变频器培训班内部资料
变频器培训资料

变频器培训资料一、什么是变频器?变频器是一种能将电机的转速和输出功率按需求进行无级调节的电气装置。
它通过改变电源的频率和电压来控制电机的转速,从而实现对电动机的调速。
二、变频器的原理变频器由整流桥、滤波器、逆变器和控制电路组成。
整流桥将电源交流电转换为直流电,滤波器将直流电进行滤波以去除电源的脉动电压。
逆变器将直流电逆变为可调频率和电压的交流电,供应给电机工作。
三、变频器的应用1. 工业领域:变频器广泛应用于机械制造、冶金、石油化工、船舶、航空航天等各个行业的生产设备中。
2. 建筑领域:变频器可应用于楼宇自动化系统中,用于空调系统、水泵系统、风机系统等设备的控制。
3. 农业领域:变频器用于农业机械的控制,如灌溉泵的变频控制,可以节省能源并实现精确控制。
四、变频器的优势1. 节能效果显著:变频器可以根据负载要求进行电机转速的调节,避免了传统启动方式的能源浪费。
2. 调速性能好:通过变频器可以实现无级调速,使得电机的运行速度可以根据需要进行精确控制。
3. 减少电机损坏:变频器可以实现平稳启动和停止,减小了电机的机械冲击,延长了电机的使用寿命。
4. 增强系统稳定性:变频器具有过载保护、电流限制等功能,可以防止电机因过载或过电流而受损。
五、变频器的操作注意事项1. 安全使用:使用变频器时应注意安全保护,避免触电和其他事故的发生。
2. 合理布线:变频器的电源线和控制线要进行合理的布线,并保持良好的接地。
3. 避免温度过高:变频器在工作过程中会产生一定的热量,应确保通风良好,避免过热影响正常工作。
4. 定期维护:定期对变频器进行检查和维护保养,保证其正常工作和使用寿命。
六、变频器的未来发展趋势1. 高性能:未来的变频器将不仅具备调速功能,还会加强功率密度、响应速度等指标的提升,以满足更高性能的需求。
2. 智能化:随着物联网技术的发展,变频器将实现与其他设备的无线通信和数据交互,实现更智能化的控制系统。
3. 绿色低碳:变频器的节能特性将得到进一步的提升,以更好地满足环保和可持续发展的要求。
A-B变频器培训资料

A-B变频器培训资料AB 变频器培训资料一、AB 变频器简介AB 变频器,作为工业自动化领域中常用的电力控制设备,以其高效、稳定和精准的调速性能,在众多行业中得到了广泛的应用。
它能够将固定频率的电源转换为可调节频率和电压的输出,从而实现对电机转速的精确控制,满足不同生产工艺的需求。
二、AB 变频器的工作原理要理解 AB 变频器的工作,首先需要明白其基本原理。
简单来说,AB 变频器通过对输入的交流电源进行整流,将其转换为直流电源。
然后,再通过逆变电路将直流电源转换为频率和电压均可调节的交流电源,输出给电机。
在这个过程中,变频器内部的控制器会根据设定的参数和反馈信号,精确地控制逆变电路中功率器件的导通和关断时间,从而改变输出电源的频率和电压,实现对电机转速的调节。
三、AB 变频器的主要组成部分1、整流单元负责将输入的交流电源转换为直流电源。
常见的整流方式有二极管整流和可控硅整流。
2、滤波单元对整流后的直流电源进行滤波,以减少电压波动和纹波,提供稳定的直流电压。
3、逆变单元这是变频器的核心部分,由多个功率器件(如 IGBT)组成。
通过控制功率器件的开关状态,将直流电源转换为交流电源。
4、控制单元包括硬件和软件两部分,负责接收各种输入信号(如速度给定、电机反馈等),进行运算处理,并输出控制信号来控制逆变单元,实现对电机的调速控制。
5、驱动单元为逆变单元中的功率器件提供驱动信号,确保其正常工作。
6、保护单元用于监测变频器的工作状态,如过流、过压、过热等,并在出现异常情况时及时采取保护措施,以保护变频器和电机的安全。
四、AB 变频器的参数设置正确设置变频器的参数是确保其正常运行和满足工艺要求的关键。
以下是一些常见的参数设置:1、基本参数电机参数:如电机额定功率、额定电压、额定电流、额定转速等。
变频器额定参数:变频器的额定容量、额定输入电压、额定输出电压等。
2、控制参数控制方式:选择合适的控制方式,如 V/F 控制、矢量控制等。
变频器技术培训资料

变频器能够根据实际需求实时 调整电机转速,实现能源的精 细化管理,使能源得到充分利
用,降低能源浪费。
05
变频器的发展趋势与新技术
变频器的发展趋势
高效节能
随着能效要求的提高,变频 器在提高系统效率、降低能 耗方面仍有较大潜力。
智能化
利用先进的人工智能技术, 实现变频器的自主控制和优 化运行,提高其智能化水平 。
性能和稳态精度。
预测控制技术
