高频小信号放大器实验报告

合集下载

高频小信号放大器实验报告

高频小信号放大器实验报告

基于Multisim的通信电路仿真实验实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2 实验容1.2.1 单调谐高频小信号放大器仿真图1.1 单调谐高频小信号放大器1、根据电路中选频网络参数值,计算该电路的谐振频率ωp。

ωp=1/(L1*C3)^2=2936KHz fp=ωp/(2*pi)=467KHz2、通过仿真,观察示波器中的输入输出波形,计算电压增益Av0。

下图中绿色为输入波形,蓝色为输出波形Avo=Vo/Vi=1.06/0.252=4.2063、利用软件中的波特图仪观察通频带,并计算矩形系数。

通频带BW=2Δf0.7=7.121MHz-28.631KHz=7.092MHz矩形系数Kr0.1=(2Δf0.1)/( 2Δf0.7)=(14.278GHz-9.359KHz)/7.092MHz=2013.2544、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~Av相应的图,根据图粗略计算出通频带。

Fo(KHz) 65 75 165 265 365 465 1065 1665 2265 2865 3465 4065 Uo(mV) 0.669 0.765 1 1.05 1.06 1.06 0.977 0.816 0.749 0.653 0.574 0.511 Av 2.655 3.036 3.968 4.167 4.206 4.206 3.877 3.238 2.972 2.591 2.278 2.0285、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

2次谐波4次谐波6次谐波1.2.2 双调谐高频小信号放大器图1.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益Av0。

高频小信号放大器 实验报告

高频小信号放大器 实验报告

高频小信号放大器实验报告高频小信号谐振放大器一、实验目的1、了解高频小信号谐振放大器的电路组成、工作原理。

2、进一步理解高频小信号放大器与低频小信号放大器的不同。

3、掌握用Multisim8分析、测试高频小信号放大器的基本性能。

4、掌握谐振放大器的调试方法。

5、掌握用示波器测试小信号谐振放大器的基本性能。

6、学会用扫频仪测试小信号谐振放大器幅频特性的方法。

二、实验仪器双踪示波器 数字频率计 高频毫伏表频率特性测试仪BT —3 直流稳压电源 万用表高频信号发生器三、实验原理高频小信号谐振放大器最典型的单元电路如图4.2.1所示,由LC 单调谐回路作为负载构成晶体管调谐放大器。

晶体管基极为正偏,工作在甲类状态,负载回路调谐在输入信号的频率10.7MHz 上。

该放大电路能够对输入的高频小信号进行反相放大。

LC 调谐回路的作用主要有两个:一是选频滤波,选择放大o f f =的工作信号频率,抑制其它频率的信号。

二是提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。

高频小信号频带放大器的主要性能指标有:(1)中心频率o f :指放大器的工作频率。

它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。

(2)增益:指放大器对有用信号的放大能力。

通常表示为在中心频率上的电压增益和功率增益。

电压增益 o o i A V V υ= (4.2.1)功率增益 po o i A P P = ( 4.2.2)图4.2.1 晶体管单调谐回路调谐放大器式中o V 、i V 分别为放大器中心频率上的输出、输入电压,o P 、i P 分别为放大器中心频率上的输出、输入功率。

增益通常用分贝表示为()20lg o o i A dB V V υ= ( 4.2.3) ()10lg po o i A dB P P = ( 4.2.4)(3)通频带:指放大电路增益由最大值下降3db 时所对应的频带宽度,用BW 0,7表示。

它相当于输入不变时,输出电压由最大值下降到0.707倍或功率下降到一半时对应的频带宽度,如图4.2.2所示。

高频小信号放大器实习报告

高频小信号放大器实习报告

实验名称:高频小信号放大器一、实习目的《通信电子电路》是通信工程的专业课程,以基础技能训练和能力培养为主线,从培养学生动手能力,培养工程技术实际应用型人才入手,强化综合性、实际性。

