8寄存器与存储器 (2)培训教材

合集下载

寄存器说课稿

寄存器说课稿

寄存器说课稿一、说教材(一)作用与地位“寄存器”作为计算机组成原理课程的核心内容,不仅在整个课程体系中具有承上启下的作用,而且对于学生理解计算机内部工作原理,掌握信息处理的基础知识具有重要意义。

它既是学习后续指令系统、CPU 构造等章节的基础,也是分析计算机性能、设计计算机体系结构的关键。

(二)主要内容本节课我们将详细介绍寄存器的定义、分类、功能以及其在计算机系统中的应用。

具体包括以下几部分内容:1. 寄存器的概念及其在计算机中的作用。

2. 寄存器的分类,如通用寄存器、专用寄存器、控制寄存器等。

3. 寄存器的内部结构和工作原理。

4. 寄存器的性能指标,如位数、速度等。

5. 寄存器在计算机指令执行和程序运行中的应用。

二、说教学目标学习本课后,学生应达到以下教学目标:(一)知识目标1. 掌握寄存器的定义、分类和功能。

2. 了解寄存器在计算机系统中的重要性。

3. 了解寄存器的性能指标及其对计算机性能的影响。

(二)能力目标1. 能够分析寄存器在计算机指令执行和程序运行中的作用。

2. 能够运用寄存器知识解释计算机的一些现象。

(三)情感目标1. 培养学生对计算机硬件的兴趣,激发他们学习计算机组成原理的积极性。

2. 培养学生团队合作精神和解决问题的能力。

三、说教学重难点(一)重点1. 寄存器的定义、分类和功能。

2. 寄存器在计算机系统中的应用。

(二)难点1. 寄存器的内部结构和工作原理。

2. 寄存器性能指标对计算机性能的影响。

在教学过程中,我们将着重讲解重点内容,并通过实例分析和课堂讨论等方式,帮助学生突破难点。

同时,注重理论与实践相结合,提高学生的实际应用能力。

四、说教法(一)教学方法在教学“寄存器”这一章节时,我计划采用以下几种教学方法:1. **启发法**:- 通过引入现实生活中的例子,如快递柜的存储与提取过程,来启发学生对寄存器存储数据功能的理解。

- 设计问题链,引导学生逐步深入思考,例如:“数据为什么要放在寄存器中?”“寄存器的速度快在哪里?”等,以此激发学生的探究欲望。

《存储器和寄存器》课件

《存储器和寄存器》课件

案例三:新型存储器技术的二
详细描述
新型存储器技术的优势和发展趋势
随着技术的不断发展,新型存储器技术如相变存储器、阻 变存储器和闪存等逐渐崭露头角。这些新型存储器技术具 有更高的性能和更低的功耗,为未来的存储器市场带来巨 大的潜力。研究新型存储器技术的进展,有助于推动存储 器技术的不断创新和应用。
02
寄存器详解
寄存器的定义与功能
总结词
寄存器是一种用于存储二进制数的电子 元件,具有存储数据和参与运算的功能 。
VS
详细描述
寄存器是由多个触发器构成的组合逻辑电 路,可以存储一组二进制数。这些数可以 是数据、地址或控制信号。寄存器的主要 功能是存储数据,以便在运算、传输和控 制等操作中使用。
寄存器的分类
寄存器的应用场景
总结词
寄存器在计算机和其他数字系统中具有广泛的应用。
详细描述
在计算机中,寄存器用于存储指令、地址和数据等信息,是计算机内部进行运算和控制的核心部件之 一。在数字系统中,寄存器用于传递数据和控制信号,实现数据的并行处理和高速传输。此外,寄存 器还用于实现各种数字逻辑功能,如计数器、移位器和比较器等。
存储器的应用场景
计算机系统
数据中心
作为计算机系统的核心组成部分,存储器 用于存储操作系统、应用程序、数据和指 令。
数据中心需要大规模、高可靠性的存储设 备来支持云计算和大数据处理。
嵌入式系统
嵌入式系统中的存储器用于存储程序代码 、配置参数和运行时数据。
游戏机、智能手机等消费电子产 品
这些设备中的存储器用于保存用户数据、 应用程序和操作系统。
应用领域拓展
云计算和大数据
随着云计算和大数据技术的快速发展 ,存储器和寄存器的应用将更加广泛 ,需要支持大规模数据存储和处理, 满足高并发、低延迟的需求。