通过模型预测控制算法,实现对系 统负荷的准确预测和优化控制,提
高系统的稳定性和效率。
直接转矩控制技术
通过直接控制电机的转矩和电压, 实现对电机的高效、快速控制,适 用于高性能的变频器应用场景。
无线通讯技术
利用无线通讯技术,实现变频器与 上位机之间的远程监控和调试,提 高系统的可维护性和便利性。
变频器的特点
具有调速范围广、调速精度高、动态响应快、节能效果显著、操作方便、维护简 单等优点。
变频器的基本应用
节能应用
通过调节电机转速,降低能源消耗 ,适用于风机、水泵等设备。
速度控制
通过调节电机转速,实现对机械设 备的精确控制,适用于各种传动系 统。
软启动
利用变频器软启动功能,减轻电机 启动时对机械和电气的冲击,延长 设备使用寿命。
自动化控制
配合其他控制系统,实现自动化生 产线的远程控制和调节。
02
变频器的工作原理
变频器的电力电子器件
1 2
晶闸管
作为变频器的核心电力电子器件,晶闸管可以 控制交流电压的相位,从而实现变频。
IGBT
全控型电力电子器件,具有高输入阻抗和低导 通压降的特点,是变频器中的重要组成部分。
3
2024版ABB变频器培训资料课件

资料课件•变频器基础知识•ABB变频器产品概述•安装调试与操作维护目录•故障诊断与排除方法•应用案例分析与拓展•培训总结与展望变频器基础知识01CATALOGUE变频器定义与作用变频器定义变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
变频器作用实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能。
变频器发展历程及趋势发展历程从最初的电压控制型到矢量控制型,再到现代的直接转矩控制型,变频器的控制性能日益完善。
发展趋势向更高性能、更多功能、更小体积、更低成本等方向发展,同时注重节能环保和易操作性。
变频器主要类型及特点主要类型根据用途可分为通用型变频器、高性能变频器、专用变频器等;根据电压等级可分为低压变频器、中压变频器、高压变频器等。
特点通用型变频器性价比高,适用于大多数负载;高性能变频器控制精度高,动态响应快;专用变频器针对特定负载进行优化设计,具有更高的效率和更好的控制性能。
应用领域与市场前景应用领域广泛应用于电力、冶金、石油、化工、造纸、食品、纺织等领域,实现对各类机械设备的精确控制。
市场前景随着工业自动化水平的不断提高和节能环保政策的推行,变频器市场需求将持续增长,同时竞争也将更加激烈。
未来,变频器将向更高性能、更智能化、更环保等方向发展。
02CATALOGUEABB变频器产品概述适用于各种工业应用,具有高性能和灵活性,可满足多种控制需求。
ACS800系列通用型变频器,适用于风机、水泵等应用,具有高效能和稳定性。
ACS580系列紧凑型变频器,适用于小型机械设备,具有简单易用和经济实惠的特点。
ACS380系列ABB 变频器系列介绍性能参数与技术指标包括V/F控制、矢量控制等,可满足不同应用对控制精度的要求。
涵盖从0.12kW到数十兆瓦的广泛功率范围,可满足各种规模的应用需求。
支持从0到400Hz的频率调节,适用于多种电源和电机类型。
变频器培训课件资料1

变频器培训资料一. 变频器的基本原理1. 1 变频调速的原理变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。
常用三相交流异步电动机的结构是:定子由铁心及绕组构成,转子绕组做成笼型,俗称鼠笼型电动机。
当在定子绕组上接入三相交流电时,在定子与转子之间的空气隙内产生一个旋转磁场,它与转子绕组产生相对运动,使转子绕组产生感应电势,出现感应电流,此电流与旋转磁场相互作用,产生电磁转矩,使电动机转动起来。
电机磁场的转速称为同步转速,用 N表示N=60f/p(r/min)(1)式中: f —三相交流电源频率,一般为50Hz;p—磁极对数。
当p=1 时, N=3000r/min ;p=2 时, N=1500r/min 。
可见磁极对数p 越多,转速 N越慢。
转子的实际转速 n 比磁场的同步转速 N要慢一点,所以称为异步电机,这个差别用转差率 s 表示:s=[ (n1-n)/n1] ×100% (2)当加上电源转子尚未转动瞬间,n=0,这时 s=1;起动后的极端情况 n=N,则 s=0,即 s 在 0~1 之间变化。
一般异步电机在额定负载下的 s=(1~6)%。
综合式( 1)和式( 2)可以得出n=60f (1-s)/p(3)由式(3)可以看出,对于成品电机,其磁极对数p 已经确定,转差率 s 变化不大,则电机的转速 n 与电源频率 f 成正比,因此改变输入电源的频率就可以改变电机的同步转速,进而达到异步电机调速的目的。
