北师大版初二数学下册3.三角形的中位线
三角形的中位线教学课件--北师大版初中数学八年级(下)

理,找到四边形EFGH的边之间的关系.而四边形ABCD的
对角线可以把四边形分成两个三角形,所以添加辅助线,
连结AC或BD,构造“三角形的中位线”的基本图形.
课堂小结
1、三角形中位线的定义
2、三角形中位线定理 三角形的中位线平行于第三边,并且等于第三 边的一半
3、会利用三角形中位线定理解决一些实际 问题
D
E
F
B
DE和边BC关系
C
位置关系: DE∥BC
数量关系: DE= 1 BC. 2
知识讲授
知识讲授
2.三角形的中位线定理
定理:三角形的中位线平行于第三边,
并且等于它的一半.
∵AD=DB,AE=EC
A
符号语言:∴DE∥BC,
D
E
1
DE= BC
2
B
C
知识讲授
已 求知 证::DDEE∥是B△CA,BCD的E=中12位B线C
随堂训练
随堂训练
1.如图,E是平行四边形ABCD的AB边上的中
点, 且AD=10cm,那么OE= 5 cm.
2.三角形的周长为18cm,面积为48cm2 ,这 个三角形的三条中位线围成三角形的周长
是 9cm ,面积是 12cm2 .
思考:
①图中有几个平行四边形? ②图中有几个三角形?它们有什么关系?
A
A
10
D
E5 O
D
E C
B
C
BF
随堂训练
D B
D
A
3.三角形的中位线__平__行_于__第三边,并 且__等__于__第三边的____一__半______
E 4.如图:在△ABC中,DE是中位 线。 C (1)若∠ADE=60°,则∠B= 60° ;
北师大版八年级下册数学三角形的中位线课件

∴DB EF
∴四边形DBFE是平行四边形
∴DE∥BF,即DE∥BC,DE=BF=FC
即DE=1/2BC
4 自检互评
A 1、如图,在△ABC中,D、E、F分别是
AB、AC、BC的中点:
D
E
①若∠ADE=65°,则∠B=65度。
②若BC=8cm,则DE4= cm。
B
F
C ③ 则△若DACEF=4的c周m,长BC==_6_c_9m_c_,_AB=8cm,
m
④若△ABC的周长为24,△DEF的周长是_1_2___
⑤若△ABC的面积为24,△DEF的面积是_6____
2、思考:(1)三角形三条中位线围成的三角 形和原三角形的周长有什么联系?
(2)三角形三条中位线围成的三角形和
原三角形的面积有什么联系?
A
A1
C1
B
B1
C
小三角形的周长等于△ABC周长的一半;
1 复习引入
在三角形中,连结一个顶点和它的对边中
点的线段叫做 三角形的中线。
D它E就称是三我角们这 节形课的要做学什习么的呢三?角 形的中位线。
中点 D
A E中点
顶点 B
C顶点
§6.3三角形的中位线
2 自主学习
阅读教材151页,解决相应问题并思考下列问题:
1、三角形的中位线与底边有什么位置关系?
DE=1 BC. 数量关系 B
C
2
已知:如图6-20(1),DE是△ABC的中位线. 求证:DE∥BC,DE=1/2BC
证明:如图6-20(2),延长DE到F,使
DE=EF,连接CF.
