2018-2019学年度河北省保定市容城县第一学期期末质量检测(八年级数学试题)

合集下载

2018-2019学年度第一学期期末调研考试八年级数学试卷

2018-2019学年度第一学期期末调研考试八年级数学试卷

2018-2019学年度第一学期期末调研考试八年级数学试卷一、 选择题(本题共16小题,总分42分。

1~10小题,每题3分;11~16小题,每题2分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

请将正确选项的代号填写在下面的表格中)1.下列长度的各组线段中,能构成三角形的是( )A .3,4,5B .2,2,4C .1,2,3D .2,3,62. 下面有4个汽车标志图案,其中不是轴对称图形的是( )A .B .C .D .3.若等腰三角形的周长为26cm ,底边为11cm ,则腰长为( ) A .11cm B .11cm 或7.5cmC . 7.5cmD .以上都不对4.已知x 2+kxy+16y 2是一个完全平方式,则k 的值是( )A .8B .±8C .16D .±165.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( ) A .3 B .4 C .5 D .86.下列分式不是最简分式的是( ) A .B .C .D .7.计算(﹣a ﹣b)2等于( )A.a 2+b 2B.a 2﹣b 2C.a 2+2ab+b 2D.a 2﹣2ab+b 28. 如图, ∠AOB 是一个任意角,在边OA 、OB 上分别取点M 、N ,使OM=ON 。

移动角尺,使角尺两边相同的刻度分别与M 、N 重合。

则过角尺顶点C 的射线OC 便是∠AOB 平分线。

这里的根据是( )A .SASB .ASAC .HLD .SSS9. 下列运算正确的是( ) A.235326a a a ⋅= B. 33144a a a +=C. D. 2)22a b a b -+=-+(10.如图,一艘轮船位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的距离为( ) A .40海里 B .60海里 C .70海里 D .80海里 11.如图,∠DAE=∠ADE=15°,DE ∥AB ,DF ⊥AB ,若AE=8,则DF 等于( )A.5B.4C.3D.2 12.张老师和李老师住在同一个小区,离学校米。

2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测八年级数学参考答案一、选择题 (每小题3分,共36分。

每小题只有一个选项符合题意)二、填空题(每小题3分,共15分。

每小题只填写最后结果)13. 5个14. 112°15. 2 16. 42 17. (﹣2,5)三、解答题(共7小题,共69分。

解答应写出必要的步骤)18.(本题满分8分,每小题4分)解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,……………………3分经检验x=﹣3是原方程的根;…………………………………………………4分(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,………………………………3分经检验x=2是增根,分式方程无解.…………………………………………4分19.(本题满分8分,(1)题3分,(2)题5分)(1)原式= •= ﹣•= ……………………3分(2)原式=﹣=…………………………………………………………3分当m=﹣12时,原式=53………………………………………………………5分20.(本题满分7分)解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:﹣=1,……………………………………………………3分解得x=250.经检验:x=250,是分式方程的解,且符合题意.………………………4分所以,D31的平均速度250千米/时.……………………………………5分(2)G377的性价比==0.75 D31的性价比==0.94,…………7分∵0.94>0.75 ∴为了G377的性价比达到D31的性价比,建议降低G377票价.……………………………………………………………………………8分21.(本题满分8分)(1)如图所示△A′B′C′……………………………………………3分(2)A′(2,3)、B′(3,1)、C′(-1,2) ……………………………………………6分(3)如图所示P点即为所求找到点B关于x轴的对称点B′′,连接AB′′交x轴于点P,此时P A+PB的值最小.………………………………………………………8分22.(本题满分8分)(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;…………………4分(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.……………………8分23.(本题满分8分)解:(1)服装项目的权是:1﹣20%﹣30%﹣40%=10%;……………………………2分(2)小亮在选拔赛中四个项目所得分数的众数是85,…………………………3分中位数是:(80+85)÷2=82.5;…………………………………………………4分(3)小亮得分为:85×10%+70×20%+80×30%+85×40%=80.5,小颖得分为:90×10%+75×20%+75×30%+80×40%=78.5,……………………6分∵80.5>78.5,∴小亮的演讲成绩好,故选择小亮参加“不忘初心,永远跟党走”主题演讲比赛.……………………8分24.(本题满分10分)(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.………………………………………………………3分在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;……………………………………………………………………………5分(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.……………………………………………………………………8分在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.……………………………………………………………………………10分25.(本题满分12分)解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵BC=7cm,BP=5cm,∴PC=2cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS);………3分(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=90°.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;…………………8分(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=2cm,∴PC=BC﹣BP=5cm,∴CD=CP=5cm. ………………………………12分。