但是,为了保持在调速时电机的最大转矩不变,必须维持电机的磁通量恒定,因此定子的供电电压也要作相应调节。
变频器就是在调整频率( VariableFrequency )的同时还要调整电压( VariableVolt age),故简称 VVVF(装置)。
通过电工理论分析可知,转矩与磁通量(最大值)成正比,在转子参数值一定时,转矩与电源电压的平方成正比。
变频器的工作原理是把市电( 380V、50Hz)通过整流器变成平滑直流,然后利用半导体器件组成的三相逆变器,将直流电变成可变电压和可变频率的交流电,由于采用微处理器编程的正弦脉宽调制( S PWM)方法,使输出波形近似正弦波,用于驱动异步电机,实现无级2/31调速。
变频器技术培训资料

汇报人:日期:CATALOGUE目录•变频器基础概念•变频器技术特性与性能•变频器的应用案例•变频器的安装、调试与维护•变频器的发展趋势与前沿技术•总结与展望01变频器基础概念定义变频器是一种电力调节设备,用于改变交流电机的电源频率和电压,从而实现对电机速度的精确控制。
工作原理变频器通过接收控制信号,调整内部电力电子器件的开关状态,从而改变输出电源的频率和电压。
通过调整电源的频率,可以精确控制电机的转速。
同时,变频器还可以提供过载、过流等保护功能,确保电机的安全运行。
变频器定义与工作原理按电压等级分类可分为V/F控制变频器、矢量控制变频器和直接转矩控制变频器等,各具有不同的控制精度和应用范围。
按控制方式分类按用途分类变频器的分类节能降耗提高生产效率延长设备使用寿命易于实现自动化变频器在工业应用中的重要性02变频器技术特性与性能调速范围宽调速精度高调速平稳030201能量回馈部分变频器支持能量回馈功能,将电动机在制动过程中产生的能量回馈到电网,进一步提高节能效果。
节能效果显著通过调节电动机的运行速度,使其与负载需求相匹配,从而降低电动机的能耗。
高效运行变频器可优化电动机的运行状态,降低其运行电流和铜损,提高运行效率。
短路保护当变频器输出端发生短路时,变频器会迅速切断输出,保护电路免受损坏。
同时,还会发出报警信号,提醒操作人员及时处理故障。
过载能力强变频器通常具有一定的过载能力,能够在短时间内承受超过额定电流的负载,保证电动机正常运行。
过流保护当电动机电流超过设定值时,变频器会自动降低输出频率或切断输出,保护电动机免受损坏。
过热保护变频器内部设有温度传感器,当变频器温度过高时,会自动降低输出频率或切断输出,防止设备过热损坏。
变频器的过载能力及保护特性03变频器的应用案例变频器在风机、泵类负载中的应用节能效果显著运行平稳高精度控制动态响应快简化操作流程变频器在机床主轴控制中的应用故障自诊断网络化控制实现同步控制变频器在自动化生产线中的应用04变频器的安装、调试与维护电源要求安装步骤调试前准备调试步骤日常维护故障排除变频器的日常维护和故障排除05变频器的发展趋势与前沿技术03典型案例分析01高压大容量技术概述02技术挑战与解决方案高压大容量变频器技术1 2 3数字化技术网络化技术智能化技术数字化、网络化与智能化技术模块化设计集成化与模块化的结合集成化设计集成化与模块化设计技术06总结与展望变频器基本原理变频器安装与调试变频器参数设置与优化变频器故障诊断与排除培训内容总结变频器技术应用展望01020304高效节能自动化与智能化行业应用拓展高性能与小型化持续学习实践操作拓展相关知识交流与合作未来学习与发展建议WATCHING。
2024版变频器技术培训课件pptx

调试技巧与经验分享
分享在调试过程中积累的技巧和经验,如如何快速定位问题、如 何解决常见错误等。
17
04
变频器选型、安装与 调试
2024/1/25
18
选型原则及注意事项
负载特性
根据负载类型(如恒转矩、变转矩)、 负载变化范围及启动频率等选择合适 的变频器。
逐一测试各项功能,如正反转、多段速、模 拟量输入/输出等,确保功能正常。
负载试车
常见问题处理
在空载试车正常后,逐步增加负载进行试车, 观察变频器运行情况和负载响应。
针对调试过程中出现的常见问题,如过流、 过压、欠压等,分析原因并采取相应的处理 措施。
2024/1/25
21
05
变频器维护保养与故 障排除
2024/1/25
8
变频器分类及应用领域
新能源领域
如风力发电、太阳能发电等新能源设备的驱动和控制。
其他领域
如楼宇自动化、智能家居等领域的驱动和控制。
2024/1/25
9
02