在△ADE和△CFE中
∵AE=CE,∠1=∠2,DE=FE
初中数学北师大版八年级下册第六章 平行四边形3.三角形的中位线-章节测试习题(3)

章节测试题1.【答题】如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点.连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A. 2B. 3C. 4D. 5【答案】B【分析】本题考查三角形的中位线.【解答】∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∵BC=14,∴DE BC=7,∵∠AFB=90°,AB=8,∴DF AB=4,∴EF=DE﹣DF=7﹣4=3,选B.2.【答题】如图,在四边形ABCD中,P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠EPF=140°,则∠EFP的度数是()A. 50°B. 40°C. 30°D. 20°【答案】D【分析】本题考查三角形的中位线.【解答】∵P是BD的中点,E是AB的中点,∴PE是△ABD的中位线,∴PE AD,同理,PF BC,∵AD=BC,∴PE=PF,∴∠EFP(180°﹣∠EPF)(180°﹣140°)=20°,选D.3.【答题】如图,在△ABF中,点C在中位线DE上,且CE CD,连接AC,BC,∠ACB=90°,若BF=20,则AB的长为()A. 10B. 12C. 14D. 16【答案】D【分析】本题考查三角形的中位线.【解答】∵DE是△ABC的中位线,BF=20,∴DE BF=10,∵CE CD,∴CD DE=8,∵∠ACB=90°,∴AB=2CD=16,选D.4.【答题】如图,△ABC中,N是BC边上的中点,AM平分∠BAC,BM⊥AM于点M,若AB=8,MN=2.则AC的长为()A. 10B. 11C. 12D. 13【答案】C【分析】本题考查三角形的中位线.【解答】延长BM交AC于D,如图所示:∵BM⊥AM于点M,∴∠AMB=∠AMD=90°,∵AM平分∠BAC,∴∠BAM=∠DAM,在△BAM和△DAM中,,∴△BAM≌△DAM(ASA).∴AD=AB=8,BM=MD,∵N是BC边上的中点,∴MN为△BCD的中位线,∴DC=2MN=4,∴AC=AD+DC=8+4=12.选C.5.【答题】如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为()A. 2B. 5C. 4D. 10【答案】A【分析】本题考查三角形的中位线.【解答】如图,过A作AH⊥BC于H.∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE BC,∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF AH,∵△DFE的面积为1,∴DE•DF=1,∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE AC,∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴BC.选A.6.【答题】如图,∠MAN=90°,点C在边AM上,AC=2,点B为边AN上一动点,连接BC,△A'BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A'B于点F,连接A'E.当△A'EF为直角三角形时,AB的长为______.【答案】或2【分析】本题考查三角形的中位线.【解答】当△A'EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图,∵△A'BC与△ABC关于BC所在直线对称,∴A'C=AC=2,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴DE是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=2,在Rt△A'CB中,E是斜边BC的中点,∴BC=2AE'=4,由勾股定理可得AB2=BC2﹣AC2,∴AB;②当∠A'FE=90°时,如图,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A'BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC为等腰直角三角形,∴AB=AC=2.综上,AB的长为或2.故答案为或2.7.【答题】如图,在△ABC中,M,N分别是AB和AC的中点,连接MN,点E是CN的中点,连接ME并延长,交BC的延长线于点D.若BC=4,则CD的长为______.【答案】2【分析】本题考查三角形的中位线.【解答】∵M,N分别是AB和AC的中点,∴MN是△ABC的中位线,∴MN BC=2,MN∥BC,∴∠NME=∠D,∠MNE=∠DCE,∵点E是CN的中点,∴NE=CE,∴△MNE≌△DCE(AAS),∴CD=MN=2.故答案为2.8.【答题】如图,△ABC的周长为16,D,E,F分别为AB,BC,AC的中点,M,N,P分别为DE,EF,DF的中点,则△MNP的周长为______.如果△ABC,△DEF,△MNP分别为第1个,第2个,第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是______.【答案】4;【分析】本题考查三角形的中位线.【解答】∵△ABC的周长为16,D、F、E分别为AB、AC、BC的中点,∴EF、DF、DE为三角形中位线,∴EF AB,DE AC,DF BC,∴EF+DE+DF(AB+AC+BC),即△DEF的周长是△ABC周长的一半,同理,△MNP的周长是△DEF的周长的一半,即△MNP的周长=△ABC的周长的16=4,以此类推,第n个小三角形的周长是第一个三角形周长的16=,故答案为4;.9.【题文】如图,在△ABC中,AB=AC,点D是边AB的点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.【答案】(1)见解答;(2)当∠A=90°时,FG⊥FH.理由见解答. 【分析】本题考查三角形的中位线.【解答】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG BD,FH CE,∴FG=FH;(2)解:如图,延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.10.【题文】如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【答案】(1)见解答;(2)2.【分析】本题考查三角形的中位线.