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上期末测试数学卷一、选择题(本题共6个小题,每小题2分,共12分) 1.以长为3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,能构成三角形的情况有( )A.1种B.2种C.3种D.4种2.已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C. 50°或80°D. 40°或65°3.下列运算正确的是( )A .623a a a ÷=B .222a b 2a b a b +-- ()()=2C .235a a a -= ()D .5a 2b 7ab +=4.下面式子从左边到右边的变形是因式分解的是( )A. 2x x 2x x 12--=--()B. 22a b a b a b +-=- ()()C. 2x 4x 2x 2-=+- ()()D. 1x 1x 1x -=-()5.下列因式分解正确的是( )A. 2x xy x x x y -+=-()B. 3222a 2a b ab a a b -+=-()C. 22x 2x 4x 13-+=-+()D. 2ax 9a x 3x 3-=+- ()()6.△ABC 中AB 边上的高,下列画法中正确的是( )A. B. C. D.二、填空题(本题共8个小题;每小题3分,共24分)7.若2x 2a 3x 16+-+()是完全平方式,则a = _ _ .8.禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为m .9.如果分式x 1x 1--的值为零,那么x = . 10.我们已经学过用面积来说明公式.如222x 2xy y x y ++=+()就可以用下图甲中的面积来说明.请写出图乙的面积所说明的公式:x 2+(p +q )x +pq = ___ ____ .11.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A =100°,则∠1+∠2+∠3+∠4= .12.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为 ____ .13.如图,△ABC 中∠C =90°,AB 的垂直平分线DE 交BC 于点E ,D 为垂足,且EC =DE ,则∠B 的度数为 .14.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为 .三、解答题(本题共4个小题;每小题5分,共20分)15.计算:220122013012 1.5201423----⨯+()()().16 计算: 23y z 2y z z 2y --+-+()()()17 计算: 2223322m n 3m n 4n ---÷ ()18.解方程2313x 16x 2-=--四、解答题(本题共4个小题;每小题7分,共28分)19.先化简,再求值:22x4x4x x1 x4x2x2-+--÷-++(),其中x =-3.20. 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.21. 列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.22. 已知:如图∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.(保留作图痕迹,不写做法)23. 在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.24.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD(2)BE⊥AC25.我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:①如果一个三角形的一条中线和一条高相互重合,则这个三角形是等腰三角形.②如果一个三角形的一条高和一条角平分线相互重合,则这个三角形是等腰三角形.③如果一个三角形的一条中线和一条角平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很容易证明猜想①的正确性.现请你帮助小明判断:(1)他的猜想②是命题(填“真”或“假”).(2)他的猜想③是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.26.如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,以相同的速度分别由A向B、由C向A爬行,经过t分钟后,它们分别爬行到了D、E处.设在爬行过程中DC与BE的交点为F.(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.八年级数学第一学期试题参考答案及评分标准一、选择题:二、填空题:7.7或-1; 8.71.0210-⨯; 9.-1; 10.(x+p )(x+q ); 11.280°; 12.2; 13.30°; 14.10°三、解答题:(共46分)15.原式=4- 1.5+1 …………………2分=3.5 …………………3分16. 23y z 2y z z 2y --+-+()()()=22223y 2yz z 4y z -+--()()…………………2分 =22y 6yz 4z --+ …………………4分172223322m n 3m n 4n ---÷ () =443324m n 3m n 4n ---⋅÷ …………………5分=434323m n --+--() …………………7分=3mn …………………8分 18. 解:22x 4x 4x x 1x 4x 2x 2-+--÷-++() =x 2x x 1x+2x 2x 2---÷++() …………………2分 =2x 1-- …………………4分 当x =-3时,原式=12. …………………5分 19. 解:方程两边同时乘以2(3x ﹣1),得4﹣2(3x ﹣1)=3, …………………2分解得 x=. …………………3分检验:x=时,2(3x ﹣1)=2×(3×﹣1)≠0所以,原分式方程的解为x=. …………………5分20. 解:∵AD 是高 ∴∠ADC=90° ……………1分∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20° ………2分∵∠BAC=50°,∠C=70°,AE 是角平分线∴∠BAO=25°,∠ABC=60° ……………4分 ∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ……………5分 ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125°. ……………6分21. 解:设骑自行车的速度是x 千米/小时,154015x 603x-= ……………3分 解得 x=15 ……………4分 经检验x=15是方程的解.答:骑自行车的同学的速度是15千米/小时. ……………6分22.①做出角平分线 (2)②做出MN 的垂直平分线 (4)③下结论...............得1分(共计7分)23.(1)S △ABC =72721=××.........3分 (2)画出正确的图形...........3分(3)写出点A (-1,3) A 1(1,3)... 1分24.. 证明:(1)∵AD ⊥BC∴∠ADC=∠ADB=90° ........1分又∵∠ACB=45°∴∠DAC=45° ............2分∴∠ACB=∠DAC ...........3分∴AD=CD ..................4分又∵∠BAD=∠FCD∠ADB=∠FDC∴△ABD ≌△CFD ..............5分(2)∵△ABD ≌△CFD ∴BD=FD ................6分∴∠1=∠2 ............... 7分又∵∠FDB=90°∴∠1=∠2=45°.............又∵∠ACD=45°∴△BEC中,∠BEC=90° .......∴BE⊥AC ...................8分25. 解:(1)真. ……………1分(2)已知:在△ABC中,D为BC的中点,AD平分∠BAC.求证:△ABC是等腰三角形. ……………2分证明:作DE⊥AB,DF⊥AC,垂足分别为E、F,……3分∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,∵D为BC的中点∴CD=BD,∴Rt△CFD≌Rt△BED(HL),…………5分∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形. …………6分26. 解:(1)有全等三角形:△ACD≌△CBE;△ABE≌△BCD. ……2分证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴∠A=∠BCE=60°,CE=AD.在△ACD和△CBE中,,∴△ACD≌△CBE. …………4分(2)DC和BE所成的∠BFC的大小保持120°不变.………5分证明:∵由(1)知△ACD≌△CBE,∠ACB=60°∴∠FBC+∠BCD=∠ACD+∠BCD=∠ACB=60°∴∠BFC=180°﹣(∠FBC+∠BCD) =120°.…………7分- 11 -。

