有理数的乘法 ppt课件3

合集下载

《有理数的乘除法》_优秀课件

《有理数的乘除法》_优秀课件

第1课时 有理数的乘法法则
【归纳总结】求一个数的倒数的方法:
名称
方法
真分数的倒数
颠倒分子和分母的位置
整数的倒数 把整数看成分母为 1 的分数,再求倒数
带分数的倒数 把带分数化成假分数,再求倒数
小数的倒数
把小数化为分数,再求倒数
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【解析】根据定义,要求 a(a≠0)的倒数,只需求1a即可,或根据乘积
是 1 的两个数互为倒数来求.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
解:(1)因为(-2)×-12=1,所以-2
知识目标 目标突破 总结反思
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识目标
1.经历依次减小乘法中某个因数的值,观察、类比所得算式和 结果的过程,理解有理数的乘法法则,会进行有理数的乘法.
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载
第1课时 有理数的乘法法则
知识点二 倒数的概念
概念:乘积是____1____的两个数互为倒数.
求法:数 a(a≠0)的倒数是____1____,其中 0 没有倒数(因
【获奖课件ppt】《有理数的乘除法》 _优秀 课件1- 课件分 析下载

2.2.1.1有理数乘法法则 课件(共55张PPT) 七年级数学上册

2.2.1.1有理数乘法法则  课件(共55张PPT)  七年级数学上册
要点归纳: 几个不等于零的数相乘,积的符号由 _负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积为负;
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);

人教版七年级数学上册课件第3课时 有理数的乘法运算律

人教版七年级数学上册课件第3课时  有理数的乘法运算律

预习反 馈
2.计算:(-3) 5 ( 9) ( 1 ) (8) (1)
65
4
解:-9
3.计算:
(1)(- 3) (8 4 14);
4
3 15
(2)19 18 (15). 19
解:(1)-4 3 ,(2)-299 4 .
10
19
名校讲 坛
例1 在算式每一步后面填上这一步应用的运算律: [(8×4)×125-5]×25 =[(4×8)×125-5]×25(乘法交换律) =[4×(8×125)-5]×25(乘法结合律) =4 000×25-5×25(乘法分配律) =99 875.
D(. 16 2 2) 3 7 16
(3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).
解:(1) 10.(2) 19 .(3)250. 21
课堂小 结
1.有理数乘法交换律. 2.有理数乘法结合律. 3.有理数乘法分配律.
A.(3+0.96)×(-99) B.(4-0.04)×(-99)
C.3.96×(-100+1)
D.3.96×(-90-9)
3.对于算式2 018×(-8)+(-2 018)×(-18),逆用分配律写成积的形式是( C )
A.2 018×(-8-18)
B.-2 018×(-8-18)
C.2 018×(-8+18)
D.-2 018×(-8+18)
巩固训 练
4.计算13 5 3 ,最简便的方法是( D ) 7 16
A(. 13+ 5) 3 B(. 14- 2) 3
7 16
7 16
C(. 10+3 5) 3 7 16
5.计算:
(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)

人教版七年级上册第一章《有理数》1.4.1 有理数的乘法教学课件(共17张PPT)
解:原式=0
1 2 3 4 5 (3) ( ) ( ) ( ) 2 3 4 5 6
9 … ( 10 )
2 1 5 (4)(-6) × ×(- ) ×(- 5 ) 4 6
1 4 (5)(-7) ×6×(- 7 ) × 4
(6)(1-2) ×(2-3) …(2005-2006) 解 : 原式 (1) (1)... (1) = -1
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
辽宁省铁岭市西丰县郜家店镇中学
谢林岐
计算:
(1)﹙-2﹚×3 ; (2)﹙-2﹚×﹙-3﹚; (3) 4×﹙-½ ﹚; (4)﹙-4﹚×﹙-½ ﹚.
义务教育新课程标准实验教科书数学七年级上册
1.4.1有理数的乘法 (第二课时)
2005个(-1)相乘
1.书后练习题 2.复习本节课所学知识
3.预习下一节
From:
几个不是0的数相乘,负因数的个 数是( 偶数 )时,积是正数;负 因数的个数是( 奇数 )时,积是 负数.
计算:
(1)(-3)×
(2)
×(-
)×()×
);
(-5)×6×(-
多个不是0的有理数相 乘,先做哪一步,再做 哪一步?
多个不是0的有理数相乘,先做哪一步,再做 哪一步? 第一步:确定符号(奇负偶正); 第二步:绝对值相乘。
2000
2 7 6 3 (2) ( ) ( ) ( ) 3 5 14 2 8 2 (3) ( ) ( 3.4) 0 7 3
-3/5
0
计算: 2 7 (3 ) (35) 0.0045 ( 3.5 ) 2008 3 2
11 解:原式 ( ) 35 0.0045 (3.5 3.5) 2008 3