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA),∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF CD(AC﹣AD)(AC﹣AB);(2)解:如图,分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AED(ASA),∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF CH(AH﹣AC)=2.11.【答题】如图,在中,,分别是,的中点,,是上一点,连接,,.若,则的长度为()A. B. C. D.【答案】B【分析】本题考查的是三角形中位线定理和直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.根据直角三角形的性质求出FE,根据三角形中位线定理计算即可.【解答】,,,;,分别是,的中点,为的中位线,,选B.12.【答题】如图,的周长为,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,若,则的长为()A. B. C. D.【答案】C【分析】本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为32,及BC=12,可得DE=8,利用中位线定理可求出PQ.【解答】平分,,.,,,,同理,点是的中点,点是中点(三线合一),是的中位线,,,.选C.13.【答题】如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A. 50°B. 25°C. 15°D. 20°【答案】B【分析】本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【解答】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM AB,PN DC,PM∥AB,PN∥DC.∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN25°.选B.14.【答题】已知,四边形ABCD中,AB=2,CD=3,M、N分别是AD,BC的中点,则线段MN的取值范围是()A. 1<MN<5B. 1<MN≤5C. <MN<D. <MN≤【答案】D【分析】本题考查了三角形的中位线,解答此题的关键是根据题意作出辅助线,利用三角形的中位线定理和三角形的三边关系求解.当AB∥CD时,MN最短,利用中位线定理可得MN的最长值,作出辅助线,利用三角形中位线及三边关系可得MN的其他取值范围.【解答】连接BD,过M作MG∥AB,连接NG.∵M是边AD的中点,AB=2,MG∥AB,∴MG是△ABD的中位线,BG=GD,MG=AB=×2=1;∵N是BC的中点,BG=GD,CD=3,∴NG是△BCD的中位线,NG=CD=×3=,在△MNG中,由三角形三边关系可知MG-NG<MN<MG+NG,即-1<MN<+1,∴<MN<,当MN=MG+NG,即MN=时,四边形ABCD是梯形,故线段MN长的取值范围是<MN≤.选D.15.【答题】如图,点、、分别是的边、、的中点,连接、、得,如果的周长是,那么的周长是()A. B. C. D.【答案】B【分析】本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.由于D、E分别是AB、BC中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.【解答】、分别是的边、的中点,,同理,,.选B.16.【答题】如图,中,是的中点,平分,于点,若,,则等于()A. B. C. D.【答案】C【分析】本题考查的是三角形中位线定理、全等三角形的判定和性质,三角形的中位线平行于第三边,且等于第三边的一半.延长BD交AC于H,证明△ADB≌△ADH,根据全等三角形的性质得到AH=AB=12,BD=DH,求出HC,根据三角形中位线定理计算即可.【解答】延长交于,平分,,,,,是中点,,,选C.17.【答题】如图,在四边形中,,,,分别是,,的中点,若,,则等于()A. B. C. D.【答案】A【分析】本题考查了三角形中位线定理和等腰三角形的判定与性质.中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.根据三角形中位线定理和等腰三角形等边对等角的性质求解即可.【解答】,,,分别是,,中点,是的中位线,是的中位线,,,,.又,,,,,,.选A.18.【答题】已知△ABC的周长为1,连接其三边中点构成第二个三角形,再连接第二个三角形的中点构成第三个三角形,以此类推,则第2012个三角形的周长为()A. B. C. D.【答案】C【分析】本题考查相似三角形的性质.【解答】∵连接△ABC三边中点构成第二个三角形,∴新三角形的三边与原三角形的三边的比值为1:2,∴它们相似,且相似比为1:2,同理:第三个三角形与第二个三角形的相似比为1:2,即第三个三角形与第一个三角形的相似比为1:22,以此类推:第2012个三角形与原三角形的相似比为1:22011,∵周长为1,∴第2012个三角形的周长为1:22011.选C.19.【答题】如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A. 3cmB. 6cmC. 9cmD. 12cm【答案】B【分析】本题考查三角形的中位线.【解答】∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm),选B.20.【答题】如图,在中,,分别是,的中点,是线段上一点,连接,,若,,,则的长为______.【答案】18【分析】本题考查是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【解答】,点是的中点,,,,、分别是,的中点,,故答案为.。
最新北师大版数学八年级下册《三角形的中位线》优质教学课件

证明:如图,连接CD,取CD中点M,连接ME、MF.
∵在△ADC中,M、F分别为CD、AD中点,
A
∴MF∥AC,MF= AC,
F
D
又∵在△BDC中,E、M分别为CB、CD中点,
M
∴EM∥BD,EM= BD,
B
∵ EM∥AB, MF∥AC ,
E
C
∴∠GFA=∠FEM,∠G=∠EFM
∵ AF=AG
猜想: 关系
位置
DE∥BC
D
A
E
数量
B
追问:如何证明?
C
探索新知
已知:在三角形ABC中,D,E分别为AB,AC边上的中点.
求证:DE∥BC,
.
中位线
A
倍长
构造全等
三角形
平行四边形
D
B
E
F
C
探索新知
已知:在三角形ABC中,D,E分别为AB,AC边上的中点.