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷命题人:xxx审题人:xxx考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.下面四个数中无理数是()A.0.B.C.D.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,954.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.25的平方根是,16的算术平方根是,﹣27的立方根是.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9= .12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为.13.(1)计算:|﹣|+3﹣2+(2)解方程组:14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?六、(本大题共12分)23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.参考答案与试题解析一.选择题(共6小题)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:点(2018,﹣1)所在象限为第四象限.故选:D.【点评】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.2.下面四个数中无理数是()A.0.B.C.D.【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、=3,不是无理数,故本选项不符合题意;D、是无理数,故本选项符合题意;故选:D.【点评】本题考查了无理数的定义和算术平方根,能理解无理数的定义的内容是解此题的关键,注意:无理数有:①开方开不尽的根式,②含π的,③一些有规律的数.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,95【分析】先根据平均数求得a的值,再将数据从小到大重新排列,继而利用中位数和众数的定义求解可得.【解答】解:∵这6位同学的平均成绩是90,∴85+95+72+100+93+a=6×90,解得:a=95,则这组数据从小到大重新排列为72、85、93、95、95、100,所以这组数据的中位数为=94,众数为95,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.【点评】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:D.【点评】考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.【分析】根据一次函数y=kx+b中的k、b的取值范围,确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx+b中,k<0,b<0,∴该直线必经过二、四象限,且与y轴负半轴相交.故选:B.【点评】主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二.填空题(共6小题)7.25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3.【分析】根据立方根、平方根、算术平方根的定义求出即可.【解答】解:25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3,故答案为:±5,4,﹣3.【点评】本题考查了立方根、平方根、算术平方根的定义,能熟记立方根、平方根、算术平方根的定义的内容是解此题的关键.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是﹣2.【分析】根据关于y轴对称的点,横坐标互为相反数,纵坐标相等,可得m,n的值,再代入计算可得.【解答】解:∵点A(m+1,2)与点B(4,n﹣1)关于y轴对称,∴m+1=﹣4,2=n﹣1,解得:m=﹣5,n=3,则m+n=﹣5+3=﹣2,故答案为:﹣2.【点评】本题考查了关于x,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为7.2.【分析】先用勾股定理求出直角边BC的长度,再用面积就可以求出斜边上的高.【解答】解:在Rt△ABC中,∵∠C=90°,AB=15,AC=12,∴BC==9,=AC•BC=AB•CD,由面积公式得:S△ABC∴CD===7.2.故斜边AB上的高CD的长为7.2.故答案为:7.2.【点评】本题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为15°或35°.【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,相减即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=60°,∴∠BAD=90°﹣60°=30°,∵∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵AE是△ABC角平分线,∴∠BAE=∠BAC=45°,∴∠DAE=∠BAE﹣∠BAD=15°,故答案为:15°或35°【点评】本题主要考查对三角形的内角和定理,三角形的角平分线等知识点的理解和掌握,能正确画图和求出∠BAE、∠BAD的度数是解此题的关键.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=24.【分析】按照定义新运算x*y=ax+by+1,用已知的两个式子建立方程组,求得a,b的值后,再求5*9的值【解答】解:根据题意知,解得:,则x*y=x+2y+1,所以5*9=5+2×9+1=24,故答案为:24.【点评】本题是新定义题,考查了定义新运算,解方程组.要注意运算顺序与运算符号.12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为(1,1)或(,)或(2,2).【分析】分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P2的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论.【解答】解:∵点A的坐标为(2,0),∴OA=2.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=2,∴点P1的坐标为(1,1);②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形.∵OP2=OA=2,∴OB=BP2=,∴点P2的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=2,∴AP3=OA=2,∴点P3的坐标为(2,2).综上所述:点P的坐标为(1,1)或(,)或(2,2).故答案为:(1,1)或(,)或(2,2).【点评】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.三.解答题(共11小题)13.(1)计算:|﹣|+3﹣2+(2)解方程组:【分析】(1)根据绝对值和二次根式的加减法可以解答本题;(2)根据解二元一次方程组的方法可以解答此方程组.【解答】解:(1)|﹣|+3﹣2+==;(2)②﹣①×2,得x=6,将x=6代入①,得y=﹣3,故原方程组的解是.【点评】本题考查实数的运算、解二元一次方程组,解答本题的关键是明确它们各自的计算方法.14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象的平移规律,可得平移后的解析式,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将x=2,y=﹣2代入函数解析式,得2k﹣4=﹣2,解得k=1,一次函数的解析式为y=x﹣4;(2)一次函数y=x﹣4的图象向上平移3个单位,得y=x﹣1.当y=0时,x﹣1=0,解得x=1,平移后的图象与x轴的交点的坐标(1,0).【点评】本题考查了一次函数图象与几何变换,解(1)的关键是待定系数法,解(2)的关键是利用函数图象的平移规律.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.【分析】先证AC∥DF得∠C=∠DEC,结合∠C=∠F可证CE∥BF,得∠2=∠3,根据∠1=∠3可得证.【解答】证明:∠1=∠2,理由:∵∠A=∠D,∴AC∥DF,∴∠C=∠DEC,∵∠C=∠F,∴∠F=∠DEC,∴CE∥BF,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.【点评】本题主要考查平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行,内错角相等⇔两直线平行,同旁内角互补⇔两直线平行.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.【分析】本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.【解答】解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×3×6+×(4+6)×3+×2×4=28.故四边形ABCD的面积为28.【点评】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【分析】(1)根据点A的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A,B,C关于x轴的对称点A′,B′,C′,连接A′B′,B′C′,C′A′则△A′B′C′即为所求.【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?【分析】设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了222吨,得出等式(1+5%)y+(1+15%)x=222,进而组成方程组求出答案.【解答】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则80×(1+5%)=84(吨),120×(1+15%)=138(吨),答:农场去年实际生产玉米84吨,小麦138吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:∵在Rt△ABC中,∠C=90°,∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?【分析】(1)由折线统计图得出具体数据,再根据中位数、众数和平均数的定义求解可得;(2)根据平均数、众数、中位数及方差的意义求解,只要合理即可.【解答】解:(1)a=×(6×2+7×7+9)=7,b=8,c=7,s2=×[(9﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(6﹣8)2+(8﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(8﹣8)2]=1.8.(2)∵甲的平均成绩、中位数与众数比乙的都高,∴应选甲运动员.【点评】本题考查的是折线统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.【分析】(1)根据题意和函数图象可以解答本题;(2)根据函数图象中的数据可以求得与x之间的函数表达式;(3)将x=4代入(2)中的函数解析式即可解答本题.【解答】解:(1)不相同,理由:因为去时用了2小时,返回时用了2.5小时,所以辆汽车的往返速度不相同;(2)设返回过程中y与x之间的函数关系式为y=kx+b,,解得,,∴y=﹣48x+240(2.5≤x≤5);(3)当x=4时,y=﹣48×4+240=48,答:这辆汽车从甲地出发4(小时)时与甲地的距离是48千米.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD==240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为1;若点F为完美点,且横坐标为3,则点F的纵坐标为2;(2)完美点P在直线y=x﹣1(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.【分析】(1)把m=2和3分别代入m+n=,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【解答】解:(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即==2,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(1,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x﹣1;(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,∴,解得:,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x ﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴∵,∴又∵,∴BC=1,∴S=BC×BM==.△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.。