有理数的乘除复习优质课件PPT

有理数的乘除复习优质课件PPT

混合运算
1、只含同级运算必须从左到右依次进行;
时,应将
2、含有括号时,先算括号里的;
除法统一 成乘法,
3、无括号则按照“先乘除、后加减”的顺序进行; 再进行运
42、021如/02/果01 满足运算律,还可依照运算律使运算简便。 算。 3
一、选择题:
1、若两个有理数在数轴上的对应点分别在原点的两侧,则这两 个数相除所得的商( B )
2、除以一个数等于乘以这个数的倒数(0不能作除数) 倒数与倒数的性质:
1除以一个不为0的数得这个数的倒数(0没有倒数)。 倒数的性质有:(1)互为倒数两数的积为1;
()有理数a(a≠0)的倒数为
1 a

(3)互为倒数的两个数必同号;
(4)倒数是它本身的数只有±1两个。 只有乘除
有理数加减混合运算的运算顺序:







2021/02/01
1
活动1: 有理数乘法法则: 同号得正,异号得负,并把绝对值相乘。任何数与零相乘都得零。 有理数乘法运算律:
乘法交换律: a×b=b×a 乘法结合律: (a×b)×c=a×(b×c) 分 配 律: a(b+c)=ab+ac
数与式子相乘的法则:
(1)用数去乘式子的每一项,再把所得的积相加 ;
感谢您的观看!本教学内容具有更强的时代性和丰富性,更适合学习需要和特点。为了 方便学习和使用,本文档的下载后可以随意修改,调整和打印。欢迎下载!
2021/02/01
9
3、 4个非零的数的积为正,则正因数有_0_、__2_、_。4
4、若 a =1,则a__>__0,若 a =-1,则a__<__0。

七年级数学上册第1章有理数的乘法除法课件

七年级数学上册第1章有理数的乘法除法课件

_

5、7.8×(8.1)×0×(-19.6)______
❖几个不是0的数相乘,积的符 号与负因数的个数之间有什么关 系? ❖有一因数为 0 时,积是多少?
几个不是0的数相乘,积的符号由负因数的个数 决定,
负因数的个数是 奇数 时,积是负数; 负因数的个数是 偶数 时,积是正数.
奇负偶正

几个数相乘,如果其中有因数为0,积等于 0 .
青春是有限的,智慧是无穷的,趁短的 青春,去学习无穷的智慧.
———— 高尔基
有理数的乘法(二)
1.有理数乘法的法则是怎样的? 2.倒数的意义.
说出下列各数的倒数:
1,-1,1 3
,-
4 3
,
11, -
2
21 4
思考:
(1)若a小于0,b大于0,则ab__<__0. (2)若a小于0,b小于0,则ab__>___0.
3
(3).( 1) ( 5 ) 8 3 ( 2) 0 (1). 4 15 2 3
小试牛刀
(1) ( 8) × ( 7)
(2) 2.9 × ( 0.4)
(3)
1 4
×
8 9
(4) 100 × ( 0.001)
(5) ( 2) × ( 4) × 3
(6) ( 6) × ( 5) × 7
归纳总结
(3)若ab大于0,则a、b应满足什么条件? (4)若ab小于0,则a、b应满足什么条件?
a、b同号 a、b异号
观察下列各式,它们的积是正的还是负的?
1、2×3×4×(-5)__负____
2、2×3×(-4)×(-5)_正_______
3、2×(-3)×(-4)×(-5)__负____

人教版七年级上数学上册 有理数的乘法 课件

人教版七年级上数学上册 有理数的乘法 课件
探究发现
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)

( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0

(人教版)有理数的乘除法 优秀课件3

(人教版)有理数的乘除法 优秀课件3

要得到一个数
的相反数,只要
将它乘 -1.
知1-讲
总 结
先定符号,同号得正,异号得负,再算 绝对值;任何数与0相乘都得0.
知1-讲
例3 如图,数轴上A、B两点所表示的两个数 的( D ) A.和为正数 C.积为正数 B.和为负数 D.积为负数
导引:由图可知A点表示的数是负数,B点表示的数为 正数,并且这两个数的绝对值相等.
知2-练
1
1 0 没有 若数a≠0,则a的倒数是________ ,________ a
1或-1 . 倒数;倒数等于它本身的数是________ 2 若a与b互为相反数,c与d互为倒数,则5(a+b) -6cd=________ -6 .
知2-练
海南)-2 015的倒数是( A ) 3 (中考·
颠倒位置即可(整数看成分母为1的分数); (2)求带分数的倒数时,要先将其化成假分数; (3)求小数的倒数时,要先将其化成分数.
• • • • • • • • • • • • • • • • • • • • • • • • • • • • •
25、你不能拼爹的时候,你就只能去拼命! 26、如果人生的旅程上没有障碍,人还有什么可做的呢。 27、我们无法选择自己的出身,可是我们的未来是自己去改变的。励志名言:比别人多一点执着,你就会创造奇迹 28、伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。 29、人生就像一道漫长的阶梯,任何人也无法逆向而行,只能在急促而繁忙的进程中,偶尔转过头来,回望自己留下的蹒跚脚印。 30、时间,带不走真正的朋友;岁月,留不住虚幻的拥有。时光转换,体会到缘分善变;平淡无语,感受了人情冷暖。有心的人,不管你在与不在,都会惦念;无心的情,无论你好与不好,只是漠然。走过一段路,总能有一次领悟;经历一些事,才能看清一些人。 31、我们无法选择自己的出身,可是我们的未来是自己去改变的。 32、命好不如习惯好。养成好习惯,一辈子受用不尽。 33、比别人多一点执着,你就会创造奇迹。 1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 1、这世上,没有谁活得比谁容易,只是有人在呼天抢地,有人在默默努力。 2、当热诚变成习惯,恐惧和忧虑即无处容身。缺乏热诚的人也没有明确的目标。热诚使想象的轮子转动。一个人缺乏热诚就象汽车没有汽油。善于安排玩乐和工作,两者保持热诚,就是最快乐的人。热诚使平凡的话题变得生动。 3、起点低怕什么,大不了加倍努力。人生就像一场马拉松比赛,拼的不是起点,而是坚持的耐力和成长的速度。只要努力不止,进步也会不止。 4、如果你不相信努力和时光,那么时光第一个就会辜负你。不要去否定你的过去,也不要用你的过去牵扯你的未来。不是因为有希望才去努力,而是努力了,才能看到希望。 5、人生每天都要笑,生活的下一秒发生什么,我们谁也不知道。所以,放下心里的纠结,放下脑中的烦恼,放下生活的不愉快,活在当下。人生喜怒哀乐,百般形态,不如在心里全部淡然处之,轻轻一笑,让心更自在,生命更恒久。积极者相信只有推动自己才能推动世界,只要推动自己就能推动世界。 6、人性本善,纯如清溪流水凝露莹烁。欲望与情绪如风沙袭扰,把原本如天空旷蔚蓝的心蒙蔽。但我知道,每个人的心灵深处,不管乌云密布还是阴淤苍茫,但依然有一道彩虹,亮丽于心中某处。 7、每个人的心里,都藏着一个了不起的自己,只要你不颓废,不消极,一直悄悄酝酿着乐观,培养着豁达,坚持着善良,只要在路上,就没有到达不了的远方! 8、不要活在别人眼中,更不要活在别人嘴中。世界不会因为你的抱怨不满而为你改变,你能做到的只有改变你自己! 9、欲戴王冠,必承其重。哪有什么好命天赐,不都是一路披荆斩棘才换来的。 10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数乘法的运算律
学习目标: 1、掌握有理数乘法的运算律; 2、能应用运算律使运算简便; 3、能熟练地进行加、减、乘混合运算; 学习重点: 乘法的运算律 学习难点: 灵活运用乘法的运算律简化运算和进行 加、减、乘 的混合运算。
练习一
5×(-6)= (-6)×5 (-3/4)×(-4/9) = (-4/9)×(-3/4) 两个数相乘,交换因数的位置,积不变
练习三