求证:DE∥BC,
.
证明:如图,延长DE到F,使EF=DE,连接CF.
C
情景引入
问题:请问你们是如何进行分割的?分割线段是怎样形成的?面积
相等的理由是什么?
A
A
E
D
B
D
E
F
方案一
C
B
A
F
D
C
方案二
追问3:如何说明方案三中四个三角形全等?
B
E
F
方案三
C
探索新知
中位线概念:连接三角形两边中的线段叫做三角形的中位线.
问题:根据刚才的操作你能发现中位线与底边有关系?
即中位线DE和第三边BC之间有怎么样的关系?
北师大数学八年级下册第六章-三角形的中位线经典讲义

第02讲_三角形的中位线知识图谱三角形的中位线知识精讲一.三角形的中位线三角形中位线定义 连接三角形两边中点的线段 叫做三角形的中位线性质DE ∥BC , 12DE BC =如图,在△ABC 中,D 、E 分别是AB 、AC 边的中点,则线段DE 是△ABC 的中位线.求证:DE ∥BC , 12DE BC =证明过程:延长DE 到F ,使EF = DE ,连接 FC 、DC 、AF 1)证明四边形ADCF 是平行四边形 2)证明四边形BCFD 是平行四边形∴DE// BC 且DE=EF=12BC 2.任意两点的中点坐标公式:平面直角坐标系内的任意两点()11A x y , ,()22B x y ,,线段AB 的中点C 的坐标为121222x xy y ++⎛⎫ ⎪⎝⎭,.ABCD EABCDEF出现两个中点,无三角形→构造三角形如图,四边形ABCD 中,点E 、F 、G 、H分别为四边中点连接对角线AC 、BD ,则HG 为△ADC的中位线,HG ∥AC 且HG =12AC 。
最后可证四边形HEFG 为平行四边形三.易错点(1)注意中线与中位线的区分 (2)中位线的辅助线构造三点剖析一.考点:1.中位线定理.二.重难点: 构造中位线,解决相关的角度线段问题.三.易错点:中线与中位线的区别.中位线定理例题1、 如图,▱ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3cm ,则AB 的长为( )A.3 cmB.6 cmC.9 cmD.12 cm【答案】 B【解析】 解:∵四边形ABCD 是平行四边形, ∴OA=OC ;又∵点E 是BC 的中点, ∴BE=CE ,∴AB=2OE=2×3=6(cm ) 故选:B .例题2、 如图,在Rt △ABC 中,△A=30°,BC=1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为( )A.1B.2C.D.1+【答案】 A【解析】 如图,△在Rt △ABC 中,△C=90°,△A=30°, △AB=2BC=2.又△点D 、E 分别是AC 、BC 的中点, △DE 是△ACB 的中位线, △DE=AB=1.例题3、 如图,在Rt △ABC 中,∠B =90°,AB =5,BC =12,点D 在BC 上,以AC 为对角线的所有平行四边形ADCEH GFEA BCD中,DE 的最小值是( )A.5B.6C.12D.13【答案】 A【解析】 ∵在Rt △ABC 中,∠B =90°, ∴BC ⊥AB .∵四边形ADCE 是平行四边形, ∴OD =OE ,OA =OC .∴当OD 取最小值时,DE 线段最短,此时OD ⊥BC . ∴OD 是△ABC 的中位线,∴12.52OD AB ==,∴ED =2OD =5.例题4、 已知:如图,△ABC 中,∠ACB=90°,点D 、E 分别是AC 、AB 的中点,点F 在BC 的延长线上,且CF=DE ,求证:∠CDF=∠A .【答案】 见解析【解析】 证明:∵D 、E 分别是AC 、AB 的中点, ∴DE ∥BC ,∵点F 在BC 的延长线上, ∴DE ∥CF , ∵DE=CF ,∴四边形CEDF 为平行四边形, ∴DF ∥CE ,∴∠CDF=∠ECA ,∵∠ACB=90°,E 为AB 的中点, ∴CE=21AB=AE , ∴∠A=∠DCE , ∴∠CDF=∠A .例题5、 (1)如图1,在四边形ABCD 中,E 、F 分别是AD 、BC 的中点,连接EF 并延长,分别与BA 、CD 的延长线交于点M 、N ,则BME CNE ∠=∠,求证:AB CD =.(提示取BD 的中点H ,连接FH ,HE 作辅助线) (2)如图2,在ABC ∆中,且O 是BC 边的中点,D 是AC 边上一点,E 是AD 的中点,直线OE 交BA 的延长线于点G ,若5AB DC ==,60OEC ∠=︒,求OE 的长度.