高层建筑工程深基坑施工技术

合集下载

深基础工程施工新技术

深基础工程施工新技术

随着我国经济的快速发展,高层建筑、重型厂房、路桥、港口码头等大型工程越来越多,对深基础工程施工技术的要求也越来越高。

为了满足这些工程的需求,我国不断研发和引进了一系列深基础工程施工新技术,以下将简要介绍几种具有代表性的新技术。

一、超深SMW工法桩超深SMW工法桩是一种新型的深基坑围护结构,具有施工速度快、造价低、施工质量好等优点。

该工法桩采用预应力混凝土作为支撑,配合土钉墙和止水帷幕,形成一种具有高强度、高稳定性的围护结构。

在施工过程中,利用旋挖钻机进行钻孔,然后插入H型钢,再注入水泥浆液进行加固。

超深SMW工法桩在复杂地层中具有很好的适用性,已广泛应用于我国深基坑工程。

二、超大面积深基坑逆作开挖技术超大面积深基坑逆作开挖技术是一种针对超大面积深基坑施工的技术。

该技术采用逆作法进行开挖,即在地下先进行一层开挖,然后在地下形成一层临时支撑,再进行下一层开挖,以此类推,直至达到设计深度。

这种技术具有以下优点:1. 降低了施工风险,提高了施工安全性;2. 优化了施工进度,缩短了工期;3. 节约了工程成本。

三、深层搅拌技术深层搅拌技术是一种地基加固技术,主要应用于软弱地基、滑坡、地基沉降等工程问题。

该技术通过将水泥、石灰等固化剂与地基土混合搅拌,形成具有高强度、高稳定性的水泥土。

深层搅拌技术具有以下优点:1. 施工速度快,可缩短工期;2. 成本低,经济效益好;3. 环境友好,无污染。

四、三轴搅拌桩地基加固技术三轴搅拌桩地基加固技术是一种适用于滑行区下穿式联络通道的地基加固技术。

该技术通过将水泥、石灰等固化剂与地基土混合搅拌,形成具有高强度、高稳定性的水泥土。

三轴搅拌桩地基加固技术具有以下优点:1. 施工速度快,可缩短工期;2. 成本低,经济效益好;3. 施工质量可靠,提高了地基承载力。

五、深基坑监测技术深基坑监测技术是保障深基坑施工安全的重要手段。

该技术主要包括地表沉降监测、地下水位监测、应力监测等。

通过实时监测,及时发现异常情况,采取相应的措施进行处理,确保深基坑施工安全。

高层建筑工程深基坑支护施工技术分析

高层建筑工程深基坑支护施工技术分析

高层建筑工程深基坑支护施工技术分析摘要:高层建筑工程施工规范操作中,需要以安全规范化管理为基础,不断提升高层建筑安全与深基坑支护技术水平融合,加强建筑行业的内部优化与技术提升,以保证建筑工程基础施工的安全有效。

深基坑支护技术对于建筑整体施工是极其关键的。

需要根据不同建筑实际的规范操作要求,分析建筑具体的环境和形式标准,结合技术要求优化施工工艺,提升深基坑施工支护工程水平,以保证高层建筑整体行业的稳步发展。

关键词:高层建筑;深基坑支护;技术分析引言深基坑支护是建筑施工领域一项重要的施工项目,其目的是保证高层建筑工程深基坑上方建筑物的稳定性,起到一个支撑作用[1]。

深基坑支护施工具有一定的难度,由于深基坑支护需要承受强大的重力和压力,在施工过程中如果出现差错,将会造成深基坑下沉,以及深基坑支护上方的建筑物出现裂缝和倾斜,尤其是对高层建筑工程而言,因此深基坑支护施工技术对建筑工程施工质量具有重要影响作用。