5×[3+(-7)]
= 5×3+5×(-7)
=
12×(-3/4)+12×(-4/9)
12×[(-3/4)+(-4/9)]
一个数同两个数的和相乘,等于把这 个数分别同这两个数相乘,再把积相加。
乘法分配律:a(b+c)=ab+ac
根据分配律可以推出:一个数同几个数的和 相乘,等于把这个数分别同这几个数相乘, 再把积相加。
乘法交换律:ab=ba
2、[(-8)+5]+(-4)=(-8)+[5+(-4)]
加法结合律:(a+b)+c=a+(b+c)
3、(-6)×[2/3+(-1/2)]=(-6)×2/3+(-6)×(-1/2)
分配律:a(b+c)=ab+bc
4、[29×(-5/6)] ×(-12)=29 ×[(-5/6) ×(-12)]
练习四 1、(-85)×(-25)×(-4) 2、(-7/8)×15×(-1/7)
例二
计算: (1/4+1/6-1/2)×12
解: (1/4+1/6-1/2)×12 =(1/4)×12+(1/6)×12-(1/2)×12 =3+2-6 =-1 练习五 计算:1、(9/10-1/15)×30 2、 (24(-8)+(-9)=(-9)+(-8) 加法交换律:a+b=b+a
问题二
在问题一的1—5题中,计算等号右边 比较简便还是计算等号左边比较方便?
1、 相同 2、 右边 3、 右边 4、 右边 5、 相同
例一 计算:
12×25×(-1/3)×(-1/30)
解:12×25×(-1/3)×(-1/50) =[12×(-1/3)] ×[25×(-1/50)] =(-4)×(-1/2) =2
乘法交换律:ab=ba
练习二
[3×(-4)]×(-5) = 3× [(-4)×(-5)]
[(-3/4)×(-4/9)]×6
= (-4/9)×[(-3/4)×6]
三个数相乘,先把前两个数相乘,或者 先把后两个数相乘,积不变。 乘法结合律:(ab)c=a(bc)
根据乘法交换律和结合律可以推出:三个以上有理 数相乘,可以任意交换因数的位置,也可先把其中的 几个数相乘
形成性测试
一、下列各式变形各用了哪些运算律? 1、1.25×(-4)×(-25)×8= (1.25×8)×[(-4)×(-25)] (乘法交换律和结合律)
2、(1/4+2/7—6/7)×(-8)= (1/4)×(-8)+(2/7-6/7)×(-8) (加法结合律和分配律) 3、25×[1/3+(-5)+2/3]×(-1/5)= 25×(-1/5)×[(-5)+1/3+2/3]
有理数乘法的运算律
两个数相乘,交换因数的位置,积不变 乘法交换律:ab=ba 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积 不变。 乘法结合律:(ab)c=a(bc) 根据乘法交换律和结合律可以推出:三个以上有理数相乘,可 以任意交换因数的位置,也可先把其中的几个数相乘。
一个数同两个数的和相乘,等于把这个数分别同 这两个数相乘,再把积相加。 乘法分配律:a(b+c)=ab+ac 根据分配律可以推出:一个数同几个数的和相乘,等于把这个 数分别同这几个数相乘,再把积相加。
诊断性测试
一、回答下列问题 1、有理数加法法则,分几种情况,各是怎样规定的? 2、有理数的减法法则是什么? 3、有理数乘法法则,分几种情况,各是怎 样规定的? 4、小学学过哪些运算律? 二、计算下列各题 1、5×(-6) 2、(-6)×5 3、[3×(-4)] ×(-5) 4、3× [(-4)×(-5)] 5、5× [3+(-7)] 6、5×3+5×(-7)
5、(-3/4)×(8-4/3-0.04)
(用分配律)
三、计算第二题的1、2题
作业 计算第二题的3、4、5题
注意事项
1、乘法的交换律、结合律只涉及 一种运算,而分配律要涉及两种运算。 2、分配律还可写成: ab+ac=a(b+c), 利用它有时也可以简 化计算。 3、字母a、b、c可以表示正数、 负数,也可以表示零,即a、b、c可 以表示任意有理数。
问题一
下列各式中用了哪条运算律?如何用字母表示? 1、(-4)×8=8 ×(-4)
(乘法交换律和结合律)
二、为使运算简便,如何把下列算式变形? 1、(-1/20)×1.25×(-8) (二、三项结合起来运算)
2、(7/9-5/6+3/4-7/18)×36
(用分配律)
3、(-10)×(-8.24) ×(-0.1)
(一、三项结合起来运算)
4、(-5/6)×2.4×(3/5)
(一、三项结合起来运算)
相关文档
最新文档