【答案】 (1)见解析(2)52【解析】 连结BD ,取DB 的中点H ,连结EH 、FH . E 、F 分别是AD 、BC 的中点,∴EH AB ∥,12EH AB =,FH CD ∥,12FH CD =BME CNE ∠=∠,∴HE HF =, ∴AB CD =;(2)解:连结BD ,取DB 的中点H ,连结EH 、OH , AB CD =,∴HO HE =,∴HOE HEO ∠=∠,60OEC ∠=︒,∴60HEO AGO ∠=∠=︒, ∴OEH ∆是等边三角形, 5AB DC ==∴52OE =随练1、 一个三角形的周长是36,则以这个三角形各边中点为顶点的三角形的周长是( ) A.6 B.12 C.18 D.36 【答案】 C【解析】 根据题意,画出图形如图示, 点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE=12BC ,DF=12AC ,EF=12AB ,∵AB+CB+AC=36,∴DE+DF+FE=36÷2=18. 故选C .随练2、 如图,△ABC 中,已知AB=8,△C=90°,△A=30°,DE 是中位线,则DE 的长为( )A.4B.3C.D.2【答案】 D【解析】 △△C=90°,△A=30°, △BC=AB=4, 又△DE 是中位线, △DE=BC=2.故选D .随练3、 如图,已知ABC △是锐角三角形,分别以AB 、AC 为边向外侧作两个等边三角形ABM △和CAN △,D 、E 、F 分别MB 、BC 、CN 的中点,连结DE 、FE ,求证:DE EF =.【答案】 证明见解析【解析】 连接MC 、BN ,ABM ∵△和CAN △是等边三角形,60BAM CAN ∠=∠=︒∴,MA BA =,AN AC =, BAM BAC CAN BAC ∠+∠=∠+∠∴, 即MAC BAN ∠=∠, 在MAC △与BAN △中 MA BA MAC BAN AN AC =⎧⎪∠=∠⎨⎪=⎩, MAC BAN ∴△≌△, MC NB =∴,D ∵、E 、F 分别是MB 、BC 、CN 的中点,12DE MC =∴,12EF BN =,DE EF =∴.随练4、 如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN .若AB=14,AC=19,则MN 的长度为__________.【答案】 2.5【解析】 延长BN 交AC 于D ,∵AN ⊥BN ,AN 平分∠BAC ,∴AN 是BD 的垂直平分线,∵点M 是BC 的中点,∴MN 是△BCD 的中位线,111 2.5222MN CD AC AD AC AB ==-=-=()() 随练5、 已知,如图,四边形ABCD 中AD BC =,E 、F 分别是AB 、CD 的中点,延长AD 、EF 和BC 的延长线分别交于M 、N 两点,求证:AME BNE ∠=∠.ABCMN ABC D EFMNNMFD C BA【选项】【答案】见解析【解析】证明:连接BD,取BD的中点G,连接EG、FGE、F、G分别是AB、CD、BD的中点//FG BC∴,//EG AD且1=2FG BC,1=2EG ADAME FEG∴∠=∠,BNE GFE∠=∠AD BC=FG EG∴=FEG EFG∴∠=∠AME BNE∴∠=∠.拓展1、如图,在△ABC中,从A点向∠ACB的角平分线作垂线,垂足为D,E是AB的中点,已知AC=4,BC=6,则DE的长为()A.1B.43C.32D.2【答案】A【解析】如图,延长AD交BC于F,∵CD是∠ACB的角平分线,CD⊥AD,∴AD=DF,AC=CF,(等腰三角形三线合一),又∵E是AB的中点,∴DE是△ABF的中位线,∴12DE BF=,∵AC=4,BC=6,∴BF=BC-CF=6-4=2,∴1212DE=⨯=.2、如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A.2B.3C.52D.4【答案】 B【解析】 在△ABC 中,D 、E 分别是BC 、AC 的中点 ∴DE ∥AB∴∠EDC=∠ABC ∵BF 平分∠ABC ∴∠EDC=2∠FBD在△BDF 中,∠EDC=∠FBD+∠BFD ∴∠DBF=∠DFB∴FD=BD=12BC=12×6=3.3、 如图,已知△ABC 中,AB =10,AC =8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD =________.