《试卷3份集锦》河北省名校2018-2019年八年级上学期期末质量跟踪监视数学试题

《试卷3份集锦》河北省名校2018-2019年八年级上学期期末质量跟踪监视数学试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中,无理数的是( )A .03B .3.1010010001C .39D .2549【答案】C【分析】根据无理数的定义对每个选项依次判断即可.【详解】A . 03=1,是有理数,不符合题意B . 3.1010010001,是有限小数,属于有理数,不符合题意C . 39=2.0800838⋯⋯,是无限不循环小数,属于无理数,符合题意D . 255497=,分数属于有理数,不符合题意 故选:C【点睛】本题考查了无理数的定义,无限不循环小数是无理数.2.如图的七边形ABCDEFG 中,AB ,ED 的延长线相交于O 点,若图中∠1,∠2,∠3,∠4的外角的角度和为220°,则∠BOD 的度数为何?( )A .40°B .45°C .50°D .60°【答案】A 【分析】根据外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为220°,∴∠1+∠2+∠3+∠4+220°=4×180°,∴∠1+∠2+∠3+∠4=500°,∵五边形OAGFE 内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD =540°,∴∠BOD =540°﹣500°=40°,故答案为A.【点睛】本题主要考查的是多边形内角与外角的知识点,熟练掌握多边形内角与外角的关系是本题的解题关键. 3.在下面数据中,无理数是( )A B C .203 D .0.585858… 【答案】A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:4=,是整数,属于有理数,故本选项不合题意; C.203是分数,属于有理数,故本选项不合题意; D.0.585858…是循环小数,属于有理数,故本选项不合题意.故选:A.【点睛】此题考查无理数的定义,解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.下列各点在函数2y x =图象上的是( )A .()3,6B .()4,16-C .()1,1--D .()4,6【答案】A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把()3,6代入解析式得:223 6.y x ==⨯=符合题意,而()4,16-,()1,1--,()4,6均不满足解析式,所以不符合题意.故选A .【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.5.一次函数2y kx =-的图象经过点()1,0-,则该函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】根据题意,易得k ﹤0,结合一次函数的性质,可得答案.【详解】解:∵一次函数2y kx =-的图象经过点()1,0-,∴0=-k-2∴k=-2,∴k<0,b<0,即函数图象经过第二,三,四象限,故选A .【点睛】本题考查一次函数的性质,注意一次项系数与函数的增减性之间的关系.6.方程1325y x x y =-⎧⎨+=⎩的公共解是( ) A .32x y =⎧⎨=⎩ B .34x y =-⎧⎨=⎩ C .32x y =⎧⎨=-⎩ D .32x y =-⎧⎨=-⎩ 【答案】C【分析】此题要求公共解,实质上是解二元一次方程组1325y x x y =-⎧⎨+=⎩. 【详解】把方程y=1﹣x 代入1x+2y=5,得1x+2(1﹣x )=5,解得:x=1.把x=1代入方程y=1﹣x ,得y=﹣2.故选C .【点睛】这类题目的解题关键是掌握方程组解法,此题运用了代入消元法.7.在平面直角坐标系中,点(),1A a 与点()2,B b -关于x 轴对称,则(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【分析】直接利用关于x 轴对称点的性质得出a,b 的值,进而根据a,b 的符号判断(),a b 在第几象限.【详解】解:∵点(),1A a 与点()2,B b -关于x 轴对称,∴2,1a b =-=-∴点(),a b 在第三象限,故答案选C .【点睛】本题主要考查关于x 轴对称点的坐标的特点,关键是掌握点的坐标的变化规律. 8.已知一个多边形的每个内角都等于9007︒⎛⎫ ⎪⎝⎭,则这个多边形一定是( ) A .七边形 B .正七边形 C .九边形 D .不存在【答案】A【分析】直接利用多边形内角和定理即可求解.【详解】解:设这个多边形的边数为n,则(n-2)×180°=9007︒⎛⎫⎪⎝⎭n解得:n=7故选:A【点睛】本题主要考查多边形内角和定理,关键要掌握多边形内角和定理:n边形的内角和是(n-2)×180°(n≥3,且n为整数).9.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,AP=5,点F在边AB上运动,当运动到某一位置时△FAP面积恰好是△EAP面积的2倍,则此时AF的长是()A.10 B.8 C.6 D.4【答案】B【分析】过P作PM⊥AB于M,根据角平分线性质求出PM=3,根据已知得出关于AF的方程,求出方程的解即可.【详解】过P作PM⊥AB于M,∵点P是∠BAC的平分线AD上一点,PE⊥AC于点E,且PE=3,∴PM=PE=3,∵AP=5,∴AE=4,∵△FAP面积恰好是△EAP面积的2倍,∴12×AF×3=2×12×4×3,∴AF=8,故选B.考点:角平分线的性质.10.在平面直角坐标系中,有A (2,﹣1),B (0,2),C (2,0),D (﹣2,1)四点,其中关于原点对称的两点为( )A .点A 和点BB .点B 和点C C .点C 和点D D .点D 和点A【答案】D【分析】直接利用关于原点对称点的特点:纵横坐标均互为相反数得出答案.【详解】∵A (2,﹣1),D (﹣2,1)横纵坐标均互为相反数,∴关于原点对称的两点为点D 和点A .