1.高层建筑深基坑支护规范施工特征要求深基坑支护是一种临时搭建的基础,主要用于建筑的初期施工,是有效实现道路施工、地下管线施工、基坑施工技术安全的方式。

高层建筑的深基坑深度一般为 6m,基坑是按照具体的防护结构标准实现保护的。

需要根据高层建筑地下结构实施安全防护,判断四周是否存在工程损坏等问题,目的是保证工程施工后续步骤的顺利进行,保证工程施工的有效性。

对于大型高层复杂建筑而言,需要确定深基坑的施工标准。

依据建筑施工的面积和深度进行规划,做好前期的勘察和设计,以节约土地资源为目标,重视优化建筑工程施工流程,提升工程施工质量水平。

深基坑设计过程中,需要根据不同地区的地质情况,采用不同的深基坑支护操作方案。

深基坑开挖操作前,需要重点分析岩土性质,判断其复杂的特殊性,是否均匀,是否满足基坑稳定施工的加工标准。

施工人员做好建筑周围的勘察分析,结合可能存在的风险进行评估,判断周围环境可能存在的影响。

高层建筑工程施工中,周围条件往往较为复杂,特别是地下管线,给水管道、排水管道、通信管道、雨水管道,新修旧改等各项复杂因素,导致施工的不确定性比例增加,风险性增大。

高层建筑工程深基坑支护施工技术 勾朝伟

高层建筑工程深基坑支护施工技术 勾朝伟

高层建筑工程深基坑支护施工技术勾朝伟摘要:高层建筑越来越受到人们的青睐,它不仅可以为人们提供一个舒适的居住环境,还能够节省建筑的土地面积。

深基坑支护是高层建筑的一个重要环节,它的质量直接影响高层建筑的安全性与稳定性。

对高层建筑中深基坑支护工程施工技术做出分析。

关键词:高层建筑;深基坑;支护;施工技术1深基坑支护技术的相关概念对于深基坑的支护技术来说,其一般被应用在大型的建筑工程之中。

由于我国城市化的不断加快,我国城市的土地资源也日益紧张,所以在城市中建设高层建筑就成了趋势所在,并且地下的工程也越来越多,因此深基坑的支护技术也就越来越受到重视,其在建筑安全性和稳定性方面有着举足轻重的作用。

目前的深基坑的支护的工程主要有以下两个特点:第一,深基坑的支护工程的地域性特别明显。

这主要是由于我国幅员辽阔,所以不同地区存在着不同地质条件,因此不同区域在实际施工的时候也会存在不同特点。

第二,深基坑的支护工程也存在复杂性。

因为在建筑工程的项目当中,最为基础的部分就是深基坑的支护,其与工程整体的质量都有关系,所以在实际施工的时候会涉及很多复杂的工艺,而建筑功能不同的话,其结构设计也会不同,所以深基坑的支护工程就更复杂了。

2高层建筑工程深基坑支护施工技术的应用分析2.1土层锚杆施工技术针对于土层锚杆的技术施工,其主要的施工步骤和流程可以分为以下几方面。

首先,工地上的负责测量的工作人员需要结合实际的设计需求,按照严格的标准来进行施工,从而科学和准确地确定锚杆的位置,与此同时,相关人员还要对锚杆的质量问题和实际的作业情况进行有效的监测,在确保其水平位置、倾角和标高等关键的检查部位没有问题后,再进行下一步的施工。

其次,针对于施工中的钻孔工作,相关人员要结合实际的标准和要求,进行合理的设计,做好检测和纠正工作,并做好真实记录。

当然,我们需要注意一个问题,就是在钻孔的过程中也会受到材质等诸多因素的影响,遇到钻孔障碍,一旦此情况发生,工作人员应该立马停止继续钻孔,用科学的检测方法,追究出问题的根源,在确定问题根本原因之后,再进行钻孔,这样可以减少对整个施工机械设备的磨损。

临近地铁的超高层建筑深基坑施工技术

临近地铁的超高层建筑深基坑施工技术

临近地铁的超高层建筑深基坑施工技术摘要:本文以罗湖区城建大厦为实例,分析临近地铁的超高层建筑,在其深基坑施工过程中的地铁保护、深基坑施工及过程监测等一系列问题及相应解决方案。