寄存器——教学课件

寄存器——教学课件
工作时,M1M0=01,芯片处于右移工作方式,DSR=Q3=0。
当第一个CP脉冲上升沿出现时,DSR=0 →Q0;Q0=1→Q1; Q1=0→Q2 ;Q2=0→Q3,使Q0Q1Q2Q3=0100,DSR=0; 同理,第二个CP脉冲上升沿出现时,Q0Q1Q2Q3=0010;DSR=0;
第三个CP脉冲上升沿出现时,Q0Q1Q2Q3=0001;DSR=1; 第四个CP脉冲上升沿出现时,Q0Q1Q2Q3=1000;回到初始 状态。若不断输入脉冲,则寄存器状态依上面的顺序反复循环, 输出端轮流分配一个矩形脉冲。
四位左移寄存器状态表
二、双向移位寄存器
74LS194四位双向通用寄存器。
M1 、 M0 为 工 作 方 式 控 制 端 , 取 值不同,工作方式不同。工作时,应 在电源Vcc和地之间接入一只0.1µF的 旁路电容。与CT74LS194相容的组件 有CC40194和表C1432.22等.3 。CT74LS194功能表
2.左移寄存器
各触发器的输出端Q与左邻触发器D端相连;各CP 脉冲输入端并联;各清零端 CR 并联。
工作过程:寄存器初始状态Q0Q1Q2Q3 = 0000,输入数据 为10第10一;CP上升沿出现前:Q3Q2 Q1Q0= 0000,D3D2D1D0= 0001
第一CP上升沿出现时:Q3 Q2Q1Q0= 0001,D3D2D1D0= 0010 第二CP上升沿出现时:Q3 Q2Q1Q0= 0010,D3D2D1D0= 0101 第三CP上升沿出现时:Q3 Q2Q1Q0= 0101,D3D2D1D0= 1010 第四CP上升沿出现时:Q3 Q2Q1Q0= 1010
13.2.1 并行输入、并行输出寄存器 四位数码寄存器
四个触发器的时钟输入端连在一起,受时钟脉冲的同步 控制;

8寄存器与存储器知识讲解

8寄存器与存储器知识讲解

分频器的输出波形:
4分频波形
小结: 74LS138译码器地址输入端A2A1A0(CBA)的取值, 决定了分频比,将CBA代表的二进制数转换成十进制数再加1,
即为分频系数。 思考: 若ABC=000,001、---111分别是多少分频器?
2020/10/8
作业题
6.4、6.5、6.6
2020/10/8
1.单向移位寄存器
(1)右移位寄存器
串行 数据 输入
清零端
2020/10/8
同步移位时 钟输入端
工作过程:
假设要传送数据1011。
10 12
3 4
1 1 0
1
0 1 1
0
0 0 1
1
0 0 0
1
串入串出:前触发器输出端Q与后数据输入端D相连接。当时 钟到时,加至串行输入端DSR的数据送Q0,同时Q0的数据右移 至Q1,Q1的数据右移至Q2,以此类推。将数码1101右移串行输 入给寄存器共需要4个移位脉冲
项目八 寄存器与 存储器及应用
8.1 寄存器 8. 2 存储器 8.3 寄存器与存储器例表 本章小结
2020/10/8
主要内容
寄存器的功能、分类、结构、工作原理; 存储器的功能、分类、结构、工作原理; 寄存器、存储器的应用。
主要技能
寄存器与存储器的正确使用技能和功能测试技能; 熟练应用寄存器和存储器构成具特定功能的逻辑电路; 能完成电路的安装与功能调试。
2020/10/8
3.存储器的分类: 按照内部信息的存取方式可分为:
随机存取存储器RAM:存放临时性的数据或中间结果。 只读存储器ROM:存放永久性的、不变的数据。
随机存取存储器RAM按硬件结构可分为: 静态存储器(SRAM) 动态存储器(DRAM) 只读存储器ROM按数据输入方式可分为: 掩膜式存储器(ROM) 可编程存储器(PROM) 可擦除存储器(EPROM)