故选:D .【点睛】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.二、填空题11.a ,b ,c 为ΔABC 的三边,化简|a-b-c |-|a+b-c |+2a 结果是____.【答案】2c【分析】根据三角形三边关系,确定a-b-c ,a+b-c 的正负,然后去绝对值,最后化简即可.【详解】解:∵a ,b ,c 为ΔABC 的三边∴a-b-c=a-(b+c )<0,a+b-c=(a+b )-c >0∴|a-b-c |-|a+b-c |+2a=-(a-b-c )-(a+b-c )+2a=b+c-a-a-b+c+2a=2c【点睛】本题考查了三角形三边关系的应用,解答的关键在于应用三角形的三边关系判定a-b-c ,a+b-c 的正负. 12.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,若AD =3,BE =1,则DE =_________.【答案】2【分析】根据余角的性质,可得∠DCA 与∠CBE 的关系,根据AAS 可得△ACD 与△CBE 的关系,根据全等三角形的性质,可得AD 与CE 的关系,根据线段的和差,可得答案.【详解】∵,AD CE BE CE ⊥⊥90ADC BEC ︒∴∠=∠=90,90BCE CBE BCE CAD ︒︒∠+∠=∠+∠=∴DCA CBE ∠=∠在△ACD 和△CBE 中:ACD CBE ADC CEB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ACD CBE AAS ∴≌∴3,1CE AD CD BE ====∴312DE CE CD =-=-=故答案是2.【点睛】本题考查了全等三角形的判定余角的性质,解决本题的关键是熟练掌握三角形全等的判定方法. 13.如图,将AOB ∆绕点O 旋转90°得到A O B '''∆,若点A 的坐标为(),a b ,则点A '的坐标为__________.【答案】(),b a -【分析】根据点A 的坐标得出点A 到x 轴和y 轴的距离,以此得出旋转后A '到x 轴和y 轴的距离,得出A '的坐标.【详解】已知点A 的坐标为(),a b ,点A 到x 轴的距离为b ,点A 到y 轴的距离为a ,将点A 绕点O 旋转90°得到点A ',点A '到x 轴的距离为a ,点A '到y 轴的距离为b ,点A '在第二象限,所以点A '的坐标为(),b a -.故答案为:(),b a -.【点睛】本题考查了坐标轴上的点绕原点旋转的问题,熟练掌握计算变化后的点的横坐标和纵坐标是解题的关键. 14.已知函数1()1f x x =+,则2f =______. 21 【分析】根据所求,令2x .【详解】令2x =,则()2122112(12)(21)f-===-++-. 【点睛】 本题考查了函数的定义,已知函数解析式,当x a =时,将其代入解析式即可得()f a ,本题需注意的是,12+不是最简式,需进行化简得出最后答案. 15.如图,小量角器的零度线在大量角器的零度线上,且小量角器的中心在大量角器的外缘边上.如果它们外缘边上的公共点P 在小量角器上对应的度数为65°,那么在大量角器上对应的度数为_____度(只需写出0°~90°的角度).【答案】1.【解析】设大量角器的左端点是A ,小量角器的圆心是B ,连接AP ,BP ,则∠APB=90°,∠ABP=65°,因而∠PAB=90°﹣65°=25°,在大量角器中弧PB 所对的圆心角是1°,因而P 在大量角器上对应的度数为1°.故答案为1.16.函数1y=x 2-中,自变量x 的取值范围是 ▲ . 【答案】x 2≠.【解析】试题分析:由已知:x-2≠0,解得x≠2;考点:自变量的取值范围.17.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.【答案】()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标特征.三、解答题18.先化简,再求值:1﹣2x y x y -+÷222244x xy y x y -+-,其中x =﹣2,y =12. 【答案】﹣2y x y -,16.【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,之后将x 、y 代入计算即可求得答案.【详解】解:原式=1﹣()()()22122x y x y x y x y x y x y x y +---⋅=-+--=﹣2y x y -, 当x =﹣2,y =12时,原式=16. 【点睛】本题考查了分式的化简求值,熟练的掌握分式的运算法则是解本题的关键,在解题的时候,要注意式子的整理和约分.19.已知:点O 到△ABC 的两边AB ,AC 所在直线的距离相等,且OB=OC .(1)如图1,若点O 在边BC 上,OE ⊥AB ,OF ⊥AC ,垂足分别为E ,F .求证:AB=AC ;(2)如图,若点O 在△ABC 的内部,求证:AB=AC ;(3)若点O 在△ABC 的外部,AB=AC 成立吗?请画出图表示.【答案】(1)见解析;(2)见解析;(3)不一定成立,见解析.【解析】(1)求证AB=AC ,就是求证∠B=∠C , 利用斜边直角边定理(HL )证明Rt △OEB ≌Rt △OFC 即可;(2)首先得出Rt △OEB ≌Rt △OFC ,则∠OBE=∠OCF ,由等边对等角得出∠OBC=∠OCB ,进而得出∠ABC=∠ACB ,由等角对等边即可得AB=AC ;(3)不一定成立,当∠A 的平分线所在直线与边BC 的垂直平分线重合时,有AB=AC ;否则,AB≠AC .【详解】(1)证明: ∵点O 在边BC 上,OE ⊥AB ,OF ⊥AC ,点O 到△ABC 的两边AB ,AC 所在直线的距离相等,∴OE=OF ,在Rt △OEB 和Rt △OFC 中OB=OC OE=OF⎧⎨⎩∴Rt △OEB ≌Rt △OFC (HL ),∴∠ABC=∠ACB ,∴AB=AC ;(2)证明:过点O 分别作OE ⊥AB 于E ,OF ⊥AC 于F ,由题意知,OE=OF .