关键词:临近地铁;超高层;深基坑0项目介绍深圳某超高层项目总高度333m,四周被主干道和民用建筑环绕,地铁运营线自西侧基坑下部由南北方向穿过。

工程总建筑面积19万余平方米,由一栋72层塔楼、5层地下室与6层裙房组成。

由于该项目位于深圳市中心区,场地面积仅9950.67㎡,其中东侧深基坑占地面积达到5581㎡,西侧浅基坑1300m2,如图1所示。

图1 城建大厦设计效果图1深基坑概况本工程西南部紧邻深圳地铁9号线,红岭南站至鹿丹村站从本工程西南侧地下穿过。

场地东北侧塔楼深坑距地铁轨道边线5m,地下室5层,基坑长约80m,宽约70m,面积约5581m2;场地现状地面高程约为4.5m,基坑底高程-18.05m,塔楼坑中坑底高程为-21.05m,基坑深度约为22.55~25.55m,采用“地下连续墙+钢筋混凝土支撑”方案,并进行全面的基坑和地铁的位移、形变监测。

图2 项目深基坑情况1.1 地铁保护本项目深基坑最大深度达25.85m,基坑支护安全性等级为一级,浅基坑最大深度达6.5m,基坑支护安全性等级为二级。

地铁9号线位于项目红线内西南侧,最浅处地铁隧道顶离地面约9m。

根据城市轨道交通保护规定,隧道结构变形允许量如下所示:1)隧道结构绝对沉降量及水平位移量不大于20mm;2)隧道纵向变形曲线的曲率半径R不小于15000m;3)隧道的相对变曲不大于1/2500;4)由于建筑物垂直荷载(包括基础地下室)及降水、注浆等施工因素而引起的隧道外壁附加荷载不大于20kPa(不大于2t/m2);5)轨道竖向变形±4mm,两轨道横向高差<4mm,水平及水平三角坑高低差<4mm/18m;轨距+3mm,-2mm;深基坑采用地连墙+基岩裂隙注浆技术,减小开挖对于临近土体的应力释放,并控制地块所处发育裂隙的地下水流动,从而控制地铁变形。