存储基础知识培训ppt课件

存储基础知识培训ppt课件
物理磁盘
物理卷(RAID)
RAID、LUN的形成过程
物理磁盘
LUN
物理卷(RAID)
பைடு நூலகம்
分割
卷(Volume)
在LUN映射给主机的“物理硬盘”,对于主机系统来说就是一个“卷”,没有格式化的卷我们称为裸设备(裸卷),卷上创建一个或多个分区(如C盘,D盘等等),通过格式化以后创建文件系统(FAT32、NTFS、ext2/3/4等)VOLUME相对于主机是一个逻辑设备。
控制器
磁盘柜
磁盘电缆
磁盘阵列是把多个磁盘组成阵列(Array) ,以单一磁盘使用。磁盘阵列所利用的不同的技术,称为RAID level,不同的level 针对不同的系统及应用,以解决数据存储的安全、性能和容量的问题。阵列控制器是介于主机和磁盘之间的控制单元,配置有专门为I/O进行过优化的处理器以及一定数量的缓存(cache)。控制器上的CPU和cache共同实现对来自主机系统I/O请求的操作和对磁盘阵列的RAID管理。阵列上的cache则作为I/O缓冲池,大大提高磁盘阵列的读写响应速度,显著改善磁盘阵列的性能。传统磁盘阵列大多采用双控制器设计,从而充分体现了磁盘阵列的高可用特性。双控制器可配置成active-active或active-standby的工作模式,并且支持热插拔功能,能够实现简单的无单点故障,为用户提供的7*24不间断业务。 在配置了CPU和cache的磁盘阵列中,部分高端产品还可以运行基于磁盘阵列的存储软件,提供比较全面的基于磁盘阵列的解决方案。
常见磁盘阵列
光纤通道(FC)
HBA卡
WWN(World Wide Name)
SAN交换设备—交换机
FC交换机,内部为Fabric拓扑,每端口独占带宽,理论上可以连接1600万个设备

存储体系培训教材

存储体系培训教材
(1)内存储器通常等同于主存储器,但还有其他形式。处理器 需要自己的内存储器,它们以寄存器的形式存在,而且处理器的 控制器部分也需要自己的内存储器。内存储器主要用于存放当前 运行的程序和数据,与外存相比,其存储容量较小,但工作速度 较快。高速缓存(Cache)是另一种形式的内存储器。
(2)外存储器位于主机外部,主要用于存放当前不参加运行的 程序与数据。在需要时,可与内存以批处理的方式交换信息,其 特点是存储容量大,但速度较低,典型的外存储器有磁盘、磁带 等。
存储周期:连续启动两次独立的存储器操作 (如连续两次读操作)所需的最短时间间隔。 记为TM。
访问时间与存储周期之间的关系:
通常TM ≥ TA 。
18
7.1.3 存储器的主要技术指标
3. 传输率
传输率是数据传入或传出存储器的速率。
对于随机存储器,它等于“1/存储周期”。若
把存储器被连续访问时,可以提供的数据传送
若采用单译码线构,译码输出线为2n根。显然, 2n>2×2n/2(当正整数n>2时)。
采用双译码器结构的4096×1的存储单元矩阵如图7.3所 示。
26
7.2.2.1 存储器的组成
例:输入地址000000000000,在X方向,由 于A0~A5=000000,X1为高电平,译码选中 了第一行;在A6~A11=000000时,Y1为高电 平,译码选中第一列。它们交叉选中的是 第一行第一列存储单元(1,1),即最后 译码选中的是(1,1)号单元。见图7.3。
程序访问的局部性原理是理解存储体系的理论依据。
3
7.1 概论
7.1.1 存储器的功能 计算机的基本工作原理是将要解决的问题编制成
程序并将程序存储起来,然后再运行该程序。这 种方式是现代计算机的重要特征之一。 而存储器是实现存储程序必不可少的硬件支持, 是计算机中必须具有的重要部件。 显然,存储器的功能是存储信息,被存储的信息 包括程序信息和数据信息等。