∠BEO=∠CFO=90°,∵在Rt △OEB 和Rt △OFC 中OB=OC OE=OF ⎧⎨⎩∴Rt △OEB ≌Rt △OFC (HL ),∴∠OBE=∠OCF ,又∵OB=OC ,∴∠OBC=∠OCB ,∴∠ABC=∠ACB ,∴AB=AC ;(3)解:不一定成立,当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB≠AC .(如示例图)【点睛】本题考查全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.20.已知:如图,∠C =∠D=90°,AD ,BC 交于点O .(1)请添加一个合适的条件 ,证明:AC=BD ;(2)在(1)的前提下请用无刻度直尺.....作出△OAB 的角平分线OM .(不写作法,保留作图痕迹)∠=∠(答案不唯一);(2)见解析【答案】(1)CAB DBA【分析】(1)直接根据题意及三角形全等的判定条件可直接解答;(2)如图,延长AC,BD交于点P,连接PO并延长交AB于点M,则可解.∠=∠,【详解】解:(1)∠C =∠D=90°,AB=AB,CAB DBA∴△ACB≌△BDA,∴AC=BD,∠=∠(答案不唯一);故答案为CAB DBA(2)如图,延长AC,BD交于点P,连接PO并延长交AB于点M,则OM即为所求.【点睛】本题主要考查全等三角形的性质与判定及角平分线的尺规作图;熟练掌握全等三角形的性质与判定及角平分线的尺规作图是解题的关键.21.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相対于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象问答问题:(1)①直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系②A与B比较,速度快;③如果一直追下去,那么B(填能或不能)追上A;④可疑船只A速度是海里/分,快艇B的速度是海里/分(2)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(3)15分钟内B能否追上A?为什么?(4)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?【答案】(1)①直线l1,②B,③能,④0.2,0.5;(2)k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,见解析;(4)B能在A逃入公海前将其拦截,见解析【分析】(1)①根据题意和图形,可以得到哪条直线表示B到海岸的距离与追赶时间之间的关系;②根据图2可知,谁的速度快;③根据图形和题意,可以得到B能否追上A;④根据图2中的数据可以计算出可疑船只A和快艇B的速度;(2)根据(1)中的结果和题意,可以得到k1、k2的实际意义,直接写出两个函数的表达式;(3)将t=15代入分别代入S1和S2中,然后比较大小即可解答本题;(4)将12代入S2中求出t的值,再将这个t的值代入S1中,然后与12比较大小即可解答本题.【详解】解:(1)①由已知可得,直线l1表示B到海岸的距离与追赶时间之间的关系;故答案为:直线l1;②由图可得,A与B比较,B的速度快,故答案为:B;③如果一直追下去,那么B能追上A,故答案为:能;④可疑船只A速度是:(7﹣5)÷10=0.2海里/分,快艇B的速度是:5÷10=0.5海里/分,故答案为:0.2,0.5;(2)由题意可得,k1、k2的实际意义是分别表示快艇B的速度和可疑船只的速度,S1=0.5t,S2=0.2t+5;(3)15分钟内B不能追上A,理由:当t=15时,S2=0.2×15+5=8,S1=0.5×15=7.5,∵8>7.5,∴15分钟内B不能追上A;(4)B能在A逃入公海前将其拦截,理由:当S2=12时,12=0.2t+5,得t=35,当t=35时,S1=0.5×35=17.5,∵17.5>12,∴B 能在A 逃入公海前将其拦截.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.先化简,再求值:222111x x x x x x --⎛⎫-+÷ ⎪++⎝⎭,其中x 的值是从23x -<<的整数值中选取. 【答案】1x x-,12 【分析】先对括号内的式子进行通分,然后再约分,将x=2代入化简后的式子计算即可得出答案.【详解】解:原式22111(1)x x x x x x -++=⨯+- 2(1)11(1)x x x x x -+=⨯+- 1x x-= 已知23x -<<的整数有1,012-,,, 分母0x ≠,10x +≠,10x -≠,0x ∴≠,且1x ≠,且1x ≠-,2x ∴=.当2x =时,原式21122-==. 【点睛】本题考查的是分式的化简求值,比较简单,注意代值时要排除掉使分式无意义的值,不要随便代数. 23.如图,在ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,BD CE =. (1)求证:DEF ∆是等腰三角形;(2)当44A ∠=︒时,求DEF ∠的度数.【答案】(1)见解析;(2)68°【分析】(1)根据条件即可证明△BDE ≌△CEF ,由全等三角形的性质得到DE=EF ,即可得DEF ∆是等腰三角形;(2)先求出∠B 的值,由(1)知∠BDE=∠CEF ,由外角定理可得∠DEF=∠B .【详解】(1)证明:∵AB AC =,∴∠B=∠C ,在△BDE 和△CEF 中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△BDE ≌△CEF (SAS ),∴DE=EF ,则DEF ∆是等腰三角形;(2)解:∵44A ∠=︒,AB AC =,∴∠B=∠C=11(180)(18044)6822︒-∠=︒-︒=︒A , 由(1)知△BDE ≌△CEF ,∴∠BDE=∠CEF ,∵∠DEC=∠BDE+∠B ,∴∠CEF+∠DEF=∠BDE+∠B ,即∠BDE+∠DEF=∠BDE+∠B ,∴∠DEF=∠B=68°.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形的外角定理,解题的关键是熟练掌握全等三角形的判定与性质及角度的转换.24.