【答案】 5【解析】 ∵AB =10,AC =8,BC =6, ∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形, ∵DE 是AC 的垂直平分线,∴AE =EC =4,DE ∥BC ,且线段DE 是△ABC 的中位线, ∴DE =3, ∴225AD DC AE DE ==+=.4、 如图,点A ,B 为定点,定直线l △AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值: ①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤△APB 的大小. 其中会随点P 的移动而变化的是( )A.②③B.②⑤C.①③④D.④⑤【答案】 B【解析】 △点A ,B 为定点,点M ,N 分别为PA ,PB 的中点, △MN 是△PAB 的中位线, △MN=AB ,即线段MN 的长度不变,故①错误; PA 、PB 的长度随点P 的移动而变化,所以,△PAB 的周长会随点P 的移动而变化,故②正确;△MN 的长度不变,点P 到MN 的距离等于l 与AB 的距离的一半, △△PMN 的面积不变,故③错误;直线MN ,AB 之间的距离不随点P 的移动而变化,故④错误; △APB 的大小点P 的移动而变化,故⑤正确. 综上所述,会随点P 的移动而变化的是②⑤. 故选:B5、 如图,分别以Rt △ABC 的直角边AC 及斜边AB 为边向外作等边△ACD 、等边△ABE ,EF ⊥AB ,垂足为F ,连接DF ,当ACAB=______时,四边形ADFE 是平行四边形.【答案】32【解析】 当ACAB =32时,四边形ADFE 是平行四边形.理由:∵ACAB =32,∴∠CAB=30°,∵△ABE 为等边三角形,EF ⊥AB ,∴EF 为∠BEA 的平分线,∠AEB=60°,AE=AB , ∴∠FEA=30°,又∠BAC=30°, ∴∠FEA=∠BAC , 在△ABC 和△EAF 中, ACB EFA BAC AEF AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△EAF (AAS ); ∵∠BAC=30°,∠DAC=60°, ∴∠DAB=90°,即DA ⊥AB , ∵EF ⊥AB , ∴AD ∥EF ,∵△ABC ≌△EAF , ∴EF=AC=AD ,∴四边形ADFE 是平行四边形6、 如图所示,在梯形ABCD 中,AD BC ∥,AD BC <,F ,E 分别是对角线AC ,BD 的中点.求证:()12EF BC AD =-【答案】 见解析【解析】 如图所示,连接AE 并延长,交BC 于点G . AD BC ∥,∴ADE GBE ∠=∠,EAD EGB ∠=∠,又E 为BD 中点,∴AED GEB ∆∆≌.∴BG AD =,AE EG =. 在AGC ∆中,F ,E 分别是对角线AC ,BD 的中点∴F 、E 是AGC ∆的为中位线,∴EF BC ∥,()()111222EF GC BC BG BC AD ==-=-,即()12EF BC AD =-。
北师大版八年级数学下册第六章《3 三角形的中位线》优课件4

You made my day!
我们,还在路上……
练习
1、填空题: ①顺次连结平行四边形四边中点所得的四 边形是—平——行—四—边——形—. ②顺次连结等腰梯形四边中点所得的四 边形是——菱——形——. ③顺次连结矩形四边中点所得的四边形 是——菱——形——. ④顺次连结菱形四边中点所得的四边形 是——矩——形——. ⑤顺次连结正方形四边中点所得的四边形 是———正—方—形 .
2
实问:?
❖A、B两点被池塘隔开,如何 才能知道它们之间的距离呢?
A
A
D
E
BB
C
4、巩固练习
Hale Waihona Puke 实问:?A、B两点被池塘隔开,如何
才能知道它们之间的距离呢?
在AB外选一点C,连结AC和BC,并分别找出
AC和BC的中点M、N,如果测得MN = 20m,
那么A、B两点的距离是多少?为什么?
答:A、B两点的距离是
A
40m.因为MN是△ABC
的中位线,利用三角形 M
中位线定理得MN等于
AB的一半,所以AB为
MN的2倍,等于40Cm.
B N
求证:顺次连结四边形四条边的中点,所得的四边形
是平行四边形.