浅谈高层建筑工程深基坑支护施工技术

浅谈高层建筑工程深基坑支护施工技术

浅谈高层建筑工程深基坑支护施工技术高层建筑工程深基坑支护施工技术是指在城市中建造高层建筑时所需的地下施工工艺。

随着城市化进程的加快和土地资源的日益稀缺,高层建筑的横空出世成为了城市发展的一个重要趋势。

而高层建筑的施工离不开深基坑支护施工技术,这是因为深基坑的开挖和支护是高层建筑施工的前提和保障。

深基坑支护施工技术对于高层建筑工程来说至关重要。

一、深基坑支护的基本概念深基坑在城市中的建造是一项复杂的工程,需要使用各种工艺和技术手段来保障基坑的稳定和安全。

深基坑的支护是指在基坑开挖过程中使用各种材料和结构来保持土体的稳定,防止土体坍塌和基坑塌陷,保障相邻建筑物和地下结构的安全。

深基坑支护施工技术主要包括支护结构的设计、施工方法和材料选择等方面,是一项综合性的技术工程。

二、深基坑支护的施工步骤深基坑支护的施工步骤包括基坑开挖前的准备工作、支护结构的设计和施工、以及基坑周边环境的监测和控制等内容。

在进行深基坑支护施工前,需要对工程所在地的地质情况进行详细的勘察和分析,确定地层结构和地下水情况,为支护结构的设计和施工提供依据。

同时还需要制定详细的施工方案和安全措施,确保施工过程中的安全和环保。

基坑支护结构的设计是深基坑支护施工的关键环节,设计合理的支护结构可以有效地保障基坑的稳定和安全。

根据基坑的深度、土质和周边环境等情况,可以选择不同的支护结构,如钢支撑、深层土钉墙、搅拌桩墙、悬臂墙等。

支护结构的施工需要严格按照设计要求和规范进行,确保结构的稳定性和密实性。

在支护结构施工完成后,需要对基坑周边环境进行持续的监测和控制。

通过监测基坑周边地下水位、地表沉降、邻近建筑物变形等情况,及时发现和处理可能存在的安全隐患,确保基坑施工和周边环境的安全。

1. 支护结构的选择2. 施工方法深基坑支护的施工方法主要包括开挖方法、支护结构的安装和固结等内容。

在进行基坑开挖时,需要根据地质情况和支护结构的需求,选择合适的开挖方法,以防止土体失稳和坍塌。

建筑工程中的深基坑支护施工技术要点探析

建筑工程中的深基坑支护施工技术要点探析

建筑工程中的深基坑支护施工技术要点探析摘要:高层建筑的稳定性是施工建设过程中需要重点关注的问题,而深基坑支护是保证稳定性的关键工艺。

由于建筑深基坑支护工程发展时间较短,施工稳定性得不到保证,早期高层建筑施工安全事故较多,本文主要分析建筑工程中的深基坑支护施工技术要点。

关键词:施工技术;施工管理;深基坑支护;建筑施工引言基坑支护施工技术在建筑工程项目的基础施工中发挥着关键作用,能够改善基坑周边施工环境,保障施工安全,从而提高建筑项目的安全性与可靠性。

通过本文分析可知,基坑支护施工技术包含混凝土灌注桩支护技术、土钉墙支护技术、钢板桩支护技术、地下连续墙支护、土锚杆以及防渗技术等一系列技术手段。

1、建筑深基坑支护工程施工的特点深基坑的开挖可分为两类:一类是深度在5m以上的基坑支护施工,二类则是深度不足5m,但周边环境复杂性较高,对支护工程的要求更高。

虽然深基坑工程作为支护结构,大多数都是非永久工程,但其施工技术复杂且具有较大的随机性,再加上地区差异,需要考量周边环境的差异,因此深基坑支护施工并没有严格统一的方式,应因地制宜,对周边环境综合考虑,灵活挑选施工方法,不应照搬其他区域的技术。

深基坑支护工程普遍还具有工程量较大的特点,设计领域较多,需要相关人员对结构、材料、地质、水文、设计等诸多领域的知识有所涉猎,因此就需要强化对施工过程的把控,只有在全面考量设计后方可开展作业,且施工中还应对周边土方石开挖与环境做好侦测,一旦发现周边结构出现位移、形变等现象就应及时优化,做好各项应急处理,确保建筑工程的顺利开展。

2、深基坑施工技术特点2.1深基坑支护类型多种多样深基坑支护工程有多种形式,可以分为加固与支挡两种。

其中,一种为水泥搅拌结构,另一种为土钉结构。

这些不同类型的深基坑支护形式为实际施工提供了选择的灵活性。

为了优化支护形式,进一步提高深基坑的稳定性和安全性,必须选择两种或两种以上的方法,将施工选择与场地的地质条件联系起来。

高层建筑深基坑工程施工技术

高层建筑深基坑工程施工技术

高层建筑深基坑工程施工技术摘要:深基坑工程是城市化建设中常见的一项工程,具有较大的施工难度,对高层建筑的整体质量影响较大。

为此,本文结合工程实例,介绍了深基坑工程方案策划过程,重点就高层建筑深基坑工程施工技术进行探讨,并总结了基坑基坑开挖监测工作,以供同行借阅。

关键词:深基坑工程;方案策划;施工技术;基坑监测随着我国城市化进程的加快,城市高层建筑数量日益增加,许多建筑的空间逐渐向地下开发,基坑开挖深度越来越深,对深基坑工程施工技术和质量安全提出了新的要求。

