳定度又可分为短期稳定度和长期稳定度,二者 划分的基准是,以探测系统的响应(分辨)时间τ0与测量仪
υm的影响,又受光学谐振腔谐振频率υc的影响,若原子跃迁谱
线的宽度为Δυm,谐振腔的谱线宽度为Δυc,则激光振荡频率 可表示为

m c ( m c ) m m c c
近红外和可见光波段,其多普勒线宽Δυm一般不小于
108~109Hz, Δυc约为106~107Hz量级,利用泰勒展
0 dp dt
656.6 Pa / h

则引起激光波长的变动分别为
( ) T p ( ) ( ) H
T p H
dT dt dp dt
9.3 109 6 10
9
dH dt
4.8 10
9
式中,τ为测量时间,对示波器τ=3~5s,对XY记录仪 τ≤1min。
3)机械振动的影响 机械振动也是导致光腔谐振频率变化的重要因素。如 建筑物的振动、车辆的通行、声响等都会引起腔的支架振 动, 使腔的光学长度改变, 导致振荡频率的漂移; 对于L=100cm的光腔,当机械振动引起10-6cm的
腔长改变时,频率将有1×10-8的变化。因此,
要克服机械振动的影响,稳频激光器必须采取 良好的防震措施。
荡频率的影响由上式中的第二项以频率牵引
效应表示出来,牵引效应的比例系数为:
c mຫໍສະໝຸດ 在不考虑原子跃迁谱线频率微小变化的情况下,激
光振荡频率主要由谐振腔的谐振频率决定,即有
c q 2nL
(注2nL=qλ)
q为纵模的序数。从式中可以看出,若腔长或腔内的折 射率n两者都发生变化,则激光振荡频率也将变化, (类似于偏微分,再把上式代入可得下式)
n n L L qc( 2 ) ( L n ) nL2 2 n2 L
故激光频率的稳定问题,可以归结为如何设法保持腔
长和折射率稳定的问题。


L L

n n
影响频率稳定的外界因素主要有以下几个方面。(温 度,大气变化,机械振动,磁场等)
1)温度变化的影响 环境温度的起伏或者是激光管工作时发热,都会使腔材
4)磁场的影响 为了减小温度影响,激光谐振腔间隔器多采用殷钢
材料制成,但殷钢的磁致伸缩性质可能引起腔长的变化,
第三讲 激光稳频技术 段 作 梁
电子工程学院光电子技术系
主 要 内 容
一、概述 二、兰姆凹陷稳频
三、塞曼效应稳频
四、饱和吸收稳频(反兰姆凹陷稳频)
五、其他稳频激光器
六、频率稳定性和复现性的测量
一、 概 述
如精密干涉测量是以激光波长作为“尺子”,利用 光干涉的原理来测定各种物理量(如长度、位移、速度等) 的,所以,激光波长(或频率)的准确度会直接影响测量的 精度。本章主要介绍几种应用较多的He-Ne激光器的稳频 方法及原理。
R

( )

表示之。 为被测激光器系列的平均频率或同一台激 光器的标准频率; ( ) 为频率的偏差量。频率的稳定 性和复现性是两个不同的概念。对一台稳频激光器, 不仅要看其稳定度,而且还要看它的频率复现性。
1.2 影响激光频率稳定的因素
从激光原理可知,激光振荡频率既受原子跃迁谱线频率
1.1 频率的稳定性和复现性
为了衡量频率的稳定性(度),可以从时域和频域两方 面进行描述,既可以用它随时间的变化,也可以用它的频 谱分布加以讨论;本章将采用时域的描述方法,
用频率的稳定度和复现性这两个物理量来表示激光频率 稳定的程度。 频率稳定度通常系指激光器在连续运转时,在一定的观测时
间τ内频率的平均值 与该时间内频率的变化量Δυ之比,即
T ( ) 9.3 10 / C
1 n dn dT dn dp 7 o
p ( ) 5 10 / Pa
1 n 5 6 dn H 1 ( ) 8 10 / Pa n dH
又设测量中温度、气压及湿度的时间变化率分别为
dT dt dH dt
0.01 C / min, 133.3Pa / h,
( 0) 2 开, f ( x) f (0) f (0) x f 2 ! x
,取到一次方,
注意x= Δυc/ Δυm(可认为是小量)
c ( m c )
c m
可见激光器的振荡频率是由原子跃迁谱 线及谐振腔的谐振频率共同决定的,二者的 变化均会引起激光频率的不稳定;谱线对振
器的观测取样时间τ之间的关系来定:
当τ≤ τ0时,测得的频率稳定度称为短期稳定度; 当τ> τ0时, 测得的稳定度则属于长期稳定度。比较恰当的 表示法是,在稳定度数值后面标明取样时间τ值, 例如, S υ(τ) =10-10(τ=10s)。
另外,对于作为频率或波长基准的激光器,不仅要求稳 定度高,而且要求频率重复性的精度也高。这种在不同 地点、时间、环境下稳定频率的偏差量与它们的平均频 率的比值称之为频率复现性,以
相关文档
最新文档