目的是通过实习使学生掌握通信电子电路的实际开发所要掌握技术,培养其动手能力,观察能力,分析和解决实际问题的能力,巩固、加深理论课知识,增加感性认识,进一步加深对通信电子电路应用的理解,提高对电路制造调试能力和系统设计能力。

提高对常见电路故障的分析和判断能;培养学生严肃认真、实事求是的科学态度,理论联系实际的工作作风和辩证思维能力。

二、实习内容1掌握发射系统电路和接收系统电路的基本组成。

2.理解各个单元模块的工作原理,和调试方法。

3.掌握电路印刷板的设计与开发方法。

4.掌握实际电路的制作技术与焊接工艺。

5.掌握单元电路和系统电路的调试技术。

6.能对简单的高频电子电路进行设计、制作及调试。

7.实习报告(一、制作电路的印刷板图,二、电路的制作过程,调试和实习心得)三、实验仪器:示波器10直流电源导线若干高频信号源电路板 3个可变电容 3个固定电容 1个电感 n勾道mos管一个四、实习方式本实习为校内集中实习,主要在老师讲授方式下,学生通过上机使用PROTEL绘制电路原理图,印刷电路板PCB,然后实践操作,制作电路模块、调试、排除故障。

五、实验步骤1、用protel99es设计并好绘制好电路图:2、安要求将各元器件进行,标号,封装,赋值。

3具栏的tool中的erc菜单检查连线是否正确,没有错误的话,则出现以下提示:4反回绘制好的图层,在design的下拉菜单中选择update pcb,在弹出的对话框中把第一个勾去掉,然后点击excute,弹出的界面入土所示:5先进行动工布线,之后再进行自动布线,并重复以上操作,直至显示布线100%为止:6、放置矩形填充,7放置泪滴8、放置敷铜,电路设计便完成了:。

实训1 高频小信号谐振放大器(高频书后实验报告)

实训1   高频小信号谐振放大器(高频书后实验报告)

实训1 高频小信号谐振放大器
1.实训目的
(1)EWB常用菜单的使用;
(2)搭接实训电路及各种测量仪器设备;
(3)估算小信号谐振放大器的宽频和矩形系数。

2.实训内容及步骤
(1)利用软件绘制出如图1所示的高频小信号谐振放大器实训电路
图1
(2)当接上信号源U S(50Mv/6MHz/0)时,开启仿真实训电源开关,双击示波器,调整适当的时基及A、B通道的灵敏度,即可看到如图所示的输入、输出波形
图2
(3)观察并对比输入与输出波形,估算此电路的电压增益。

Au=25.04
(4)双击波特图仪,适当选择垂直坐标与水平坐标的起点与终点值,即可看到如图所示的高频小信号放大器的幅频特性曲线。

从波特图仪上的幅频特性曲线分析此电路的带宽与矩形系数。

f=6.439MHz
(5)改变电阻R4的阻值,观察频带宽度的变化。

结论:由图上可以知道,它的输入波形没有什么变化但是它的频带宽度并不是一直增加的,而是有一个峰值。

一般在实际电路中通常采用在LC回路两端并联电阻的办法,来降
低调谐回路的有载品质因数Qe的值,以达到展宽放大器的通频带的目的。

高频小信号放大器实验报告

高频小信号放大器实验报告

高频电子线路实验报告——高频小信号放大器实验报告班级:电信工一班姓名:汪宁泽学号: 201400121049高频小信号放大器实验报告1.测量并调整单调谐回路谐振放大器(工作频率为4MHz )的静态工作点,将结果记录在下表中V BQ V CQ V EQ I CQ 估算值 2.112V 12V 1.412V 1.412mA 仿真值 2.082V 12V 1.348V 1.7913mA 实测值 1.38V10.35V0.96V1.23mA2.观察单调谐回路谐振放大器(工作频率为4MHz )的输入、输出信号的波形,注意幅度变化和相位关系。