变频器硬件组成与结 构
2024/1/25
10
主电路结构
整流电路
将交流电转换为直流电, 通常采用三相桥式不可控 整流电路。
2024/1/25
和腐蚀性气体。
2024/1/25
安装空间
预留足够的空间以便于 散热和维护。
电源连接
通讯接口
按照规范连接电源,确 保接地良好,避免电磁
干扰。
根据需要连接通讯接口, 如RS485、CAN等,以 便实现远程控制和监控。
20
调试过程及常见问题处理
参数设置
《变频器使用培训》课件

带载调试
在电机带载的情况下,启 动变频器并检查其运行状 态和电机性能。
参数设置
根据实际需求,通过操作 面板或通讯接口对变频器 的参数进行设置和调整。
变频器的调试方法与参数设置
频率设置
设置变频器的输出频率,以满足电机转速的要求。
控制模式设置
选择适合的控制模式,如速度控制、转矩控制等。
变频器的调试方法与参数设置
恢复正常。
05
安全注意事项
操作变频器的安全规范
01
操作前确保电源已断开 ,避免带电操作引发触 电事故。
02
操作时应佩戴合适的防 护眼镜和手套,防止飞 溅物伤害。
03
操作时禁止吸烟、吃东 西,避免意外事故发生 。
04
操作时应遵循先启动后 加负载的原则,避免设 备损坏或人员伤亡。
安全防护措施与设备
03
变频器的使用与维护
变频器的操作面板介绍
操作面板概述
介绍操作面板的组成和功能,包括显 示屏幕、按键、旋钮等。
按键功能说明
显示屏幕内容解读
解释显示屏幕上的各种参数和状态信 息,如频率、电流、电压、故障代码 等。
详细解释每个按键的功能和使用方法 ,如启动、停止、加速、减速等。
变频器的常用功能与参数设置
电缆连接
按照接线图正确连接电源 和电机电缆,确保接线牢 固、安全。
变频器的安装步骤与注意事项
• 接地处理:按照安全规定进行接地处理,确保设备安全运 行。
变频器的安装步骤与注意事项
注意安全
在安装过程中,务必注意安全, 避免触电等事故发生。
遵守规定
遵守相关国家和地区的电气安全 法规和标准。
变频器的安装步骤与注意事项
某工厂操作工在操作变频器时未断开电源,导致 触电事故发生,造成人员伤亡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变频器培训班内部资料一、变频器基础知识目前应用最为广泛的变频器是交-直-交变频器,主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成。
它的结构图如下:辅助回路部分还包括驱动电路、保护电路、开关电源电路、主控板上通信电路和外部控制电路。
(一)主回路1)整流电路如图1.1所示,通用变频器的官整流电路是由三相桥式整流桥组成。
它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。
三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。
网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。
当电源电压为三相380V时,整流器件的最大反向电压一般为1200—1600V,最大整流电流为变频器额定电流的两倍。
2)滤波电路逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。
同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。
为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。
通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。
另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。
因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。
3)逆变电路逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。
逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。
最常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的三相桥式逆变电路,有规律的控制逆变器中功率开关器件的导通与关断,可以得到任意频率的三相交流输出。