深基坑工程是高层建筑重要的施工项目,主要包括地下室、设备室和停车场等项目建设,其施工质量是确保高层建筑整体结构安全的重要保障。

但是,深基坑施工危险性较大,具有施工规模大、建设周期长、施工环境复杂等特点,在施工过程中需要穿越周边建筑物及地下管道设施,同时还需要克服地下水量丰富、排水困难等施工难点,稍有不慎就会导致施工安全事故的发生,影响到工程后续的施工。

因此,如何选择深基坑支护方案就成为了工程人员面临的难题。

本文通过采用桩锚支护配合高压旋喷桩的支护方式,有效解决了深基坑工程地下水量丰富、排水困难等施工难点,确保了深基坑工程的施工质量。

1 工程概况某建筑工程,地上26层,地下1层,基坑东、北临住宅楼,南、西面靠近市政道路。

基坑开挖深度:东面7.4m、南面8.47m、西面6.5m、北面6.5m。

地质情况:基坑开挖涉及土层分布情况如下:①杂填土(0.6m~3.5m)、②1粉质黏土(0.8m~4.3m)、③细砂(1.3m~3.9m)、②2粉质黏土(0.0m~2.3m)、④中砂(0.9m~4.8m)、⑤砾砂(6.6m~8.9m)、⑥强风化泥质粉砂岩(0.40m~1.1m)、⑦中风化泥质粉砂岩。

地下水情况:上层滞水水位埋深0.40m~0.90m,水量一般;在细砂及中砂层含有潜水,潜水水位埋深7.00m~7.40m,水量较大。

2 方案策划2.1 工程难点该大楼基坑施工时有以下难点:(a)基坑最大开挖深度>8.0m,属于一级重大危险源,施工难度大;(b)工期紧,基坑周围环境复杂(四周距离构筑物较近),对基坑支护结构的沉降与变形敏感度大;(c)地下水量丰富,排水困难;(d)本工程处于市中心,场地狭小,土方全部外运(白天禁止,只能夜间运输),运土困难;(e)土方开挖层含砂层,易造成流砂或管涌现象。

探讨高层建筑工程深基坑支护施工技术

探讨高层建筑工程深基坑支护施工技术

探讨高层建筑工程深基坑支护施工技术摘要:深基坑支护施工主要是根据高层建筑工程施工地区的地理条件,选择合理的施工技术,加强对基坑的处理,以此保证工程结构的稳定性和安全性。

但是,在高层建筑工程深基坑支护施工之前,一定要对各项施工技术进行了解,以此有针对性的进行选择,减少施工问题的产生,实现良好的高层建筑工程深基坑支护施工质量。

关键词:高层建筑工程;深基坑支护;施工技术1高层建筑深基坑支护技术简介高层建筑基坑支护的目的是保护地下建筑工程施工过程中,基坑本身和基坑周边环境的安全,对基坑采取临时或永久性的保护加固、支挡支护及必要的控制地下水的措施。

基坑的支护结构主要分2种类型:一种是临时性基坑支护结构,地下工程完成后,即丧失主要作用;另一种是支护结构不仅在地下工程施工期间起保护加固作用,工程最后完成后,其作为该地下工程的永久性结构继续发挥作用,此类支护结构除满足支护作用外还必须满足永久结构的设计参数的要求。

常见的通用支护方法:排桩、锚桩、悬臂排桩、地下连续墙、钢板桩、型钢桩、土钉墙、逆作拱墙与上述方式的组合等。

高层建筑深基坑支护必须由具有相关资质的专业设计单位进行支护设计,根据不同的基坑参数(深度、地质、环境与荷载情况),采用不同的支护结构。

基坑工程支护设计主要包含支护结构各种设计方案的技术经济比选;基坑支护结构体系的稳定和安全性验算;支护体系的刚度、强度、稳定性验算;地下水的控制与保护;对周边环境影响的控制及相关监控参数;基坑土方开挖的要求;基坑工程施工中及完工的监测要求。

2深基坑支护结构设计、施工过程中存在的问题2.1在深基坑支护结构设计中很难选择一个适宜的土体物理力参数深基坑支护的安全性能受到土体压力的影响十分大,但是从建筑的实际情况来看。