寄存器与计数器最新课件

寄存器与计数器最新课件

H
×
× × ×××× L L L L
L
L
×
× ABCDA BCD
L
H
H ××××
加计数
L
H
H
××××
减计数
寄存器与计数器最新课件
49
6.4.2 集成同步非二进制计数器
其产品多以BCD码为主,下面以典型产品 74LS192为例讨论。
寄存器与计数器最新课件
50
寄存器与计数器最新课件
51
74LS192具有以下功能: (1) CLR=1时异步清零,它为高电平有效。 (2) CLR=0(异步清零无效)、LD=0时异步置数。 (3) CLR=0,LD=1(异步置数无效)且减法时钟 CPD=1时,则在加法时钟CPU上升沿作用下,计数 器按照8421BCD码进行递增计数:0000~1001。 (4) CLR=0,LD=1且加法时钟CPU=1时,则在减 法时钟CPD上升沿作用下,按照8421BCD码进行 递减计数:1001~0000。
6.1.1 寄存器
在数字电路中,用来存放二进制数据或代码的
电路称为寄存器 。
1
0
1
0
1
0
1
上述寄存器的寄存时间?
寄存器与计数器最新课件
0
1
集成寄存器74LS175
寄存器与计数器最新课件
2
74LS175真值表
课外查资料:了解集成寄存器74LS373与 74LS374。
寄存器与计数器最新课件
3
6.1.2 移位寄存器
进制);
寄存器与计数器最新课件
56
(4) 计数器为异步清零,R0(1)、R0(2)是清零输入端,且高电 平有效。
因此,74LS93实际上是一个二-八-十六进制异步加法 计数器,采用反馈清零法可构成小于十六的任意进制异步加 法计数器。

最新8寄存器与存储器 (2)

最新8寄存器与存储器 (2)

无效循环:译码器无法对八种状态译码,我们把这种循环称为 无效循环。因此,不允许寄存器工作在这种循环状态。
改进电路: 当n=4时,反馈逻辑表达式为。
D SR Q 3 Q 1 ,Q 3 Q 0 当n=8时,反馈逻辑表达式为。
D S Q R 7 Q 5 ห้องสมุดไป่ตู้Q 4 Q 3 , Q 7 Q 3 Q 2 Q 1
10 12
3 4
1 1 0
1
0 1 1
0
0 0 1
1
0 0 0
1
串入串出:前触发器输出端Q与后数据输入端D相连接。当时 钟到时,加至串行输入端DSR的数据送Q0,同时Q0的数据右移 至Q1,Q1的数据右移至Q2,以此类推。将数码1101右移串行输 入给寄存器共需要4个移位脉冲
Q3可串行输出从输入端DSR存入的数据,4个移位脉冲后收 到第一个数据,要全部输出共需8个移位脉冲。
2.集成数码锁存器74LS373
74LS373是—— 8位数据锁存器。
74LS373功能表
OC
输入
输出
CD
Q
01
1
1
01 00 1X
0
0
X Q0(被锁存状态)
X
Z(高阻态)
0C为三态控制端(低电平有效): 当 0C =1时,输出为高 阻态;当0C =0时,8个数据传送到输出端
C为锁存控制输入端(高电平有效):当C=0时,保持输入端 数据不变,当C=1时,接收输入端数据。
引脚及功能简介:
DSR: 右移串行数据输入端 DSL: 左移串行数据输入端 D0~D3:并行数据输入端 Q0~Q3: 数据输出端 CP :时钟输入端(上升沿有效) S0、S1: 工作方式控制端 RD : 数据清0输入端(低电平清0)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态存储单元(DRAM) 利用MOS管的栅极电容C存储电荷来储存信息,电容是会漏 电的,所以必须通过不停的给电容充电来维持信息,这个充电 的过程叫再生或刷新(REFRESH)。由于电容的充放电是需要
2020/10/8
相对较长的时间的,DRAM的速度要慢于SRAM。DRAM的一个存 储单元只需要一个晶体管和一个电容。因此,DRAM的成本、 集成度、功耗等明显优于SRAM。
2.集成数码锁存器74LS373 74LS373是——
8位数据锁存器。
2020/10/8
2020/10/8
三、移位寄存器
移位寄存器:存储数据,所存数据可在移位脉冲作用下
逐位左移或右移。即实现串入串出。
在数字电路系统中,由于运算(如:二进制的乘除法)的
需要,常常要求实现移位功能。
分类:单向移位、双向移位。
2020/10/8
2. 可编程分频器 可编程分频器:指 分频器的分频比可 以受程序控制。
2020/10/8
工作原理分析: 电路的结构特点:
两片74LS194的S1=1,
S0 2Q。0
若S1S0=10,则74LS194工作在左移位状态,
S1S0=11 ,则74LS194工作在并行置数状态。
74LS138的8个输出端接两 片74LS194的并行输入数据端。 由于74LS138的输出状态,由输入端ABC决定,故移位的数 据是可变化的。
字8数该根:R列3A2M选X存择8储=线矩2Y56阵0~Y共7。需要32根行选择线X0~X31和
存储器容量: (字数)×(位数)= 256×4
2020/10/8
2.RAM的存储单元 按结构不同可分为: 静态存储单元SRAM、动态存储单元DRAM 静态存储单元(SRAM)
利用CMOS构成的基本RS触发器来存储信息。保存的信息不易 丢失,可长期保存。典型的SRAM的存储单元需要六个晶体管 (三极管)构成。用于小容量、高速存储器。
人眼则无法辨认显示的字符。如:信号源频率显示器。
在计数器和译码器之间加入锁存 器,就可控制数据显示的时间。
2020/10/8
工作原理分析:
若锁存信号C=0时,数据被锁存,
译码显示电路稳定显示锁存的数据。
若锁存信号C=1时,显示值随数据
变化而变化,时实显示。
四、移位寄存器构成分频器 在数字系统中,常常需要获得不同频率的时钟或基准信号,其
2020/10/8
2020/10/8
8.1.2 移位寄存器的应用 一、移位寄存器构成序列脉冲发生器
序列信号:是在同步脉冲的作用下 按一定周期循环产生的一串二进制信 号。如:0111-----0111,每4位重复一 次,称为4位序列信号。
序列脉冲信号广泛用于数字设备 测试、通信和遥控中的识别信号或 基准信号等。
分频器的输出波形:
4分频波形
小结: 74LS138译码器地址输入端A2A1A0(CBA)的取值, 决定了分频比,将CBA代表的二进制数转换成十进制数再加1,
即为分频系数。 思考: 若ABC=000,001、---111分别是多少分频器?
2020/10/8
作业题
6.4、6.5、6.6
2020/10/8
2020/10/8
存储器信息(字)位置的确定:
列线