已知:在四边形ABCD中,E.F.G.H 分别是AB、BC、CD、DA的中
求证点:.四边形EFGH是平行四边形 E
E'
E
∵D为AB边上的中点
∴边E的’是中AC点的与中另点一(边经平过行三的角直形线一必平B分第三F边)C
所以DE’与DE重合,因此DE∥BC
同样过D作DF∥AC,交BC于F
∴边B平F=行F的C=直12线B必C平(经分过第三三角边形) 一边的中点与另一
三角形中位线讲义2023-2024学年北师大版八年级数学下册

三角形中位线讲义【要点梳理】要点一、三角形的中位线1.定义:连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.特别说明:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系.(2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的,每个小三角形的面积为原三角形面积的. (3)三角形的中位线不同于三角形的中线.要点二、中点三角形 定义:中点三角形就是把一个三角形的三边中点顺次连接起来的一个新三角形.性质:(1)这个新三角形的各个边长分别是原来三角形三边长的一半且分别平行,角的度数与原三角形分别相等,4个三角形都全等(2)中点三角形周长是原三角形的周长一半。
(3)中点三角形面积是原三角形面积的四分之一。
补充:中点三角形与原三角形不仅相似,而且位似。
要点三、中点四边形 定义:依次连接任意四边形各边中点所得的四边形称为中点四边形。
中点四边形的形状与原四边形的对角线的数量和位置关系有关。
性质(1)不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
题型一:与三角形中位线有关的线段求解问题【例1】如图,ABCD 中,对角线AC 、BD 相交于点O ,点 E , F ,G ,H 分别是OA 、OB 、OC 、OD 的中点,顺次连接EFGH .(1)求证:四边形EFGH 是平行四边形(2)若ABCD 的周长为2(AB +BC )=32,则四边形EFGH 的周长为__________【解答】 (1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD , ∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,∴1111,,,2222OE OA OF OB OG OC OH OD ====, ∴OE =OG ,OF =OH ,1214∴四边形EFGH 是平行四边形;(2)∵点 E 、 F 、G 、H 分别是OA 、OB 、OC 、OD 的中点, ∴11,22EF AB FG BC ==, ∴()12EF FG AB BC +=+ , ∵ABCD 的周长为2(AB +BC )=32,∴16AB BC += ,∴8EF FG += ,由(1)知:四边形EFGH 是平行四边形, ∴四边形EFGH 的周长为()22816EF FG +=⨯= .【变式1-1】如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D .(1)若DE ∥AB 交AC 于点E ,证明:△ADE 是等腰三角形;(2)若BC =12,DE =5,且E 为AC 中点,求AD 的值.【解答】 (1)证明:∵在△ABC 中,AB =AC ,∴△ABC 为等腰三角形,∵AD ⊥BC 于点D ,∴由“三线合一”知:∠BAD=∠CAD ,∵DE ∥AB 交AC 于点E ,∴∠BAD=∠ADE ,∴∠CAD=∠ADE ,即:∠ADE=∠EAD ,∴AE=DE ,∴△ADE 是等腰三角形;(2)解:由“三线合一”知:BD=CD ,∵BC=12,∴DC=6,∵E 为AC 中点,∴DE 为△ABC 的中位线,∴AB=2DE ,∴AC=AB=2DE=10,在Rt △ADC 中,22221068AD AC DC =−−=,∴AD=8.【变式1-2】如图,四边形ABCD 中,∠A =90°,AB =12,AD =5,点M 、N 分别为线段BC 、AB 上的动点(含端点,但点M 不与点B 重合),点E 、F 分别为DM 、MN 的中点,则EF 长度的可能为( )A .2B .5C .7D .9 【解答】解:连接DN ,∵ED =EM ,MF =FN ,∴EF =12DN ,∴DN 最大时,EF 最大,DN 最小时,EF 最小,∵N 与B 重合时DN 最大,此时DN =DB =√AD 2+BD 2=√52+122=13,∴EF 的最大值为6.5.∵∠A =90°,AD =5,∴DN ≥5,∴EF ≥2.5,∴EF 长度的可能为5;故选:B .