地质是很可能发生变化的,具有众多的不确定性,所以这就需要在施工中选择一个最为合适的土体物理参照数来对土体的压力进行精准地计算,但是就目前我国的技术而言,在精准计算上还是有一定问题的,比如说摩擦角、含水率以及粘聚力等方面的参考数据,它们在施工深基坑挖掘以后都属于一种可变动的数值,所以这也相应地提高了在深基坑支护上数据的计算难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅析高层建筑工程深基坑施工技术摘要:高层建筑的发展使得工程施工中对深基坑支护技术的要求越来越高,鉴于此,本文结合实例对高层建筑的深基坑施工做了专门的论述。

详尽的论述了开挖、支护、排水基坑、地下水等施工监测,并对通过对监测数据进行处理分析来指导基坑施工也做了深入的分析,以便为从事深基坑行业的人员提供一点有益的参考,从而促进高层建筑的完好发展。

关键词:高层建筑深基坑施工支护开挖排水基坑
随着经济的发展,人口的与日俱增,土地面积越来越紧张,现代建筑都是朝着高层建筑膨胀式的发展。

大量工程实践证明,高层建筑相对以前建筑来说能带来明显的社会经济效益,缩小建筑用地,减少市政的建设投资。

同时高层建筑具有高度大、层数多、结构复杂、施工工序多、施工难度大、专业要求高、工期长的特点,其对结构设计的安全性要求特别高,对高层建筑项目施工的基础设计要求越来越高,深基坑的支护要求也更高。

高层建筑工程深基坑支护工程是一项复杂的系统工程,其施工质量的好坏直接关系到基坑开挖、降水等。

虽然其作用重大,但是深基坑支护工程作为一项临时性建筑,被业主、施工单位所轻视。

为了节省施工投资额度、降低施工成本和减少施工工期,往往置深基坑支护施工的重要性、复杂性和风险性而不顾,而只看到其临时性,从而导致高层建筑的深基坑施工工程安全事故时有发生。

因此,为了保障基坑工程、地下管线、道路等的安全,必须对高层建筑工
程深基坑支护有足够的重视,笔者结合实例对高层建筑深基坑施工技术做如下分析:
一具体工程概况
本工程中为框架结构,地上五层,高层为框架 - 剪力墙结构,二十一层,地下一层,基坑形状呈长方形。

基坑单边长度最长为120m。

基坑普遍开挖深度为 5.0m。

工程±0.000=1892.7。

工程用桩承载,桩类型为 phc、pc 管桩,ab 型,直径 500、400,桩长 23- 30m 不等,约 1800 余根。

二地下水分析
根据场地内进行钻孔抽水试验,根据抽水试验报告结果,场地东北部土层渗透系数较小,基坑涌水量较小;而场地西南部土层渗透系数较大,基坑涌水量较大,应做好基坑降水准备工作。

三基坑开挖分析
基坑逐层开挖,每层开挖至设计标高,及时进行喷锚支护施工,同时边坡修整采用人工清理,为确保垂直锚喷砼面层平整必须挂线定位,做好土方开挖和基坑边坡支护等各工种协调工作,严格执行开挖程序。

为保证人工清底阶段工土方垂直运输,在人工清底前安装及调试完塔吊及时投入使用。

预留土体验槽后迅速组织清底工作,随即进行垫层封闭,避免基底原状土受扰。

本工程垫层面积大,人工清底和垫层浇注砼按随难随封原则,分片组织施工,垫层随浇随抹,保证标高及平整度要求。

施工中注意设置好现场排水系统。

四基坑支护分析
土钉喷锚护壁,打锚杆φ48 钢管,间距 1200mm,在锚杆之间设ф14 钢筋互拉,本工程采用土钉支护 + 合理放坡方法施工,土钉支护面层为 100mm 厚 c25 钢筋混凝土,内配直径 10mm 一级钢筋,纵横间距 150mm,钢筋网片外加做ф14 加强筋稳固。