(此时应调节回路有元器件至谐振状态)。

3.用示波器测量单调谐回路谐振放大器的频率特性曲线与增益,并计算通频带宽度。

要求在3.9~4.1MHz 频率范围内,每隔200kHz 测量一次。

f/kHz 3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100 增益(B ) 15.83 18.33 23.3 27.5 29.17 36 31 27 22 19 16.5 增益(C ) 6.57.28.210121412.311109.47.6讨论负载对放大器频率特性的影响R 7 ∞100k51k 10k增益 05.11095.01010 25.010BW 0.70.170.3 0.250.34由表可得:MHz BW 617.0=用频率特性测试仪直接观察幅频特性曲线。

高频集成放大器1、 用示波器测量宽带放大器在工作频率附近的电压增益。

(4MHz )7.360220===mVmV v v A i o v 2、 当输入信号频率发生变化时(保持输入幅度不变),用示波器观察输出信号波形的幅度变化情况,分析幅频特性(即用逐点法测量幅频特性)。

f/kHz 3900 3920 3940 3960 3980 4000 4020 4040 4060 4080 4100 增益3.7 3.69 3.7 3.7 3.69 3.7 3.7 3.68 3.7 3.68 3.68思考题:1.实验书中图 4.2.5所示双调谐回路高频小信号放大电路中电容C9的作用是什么?解:隔直流,其旁路耦合电容的功能。

实验报告范本_3

实验报告范本_3

实验课程名称:_高频电子线路实验项目名称高频小信号谐振放大器实验成绩实验者专业班级组别同组者XXX 实验日期xx年x月x日一.实验目的1.掌握高频小信号谐振放大器的电路组成与基本工作原理。

2.掌握高频小信号谐振放大器谐振回路的调谐方法及回路参数对谐振曲线的影响。

3.掌握高频小信号谐振放大器的主要技术指标的意义及测试方法。

(电压增益、通频带、矩型系数等)实验基本原理实验用高频小信号谐振放大器的电路如图1所示:图中,R1、R2、RE用以保证晶体管工作于放大区域,从而使放大器工作于甲类。

C5是RE的旁路电容,C1是输入耦合电容,L2、C2、Ct是谐振回路,Ct用来调谐,SW1用以改变集电极回路的阻尼电阻R,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

SW2用以改变射极偏置电阻Re,以观察放大器静态工作点变化对谐振回路(包括电压增益)的影响。

为了减轻负载对回路Q值的影响,输出端采用变压器耦合输出方式。

三、主要仪器设备高频实验箱GP-4 一台双踪示波器TDS-1002 一台高频信号发生器WY-1052 一台万用表一块四、实验内容,实验数据等记录1、放大器静态测量与工作状态判断基本条件:R=10K Vcc=12V按表要求分别改变RE时,测试数据记录于表中:实际测量值(V) 计算值根据VCE 判断BG1是否工作在放大区REVb Ve Vc Vce Ic(mA) 是否原因2、谐振频率fo与谐振增益Avo的测定与计算基本条件:当阻尼电阻R=10K条件1数据(Re=2K)条件2数据(Re=500Ω)fo=? Avo= ? fo=? Avo= ?输入/输出信号波形输入/输出信号波形说明1:放大器的AVo表征的是:说明2:放大器射极电阻Re变化对AVO的影响。

3.谐振放大器通频带Bw的测定基本条件:Re=1K条件1数据(R=10K)条件2数据(R=470Ω) Bw 0.7=fH-FL= ? Bw 0.7=fH-FL= ?通带特性曲线通带特性曲线说明1:什么是通频带?说明2:放大器阻尼电阻R变化对AVO与Bw的影响。

高频电子线路_小信号调谐放大器和高频功放_实验报告

高频电子线路_小信号调谐放大器和高频功放_实验报告

1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。

二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。

三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。

按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。

显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。

高频小信号放大器实验报告

高频小信号放大器实验报告

实验1高频小信号放大器幅频特性曲线为:带宽:8.0*0.7=5.6Bw1=6.6-6.1=0.5MHz2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0幅频特性曲线为:5.6*0.7=3.92;Bw2=6.65-6.1=0.55MHz3、双调谐回路谐振放大器幅频特性测量(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。