如图,在Rt ABC ∆中,90,2B AC AB ︒∠==.将AB 向上翻折,使点B 落在AC 上,记为点E ,折痕为AD ,再将ADE ∆以AC 为对称轴翻折至AEF ∆,连接FC .(1)证明:AD CD =(2)猜想四边形ADCF 的形状并证明.【答案】(1)见解析;(1)四边形ADCF 为菱形,证明见解析.【分析】(1)根据翻折的性质,先得出AB=AE ,∠AED=90°,再根据AC=1AB ,可得出DE 垂直平分AC ,从而可得出结论;(1)根据折叠的性质以及等边对等角,先求出∠1=∠1=∠3=∠2=30°,从而可得出∠FAB=90°,进而推出AF ∥CD ,再由边的等量关系,可证明四边形ADCF 为菱形.【详解】(1)证明:由轴对称得性质得,∠B=90°=∠AED,AE=AB,∵AC =1AB,∴ED为AC的垂直平分线,∴AD=CD;(1)解:四边形ADCF为菱形.证明如下:∵AD=CD,∴∠1=∠1.由轴对称性得,∠1=∠3,∠1=∠2.∵∠B=90°,∴∠1=∠1=∠3=∠2=30°,∴∠FAB=90°,∴AF∥CD,AF=AD=CD,∴四边形ADCF为菱形.【点睛】本题主要考查轴对称的性质,垂直平分线的性质,菱形的判定等知识,掌握相关性质与判定方法是解题的关键.25.莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x (元)是一次函数关系,如图所示.(1)求销售量y与定价x之间的函数关系式;(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.【答案】(1)y=﹣2x+1(2)18元【分析】(1)由图象可知y与x是一次函数关系,由函数图象过点(11,10)和(15,2),用待定系数法即可求得y与x的函数关系式.(2)根据(1)求出的函数关系式,再求出每件该商品的利润,即可求得求超市每天销售这种商品所获得的利润.【详解】解:(1)设y=kx+b (k≠0),由图象可知,11k b 1015k b 2+=⎧⎨+=⎩,解得k 2b 32=-⎧⎨=⎩∴销售量y 与定价x 之间的函数关系式是:y=﹣2x+1.(2)超市每天销售这种商品所获得的利润是:W=(﹣2×13+1)(13﹣10)=18八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.关于x 的一元二次方程23(5)0x k x k +--=的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】利用根的判别式确定一元二次方程根的情况.【详解】解:24b ac ∆=- ()()2543k k =--⨯⋅-2225k k =++22124k k =+++ ()21240k =++>∴一元二次方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的根的判别式,解题的关键是掌握利用根的判别式确定方程根的情况的方法. 2.以下列长度的线段为边,可以作一个三角形的是( )A .6cm ,16cm ,21cmB .8cm ,16cm ,30cmC .6cm ,16cm ,24cmD .8cm ,16cm ,24cm 【答案】A【分析】利用两条短边之和大于第三边来逐一判断四个选项给定的三条边长能否组成三角形,此题得解.【详解】A 、∵6+16=22>21,∴6、16、21能组成三角形;B 、∵8+16=24<30,∴8、16、30不能组成三角形;C 、∵6+16=22<24,∴6、16、24不能组成三角形;D 、∵8+16=24,∴8、16、24不能组成三角形.故选:A .【点睛】本题考查了三角形三边关系,牢记三角形的三边关系是解题的关键.3.已知a ,b ,c 是ABC ∆的三条边长,则22()a b c --的值是( )A .正数B .负数C .0D .无法确定 【答案】B【分析】利用平方差公式将代数式分解因式,再根据三角形的三边关系即可解决问题.【详解】解:∵(a−b)2−c 2=(a−b+c)(a−b−c),∵a+c>b ,b+c>a ,∴a−b+c>1,a−b−c<1,∴(a−b)2−c 2<1.故选B .【点睛】本题考查因式分解的应用,三角形的三边关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.在平面直角坐标系中,点M (2,-1)在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】根据点的横坐标2>0,纵坐标﹣1<0,可判断这个点在第四象限.【详解】∵点的横坐标2>0为正,纵坐标﹣1<0为负,∴点在第四象限.故选D .【点睛】本题考查点在直角坐标系上的象限位置,解题的关键是熟练掌握各象限的横纵坐标符号.5.在△ABC 中,若∠A=95°,∠B=40°,则∠C 的度数为( )A .35°B .40°C .45°D .50° 【答案】C【详解】∵三角形的内角和是180°,又∠A=95°,∠B=40°,∴∠C=180°﹣∠A ﹣∠B=180°﹣95°﹣40°=45°,故选C .6.已知点(),4A m 与点()3,B n 关于x 轴对称,那么()2017m n +的值为( ) A .1-B .1C .20177-D .20177【答案】A【分析】根据关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案. 【详解】解:点(,4)A m 与点(3,)B n 关于x 轴对称, 3m ∴=,4n =-,∴()()2017201711m n +=-=-,【点睛】此题主要考查了关于x 轴对称点的坐标,关键是掌握点的坐标的变化规律.7.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠【答案】A 【分析】根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠1与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE 是△ADE 沿DE 折叠得到,∴∠A′=∠A ,又∵∠ADA′=180°-∠1,∠3=∠A′+∠1,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠1=180°,整理得,1∠A=∠1-∠1.