地质勘察报告显示现场基坑范围土质条件较好,施工现场整平标高约为±0.2m 基础底板埋深 - 5.90m,开挖深度约为 6.20m。

根据本基坑工程开挖深度、周边环境、土层性质确定三级基坑,对本工程基坑支护拟采用放坡开挖并辅以土钉挂网喷浆及喷锚支护
形式,支护结构见图 1 所示。

在深基坑周边采用土钉加挂网喷锚支护以保证基础地下室安全施工,基坑周边环境保护非常严格。

土钉喷锚护壁,打锚杆φ48 钢管,间距 1200mm,在锚杆间设ф14钢筋互拉,采用土钉支护 + 合理放坡方法施工,土钉支护面层为 100mm 厚 c25 钢筋混凝土,内配直径 10mm 一级钢筋,纵横间距 150mm,钢筋网片外加做ф14 加强筋稳固。

五基坑排水分析
集水井布置在后浇带位置上,井深超过基坑底部1.5m,降水深度超过基底 0.5m,保持基底干燥。

集水井做法为用 m5 水泥砂浆砌筑 mu7.5 粘土红转,内直径为0.7m 深 1.500m,集水井待基础施工完后再进行加高至自然地面,作为施工用水。

为防止地表水影响基坑,支护喷浆时在基坑周边外翻卷边 1m。

1m 外进行地面硬化,开成0.5%倒坡,将地表水排入 250×250mm 排水沟内,防止地表水
向坑内渗透。

将地表水集中排出。

排水沟在基坑四周形成截水沟,将杂填土中地表水截住,防止流入基坑。

基坑外适当设置沉淀池,基坑内水抽入沉淀后排入市政管网。

因基础出水量比较大,在每个集水井内设置 1 台 qwdn100 污水泵,抽水到地面排水沟,达到基坑降水作用。

六基坑监测分析
1 地下水位监测
本工程项目在基坑开挖前期水位变化表现为平稳,在开挖中期水位变化表现为下降;底板完成至顶板完成变化趋于稳定。

在监测过程中对基坑四面进行了检测,检测结果为西南部地下水位最大累变量 484mm,其他面状态良好。

2 围护墙顶水平位移、垂直位移监测
由于本工程属于深基坑,在施工过程中不仅要观测围护墙顶垂直方向位移变化而且还要观测水平方向位移,确保基坑周边安全与稳定,检测结果见图 2 所示。

从图 2 可以得出围护墙顶各监测点沉降变化规律,各垂直位移监测点最大累计变化量均以下降为主,变化范围+3.01mm~-
11.48mm。

水平位移监测点变化范围 +13.1mm~- 13.3mm。

各点出现上下波动现象但未出现危险报警。

3锚索内力监测
深基坑安全与稳定,起到决定性作用的是土钉挂网喷浆及喷锚支护,通过对锚索内力监测,锚索内力监测点详细变形见图 3 所
示。

从图 3 可以看出监测点变化曲线表现为逐步上升趋势,原因是由于土体开挖,桩体受力逐渐增大,锚索应力也逐步增大,底板完成后变化量变化较小,趋势走向平稳。

结束语:
总而言之,通过对基坑施工进行分析,深基坑开挖过程监测资料反映基坑及周边环境处于安全范围。

各监测点变形速率比较小且变形速率比较稳定,底板完成后变形量明显减小。

准确反映基坑和周边环境变形情况,根据实时变形位移数据,分析判断预测基坑及周边环境使用过程中土体位移,采取有效措施达到基坑稳定目的,为施工提供指导性意义。

参考文献:
[1]孙凯,许振刚等.深基坑的施工监测及其数值模拟分析[j].岩石力学与工程学报,2004(2),293- 298.
[2]邓黎明,房佳彦等.复杂土质条件下的深基坑施工技术[j].建筑施工,2011(12),1059- 1061.
[3]林海.深基坑施工工艺对周围建筑物稳定性分析[j].建筑知识:学术刊,2012(1),263- 264.。

相关文档
最新文档