通常的中小容量的变频器主回路器件一般采用集成模块或智能模块。
智能模块的内部高度集成了整流模块、逆变模块、各种传感器、保护电路及驱动电路。
如三菱公司生产的IPMPM50RSA120,富士公司生产的7MBP50RA060,西门子公司生产的BSM50GD120等,内部集成了整流模块、功率因数校正电路、IGBT逆变模块及各种检测保护功能。
模块的典型开关频率为20KHz,保护功能为欠电压、过电压和过热故障时输出故障信号灯。
逆变电路中都设置有续流电路。
续流电路的功能是当频率下降时,异步电动机的同步转速也随之下降。
为异步电动机的再生电能反馈至直流电路提供通道。
在逆变过程中,寄生电感释放能量提供通道。
另外,当位于同一桥臂上的两个开关,同时处于开通状态时将会出现短路现象,并烧毁换流器件。
所以在实际的通用变频器中还设有缓冲电路等各种相应的辅助电路,以保证电路的正常工作和在发生意外情况时,对换流器件进行保护。
(二)辅助回路1)驱动电路驱动电路是将主控电路中CPU产生的六个PWM信号,经光电隔离和放大后,作为逆变电路的换流器件(逆变模块)提供驱动信号。
对驱动电路的各种要求,因换流器件的不同而异。
同时,一些开发商开发了许多适宜各种换流器件的专用驱动模块。
有些品牌、型号的变频器直接采用专用驱动模块。
但是,大部分的变频器采用驱动电路。
从修理的角度考虑,这里介绍较典型的驱动电路。
图二是较常见的驱动电路(驱动电路电源见图2.3)。
驱动电路由隔离放大电路、驱动放大电路和驱动电路电源组成。
三个上桥臂驱动电路是三个独立驱动电源电路,三个下桥臂驱动电路是一个公共的驱动电源电路。
2)保护电路当变频器出现异常时,为了使变频器因异常造成的损失减少到最小,甚至减少到零。
每个品牌的变频器都很重视保护功能,都设法增加保护功能,提高保护功能的有效性。
图四所示的电路是较典型的过流检测保护电路。
由电流取样、信号隔离放大、信号放大输出三部分组成。
3)开关电源电路开关电源电路向操作面板、主控板、驱动电路及风机等电路提供低压电源。
图五富士G11型开关电源电路组成的结构图。
直流高压P端加到高频脉冲变压器初级端,开关调整管串接脉冲变压器另一个初级端后,再接到直流高压N端。
开关管周期性地导通、截止,使初级直流电压换成矩形波。
由脉冲变压器耦合到次级,再经整流滤波后,获得相应的直流输出电压。
它又对输出电压取样比较,去控制脉冲调宽电路,以改变脉冲宽度的方式,使输出电压稳定。
4)主控板上通信电路当变频器由可编程(PLC)或上位计算机、人机界面等进行控制时,必须通过通信接口相互传递信号。
图六是LG变频器的通讯接口电路。
频器通信时,通常采用两线制的RS485接口。
西门子变频器也是一样。
两线分别用于传递和接收信号。
变频器在接收到信号后传递信号之前,这两种信号都经过缓冲器A1701、75176B等集成电路,以保证良好的通信效果。
所以,变频器主控板上的通信接口电路主要是指这部分电路,还有信号的抗干扰电路。
5)外部控制电路变频器外部控制电路主要是指频率设定电压输入,频率设定电流输入、正转、反转、点动及停止运行控制,多档转速控制。
频率设定电压(电流)输入信号通过变频器内的A/D转换电路进入CPU。
其他一些控制通过变频器内输入电路的光耦隔离传递到CPU中。
二、变频器的参数设置常用变频器在使用中,是否能满足传动系统的要求,变频器的参数设置非常重要,如果参数设置不正确,会导致变频器不能正常工作。
一般出厂时,厂家对每一个参数都有一个默认值,这些参数叫工厂值。
在这些参数值的情况下,用户能以面板操作方式正常运行的,但以面板操作并不满足大多数传动系统的要求。
所以,用户在正确使用变频器之前,要对变频器参数时从以下几个方面进行:(1)确认电机参数,变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
(2)变频器采取的控制方式,即速度控制、转距控制、PID控制或其他方式。
采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
(3)设定变频器的启动方式,一般变频器在出厂时设定从面板启动,用户可以根据实际情况选择启动方式,可以用面板、外部端子、通讯方式等几种。
(4)给定信号的选择,一般变频器的频率给定也可以有多种方式,面板给定、外部给定、外部电压或电流给定、通讯方式给定,当然对于变频器的频率给定也可以是这几种方式的一种或几种方式之和。
正确设置以上参数之后,变频器基本上能正常工作,如要获得更好的控制效果则只能根据实际情况修改相关参数。