【变式1-3】如图,在△ABC 中,AB =CB =6,BD ⊥AC 于点D ,F 在BC 上且BF =2,连接AF ,E 为AF 的中点,连接DE ,则DE 的长为( )A .1B .2C .3D .4【解答】解:∵CB =6,BF =2,∴FC =6﹣2=4,∵BA =BC ,BD ⊥AC ,∴AD =DC ,∵AE =EF ,∴DE 是△AFC 的中位线,∴DE =12FC =12×4=2,故选:B . 题型二、与三角形中位线有关的面积问题【例2】如图,在ABC 中,D ,E 分别为AB ,AC 的中点,延长BC 至点F ,使12CF BC =,连接CD 和EF .(1)求证:四边形DCFE 是平行四边形.(2)若四边形DCFE 的面积为4,求ABC 的面积.【解答】()1证明:∵D ,E 分别为AB ,AC 的中点,∴DE 为ABC 的中位线,∴//DE BC ,12DE BC =. ∵12CF BC =,∴DE CF =.∵//DE CF , ∴四边形DCFE 是平行四边形; ()2解:∵四边形DCFE 是平行四边形,∴DEC 的面积ECF =的面积2=.∵E 是AC 的中点,∴ADE 的面积DEC =的面积2=.∵D 是AB 的中点,∴BDC 的面积ADC =的面积4=,∴ABC 的面积4228=++=.【变式2-1】如图1,在四边形ABCD 中,E 、F 、G 、H 分别是AD 、BC 、BD 、AC 的中点. (1)求证:四边形EGFH 是平行四边形;(2)如图2,延长BA 、CD 相交于点P ,连接PG 、PH 、GH ,若1PGH S =△,求四边形ABCD 的面积.【解答】 证明:(1),E G 分别是,AD BD 的中点,1,//2EG AB EG AB ∴=,同理可得:1,//2FH AB FH AB =, ,//EG FH EG FH ∴=,∴四边形EGFH 是平行四边形;(2)如图,连接,,,PE AG BH DH ,,E G 分别是,AD BD 的中点,//EG AB ∴,AEG PEG S S ∴=(同底等高),同理可得:DEH PEH S S =,1AEG EGH DEH PEG EGH PEH PGH AGHD S S S S S S S S ∴=++=++==四边形,又G 是BD 的中点,BG DG ∴=,,ABG ADG HBG HDG SS S S ∴==(等底同高), 2()22ABG ADG HBG HDG ADG HDG ABHD AGHD S S S S S S S S ∴=+++=+==四边形四边形,同理可得:2224ABCD ABHD S S ==⨯=四边形四边形,即四边形ABCD 的面积为4.【变式2-2】如图所示,在△ABC 中,D 是BC 边上任一点,F,G,E 分别是AD,BF,CF 的中点,连结GE ,若△FGE 的面积为6,则ABC 的面积为( )A.32B.48C.64D.72【变式2-3】如图,已知在△ABC 中,点D 、E 分别是边AB 、AC 的中点。
北师大版数学八年级下册《3.三角形的中位线》说课稿

北师大版数学八年级下册《3. 三角形的中位线》说课稿一. 教材分析北师大版数学八年级下册《3. 三角形的中位线》这一节的内容是在学生已经掌握了三角形的基本概念、性质和判定方法的基础上进行讲述的。
本节课的主要内容是让学生了解三角形的中位线的定义、性质和应用。
通过学习三角形的中位线,可以帮助学生更好地理解三角形的结构特征,提高他们解决三角形相关问题的能力。
教材中通过丰富的实例和图示,引导学生探究三角形中位线的性质,并运用这些性质解决实际问题。
此外,教材还设置了适量的练习题,以便学生巩固所学知识。
二. 学情分析在进入八年级下册的学习之前,学生已经学习了三角形的基本概念、性质和判定方法,他们对三角形有了一定的认识。
但是,对于三角形的中位线这一概念,学生可能较为陌生,需要通过实例和图示来加深理解。
此外,学生可能对如何运用中位线解决实际问题尚缺乏思路,需要教师的引导和启发。
三. 说教学目标根据新课程标准的要求,本节课的教学目标为:1.让学生了解三角形的中位线的定义、性质和应用。
2.培养学生运用中位线解决三角形相关问题的能力。
3.提高学生对数学知识的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 说教学重难点1.教学重点:三角形的中位线的定义、性质和应用。
2.教学难点:如何引导学生发现并证明三角形中位线的性质,以及如何运用中位线解决实际问题。
五. 说教学方法与手段为了达到本节课的教学目标,我将采用以下教学方法和手段:1.采用启发式教学法,引导学生通过观察、思考、讨论和探究,发现三角形中位线的性质。
2.利用多媒体课件和实物模型,生动形象地展示三角形中位线的相关概念和性质,提高学生的直观感受。
3.设置丰富的练习题,让学生在实践中运用所学知识,巩固提高。
4.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
六. 说教学过程1.导入新课:通过复习三角形的基本概念、性质和判定方法,为学生引入三角形的中位线这一新概念。