线

当给定行和列的地址时,行和列的地址译码器分别选中 相应的行线和列线,这两种输出线(行与列)的交点处的存储 单元便被选中(注:选中的存储器可能是一位也可能是多位)。
2020/10/8
存储器的容量计算:
8根列线
32



线
32行×32列矩阵
存储器有32条行线、8条列线;
思考:下列两个序列信号的形式.
(1)
(2)
2020/10/8
二、移位寄存构成计数器 工作原理分析:
电路清零以后,在连续脉冲的
作用下,数据右移,Q3Q2Q1Q0的
数据依次为:
0000→0001→0011→0111


1000←1100←1110←1111
有8种不同的状态输出。如果译码器将这8种状态译成0~7共8
进制数码;N个触发器可以存放N 位二进制数码。
8.1.1 寄存器的结构、原理
一、基本寄存器 仅有并入、并出存取数据功能的寄存器。
1. 组成: N个D触发器构成。
2020/10/8
输出端
控制时钟
脉冲端输入 0
1
0
1
0
1
0
1
2.工作原理
数码输入端
CP不为上升沿时 , R D =1,寄存器输出保持不变 CP 上升沿时,且 R D =1,输入端D0-D3送寄存器。
串入串出:原理与前述相同,略。
2020/10/8
3. 集成双向移位寄存器——74LS194 74LS194是四位双向移位寄存器。
引脚及功能简介:
DSR: 右移串行数据输入端 DSL: 左移串行数据输入端 D0~D3:并行数据输入端 Q0~Q3: 数据输出端 CP :时钟输入端(上升沿有效) S0、S1: 工作方式控制端 RD : 数据清0输入端(低电平清0)
移位寄存器组成的8位序列信号发生器,序列信号为: 00001111
2020/10/8
2020/10/8
2020/10/8
产生序列信号的关键:是 从移位寄存器的输出端引出一 个反馈信号送至串行输入端, 反馈电路由组合逻辑门电路构
成。n 位移位寄存器构成的序
列信号发生器产生的序列信号
的最大长度P=2n。
1.单向移位寄存器
(1)右移位寄存器
串行 数据 输入
清零端
2020/10/8
同步移位时 钟输入端
工作过程:
假设要传送数据1011。
10 12
3 4
1 1 0
1
0 1 1
0
0 0 1
1
0 0 0
1
串入串出:前触发器输出端Q与后数据输入端D相连接。当时 钟到时,加至串行输入端DSR的数据送Q0,同时Q0的数据右移 至Q1,Q1的数据右移至Q2,以此类推。将数码1101右移串行输 入给寄存器共需要4个移位脉冲
个数字,则,上述电路就构成8进制计数器。注:此处译码器
不是LED管显示译码器。
计数前,如果不清零,由于随机性,随着计数脉冲的到来, Q3Q2Q1Q0 的状态可能进入如下的无效循环: 0100→1001→0010→0101→ 1011→0110→1101→1010
2020/10/8
无效循环:译码器无法对八种状态译码,我们把这种循环称为 无效循环。因此,不允许寄存器工作在这种循环状态。
2020/10/8
基本概念
寄存器; 移位寄存器; 序列信号; 随机存取存储器; 只读存储器。
2020/10/8
寄存器与存储器的区别:
寄存器:用于暂时存储二进制数据或代码的电路。 存储器:用于长期存储大量二进数据或代码的电路。集成很 高。
2020/10/8
8.1 寄存器及应用
寄存器:用于暂时存储二进制数据与代码的电路。 分 类:基本寄存器、移位寄存器。 组 成:触发器和门电路。一个触发器能存放一位二
方法一般是对系统主时钟信号进行分频。在计数器一章中,我们已
讨论了利用计数器实现n分频。既然寄存器可以构成计数器,利用移
位寄存器也可以实现分频,分频器有固定分频和可编程分频。 1. 固定比分频器
从序列信号发生器的Q3的输出波形,不难发现,Q3 波形的频
率恰为时钟波形频率的1/8。显然采用不同的反馈逻辑,可以构成 不同的固定比分频器。
8.2
8.2.1 存储器的概述
存储器
1.存储器:用于长期存储大量数据、资料及运算程序等二进 信息的单元。
2.发 展:
穿孔卡片 纸带 磁芯存储器
半导体存储器
半导体存储器的优点:容量大、体积小、功耗低、存取速 度 快、使用寿命长等。
寄存器与存储器的区别: 寄存器:用于暂时存储二进制数据或代码的电路。 存储器:用于长期存储大量二进数据或代码的电路。集成很高。
项目八 寄存器与 存储器及应用
8.1 寄存器 8. 2 存储器 8.3 寄存器与存储器例表 本章小结
2020/10/8
主要内容
寄存器的功能、分类、结构、工作原理; 存储器的功能、分类、结构、工作原理; 寄存器、存储器的应用。
主要技能
寄存器与存储器的正确使用技能和功能测试技能; 熟练应用寄存器和存储器构成具特定功能的逻辑电路; 能完成电路的安装与功能调试。
2020/10/8
第二步:进行读写操作 如果此时读写控制电路有相应的有效信号,则实现对选中 存储单元的信息进行读写操作。
二、各组成的结构与工作原理 1. 存储矩阵
用于存储信息的主体电路。它由若干存储单元以矩阵的形 式构成。有若干行和若干列。
如:存储容量为256X4=1K的存储器,它由1024个存储单元以32 行和32 列矩阵的形式构成的。它的一个字由4位二进制数组成。
2020/10/8
3.存储器的分类: 按照内部信息的存取方式可分为:
随机存取存储器RAM:存放临时性的数据或中间结果。 只读存储器ROM:存放永久性的、不变的数据。
随机存取存储器RAM按硬件结构可分为: 静态存储器(SRAM) 动态存储器(DRAM) 只读存储器ROM按数据输入方式可分为: 掩膜式存储器(ROM) 可编程存储器(PROM) 可擦除存储器(EPROM)
2020/10/8
4.基本概念: 存储单元:存储一位二进制数的最小电路; 字:构成二进制信息的最小集合(1、2、4、 8、16); 存储容量:存储二进制数的总量,单位:K(210=1024)。
2020/10/8
8.2.2 随机存取存储器RAM
相关文档
最新文档