)2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz4、放大器动态范围测量2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验1高频小信号放大器
幅频特性曲线为:
带宽:
8.0*0.7=5.6
Bw1=6.6-6.1=0.5MHz
2、观察集电极负载对单调谐回路谐振放大器幅频特性的影响
当放大器工作于放大状态下,运用上步点测法测出接通与不接通1R3的幅频特性曲线。

既令2K1置“on”,重复测量并与上步图表中数据作比较。

f/MHz 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1
U/mV 1.7 1.9 2.0 2.4 2.6 3.2 3.6 4.0 5.2 5.6 5.6 5.2 4.4 3.8 3.2 2.6 2.4 2.0
幅频特性曲线为:
5.6*0.7=3.92;Bw2=
6.65-6.1=0.55MHz
3、双调谐回路谐振放大器幅频特性测量
(保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性。


2K2往上拨,接通2C6(80P),2K1置off。

高频信号源输出频率6.3MHZ(用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(IN)。

2K03往下拨,使高频信号送入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

反复调整2C04、2C11使双调谐放大器输出为最大值,此时回路谐振于6.3MHZ。

按照下表改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入下表中。

f/MHz 4.8 5.0 5.2 5.4 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 U/mV 0.8 1.4 2.6 4.2 8.0 8.8 8.0 8.0 8.0 8.2 8.4 6.4 4.8 3.2 2.0 1.8 1.4 1.2 幅频特性曲线:
8*0.7=5.6V;Bw3=6.55-5.5-1.05MHz
4、放大器动态范围测量
2K1置off,2K2置单调谐,接通2C6.高频信号源输出接双调谐放大器的输入端(IN),调整高频信号源频率为6.3MHz,幅度为100mV。

2K3拨向下方,使高频信号源输出输入放大器输入端。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

按照下表中的输入幅度,改变高频信号源的输出幅度(由CH1
监测)。

从示波器CH2读出放大器输出幅度值,并记录实验数据,且计算放大器的电压放大倍数。

入/m V 1
2
30 4
5
6
7
8
10
12
14
16
18
20
22
24
26
28
30
32
34
出/V 0.
8
1.
8
2.
6
3.
4
4.
4.
8
5.
6
6.
4
7.
2
7.
6
8.
7.
4
8.
8 8 8 8.
2
8.
2
8.
2
8.
2
8.
2
放大倍数8
9
86
.7
8
5
8
8
8
8
72 63
.3
57
.1
46
.3
44
.4
40 36
.4
33
.3
31
.5
29
.3
27
.3
25
.6
24
.1
5、异常或错误处理:
1)预习时没有仔细查阅操作手册,导致用扫频仪测双调谐放大器幅频特性时调不出明显的双峰图像;点测法测时因为没有做预测,对所测数据波动较小误认为测量错误所以重复了许多次,浪费时间;
2)调节电容使电路谐振时,电路很容易随电容变化发生失真,要在波形不失真前提下调到最大输出值。

五、实验结论
1)单调谐回路谐振放大器实验中,由步骤2所得图表比较可得:
当高频小信号的谐振频率和信号输入幅度一定时,当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。

而当接通1R3时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。

2)双调谐回路谐振放大器实验中,
由步骤3可明显看出双调谐回路比单调谐回路的通频带更宽;
由步骤4可得:谐振频率相同时,当放大器的输入增大到一定数值(80mV)时,放大倍数(即电压增
益)开始下降,输出波形开始畸变(失真)。

六、对实验的建议或改进之处
建议老师在做试验前帮我们画出课本上相关的页数,便于我们上课没有学懂的同学以最快的速度复习并掌握本实验的相关知识。

相关文档
最新文档