三、变频器故障诊断(一)、参数设置类故障一旦发生了参数设置类故障后,变频器都不能正常运行,一般可根据说明书进行修改参数。
如果以上不行,最好是能够把所有参数恢复出厂值,然后按上述步骤重新设置,对于每一个公司的变频器其参数恢复方式也不相同,可参照说明书操作。
(二)、过压类故障变频器的过电压集中表现在直流母线的支流电压上。
正常情况下,变频器直流电为三相全波整流后的平均值。
若以380V线电压计算,则平均直流电压Ud= 1.35 U线=513V。
在过电压发生时,直流母线的储能电容将被充电,当电压上至760V左右时,变频器过电压保护动作。
因此,变频器来说,都有一个正常的工作电压范围,当电压超过这个范围时很可能损坏变频器,常见的过电压有两类。
1、输入交流电源过压:这种情况是指输入电压超过正常范围,一般发生在节假日负载较轻,电压升高或降低而线路出现故障,此时最好断开电源,检查、处理。
2、发电类过电压:这种情况出现的概率较高,主要是电机的同步转速比实际转速还高,使电动机处于发电状态,而变频器又没有安装制动单元,有两起情况可以引起这一故障。
(1)当变频器拖动大惯性负载时,其减速时间设的比较小,在减速过程中,变频器输出的速度比较快,而负载靠本身阻力减速比较慢,使负载拖动电动机的转速比变频器输出的频率所对应的转速还要高,电动机处于发电状态,而变频器没有能量回馈单元,因而变频器支流直流回路电压升高,超出保护值,出现故障,而纸机中经常发生在干燥部分,处理这种故障可以增加再生制动单元,或者修改变频器参数,把变频器减速时间设的长一些。
增加再生制动单元功能包括能量消耗型,并联直流母线吸收型、能量回馈型。
能量消耗型在变频器直流回路中并联一个制动电阻,通过检测直流母线电压来控制功率管的通断。
并联直流母线吸收型使用在多电机传动系统,这种系统往往有一台或几台电机经常工作于发电状态,产生再生能量,这些能量通过并联母线被处于电动状态的电机吸收。
能量回馈型的变频器网侧变流器是可逆的,当有再生能量产生时可逆变流器就将再生能量回馈给电网。
(2)多个电动施动同一个负载时,也可能出现这一故障,主要由于没有负荷分配引起的。
以两台电动机拖动一个负载为例,当一台电动机的实际转速大于另一台电动机的同步转速时,则转速高的电动机相当于原动机,转速低的处于发电状态,引起故障。
在纸机经常发生在榨部及网部,处理时需加负荷分配控制。
可以把处于纸机传动速度链分支的变频器特性调节软一些。
(三)、过流故障过流故障可分为加速、减速、恒速过电流。
其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。
这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。
如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
[备注]:(a)重新起动时,一升速就跳闸。
这是过电流十分严重的表现,主要原因有:1)负载侧短路2)工作机械卡住3)逆变管损坏4)电动机的起动转矩过小,拖动系统转不起来(b)重新起动时并不立即跳闸,而是在运行过程中跳闸,可能的原因有:1)升速时间设定太短2)降速时间设定太短3)转矩补偿设定较大,引起低速时空载电流过大4)电子热继电器整定不当,动作电流设定得太小,引起误动作(四)、过载故障过载故障包括变频过载和电机器过载。
其可能是加速时间太短,直流制动量过大、电网电压太低、负载过重等原因引起的。
一般可通过延长加速时间、延长制动时间、检查电网电压等。
负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。
如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
(五)、其他故障1、欠压:说明变频器电源输入部分有问题,a 电源电压过低, b 电源断相,c 整流桥故障,需检查后才可以运行。
2、温度过高:如电动机有温度检测装置,检查电动机的散热情况;变频器温度过高,检查变频器的通风情况。
3、电动机不转的原因分析:(1)功能预置不当a上限频率与最高频率或基本频率和最高频率设定矛盾b使用外接给定时,未对"键盘给定/外接给定"的选择进行预置c其他的不合理预置(2)在使用外接给定时,无"起动"信号(3)其它原因:a机械有卡住现象b电动机的起动转矩不够c变频器的电路故障四、变频器维修检测常用方法在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。