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠1、∠A 转化到同一个三角形中是解题的关键.8.甲、乙两位运动员进行射击训练,他们射击的总次数相同,并且他们所中环数的平均数也相同,但乙的成绩比甲的成绩稳定,则他们两个射击成绩方差的大小关系是( )A .22S S =乙甲B .22S >S 乙甲C .22S <S 乙甲D .不能确定【分析】方差越小,表示这个样本或总体的波动越小,即越稳定.根据方差的意义判断.【详解】根据方差的意义知,射击成绩比较稳定,则方差较小,∵乙的成绩比甲的成绩稳定,∴22S >S 乙甲.故选B.【点睛】此题考查方差,解题关键在于掌握方差越小,越稳定.9.如图所示,三角形ABC 的面积为1cm 1.AP 垂直∠B 的平分线BP 于P .则与三角形PBC 的面积相等的长方形是( )A .B .C .D .【答案】B 【分析】过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积.【详解】解:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,∵AP 垂直∠B 的平分线BP 于P ,∠ABP=∠EBP ,又知BP=BP ,∠APB=∠BPE=90°,∴△ABP ≌△BEP ,∴AP=PE ,∵△APC 和△CPE 等底同高,∴S △APC =S △PCE ,∴三角形PBC 的面积=12三角形ABC 的面积=12cm 1, 选项中只有B 的长方形面积为12cm 1, 故选B .10.长度单位1纳米=10-9米,目前发现一种新型禽流感病毒(H7N9)的直径约为101纳米,用科学记数法表示该病毒直径是( )A .10.l×l0-8米B .1.01×l0-7米C .1.01×l0-6米D .0.101×l0-6米 【答案】B【解析】试题分析:科学记数法的表示形式为,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.所以101纳米=1.01×l0-7米,故选B考点:科学记数法的表示方法点评:本题是属于基础应用题,只需学生熟练掌握科学记数法的表示方法,即可完成.二、填空题11.若正比例函数2y x =-的图象经过点()1,4A a -,则a 的值是__________.【答案】-1【分析】把点()1,4A a -代入函数解析式,列出关于a 的方程,通过解方程组来求a 的值.【详解】∵正比例函数2y x =-的图象经过点()1,4A a -,∴2(1)4a --=解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx (k≠0). 12.有一种球状细菌,直径约为0.0000015cm ,那么0.0000015用科学记数法表示为__________.【答案】61.510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000015=61.510-⨯,故答案为:61.510-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD 的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1. 考点:菱形的性质.14.若2(2)2x x -=-,则x 的取值范围是__________.【答案】2x ≥ 2||a a =)及绝对值的性质化简(||a =,00,0.0a a a a a >⎧⎪=⎨⎪-<⎩),即可确定出x 的范围. 【详解】解:∵2(2)|2|2x x x --=--=-,∴|2|2x x -=-.∴20x -≥,即2x ≥.故答案为: 2x ≥.【点睛】本题考查利用二次根式的性质化简.熟练掌握二次根式的性质和绝对值的性质是解决此题的关键. 15.我们知道多项式的乘法可以利用图形的面积进行解释,如222()2a b a ab b +=++就可以用图(1)的面积表示,请你仿照图(1)写出图(2)表示的一个等式______.【答案】()()22223a b a b a ab b ++=++ 【分析】分别用长方形的面积公式和六个小长方形的面积之和表示图(2)的面积,从而建立等式即可.【详解】图(2)的面积可以表示为:(2)()a b a b ++图(2)的面积也可以表示为:2223a ab b ++所以有()()22223a b a b a ab b ++=++ 故答案为:()()22223a b a b a ab b ++=++. 【点睛】本题主要考查多项式乘法,能够用两种方式表示出图中的面积是解题的关键.16.如图,已知AC=BD , 要使ABC ≅DCB , 则只需添加一个适合的条件是_________(填一个即可).【答案】AB=DC【分析】已知AC=BD ,BC 为公共边,故添加AB=DC 后可根据“SSS ”证明ABC ≅DCB . 【详解】解:∵BC 为公共边,∴BC=CB ,又∵AC=BD , ∴要使ABC ≅DCB ,只需添加AB=DC 即可 故答案为:AB=DC【点睛】本题考察了全等三角形的判断,也可以添加“∠ABC=∠DCB ”,根据“SAS ”可证明ABC ≅DCB . 17.分式方程512552x x x+=--的解为_________. 【答案】0x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:525x x -=-,解得:0x =,经检验0x =是分式方程的解.x .故答案为:0【点睛】本题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.三、解答题18.如图1,在平面直角坐标系中,点A(a,1)点B(b,1)为x轴上两点,点C在Y轴的正半轴上,且a,b满足等式a2+2ab+b2=1.(1)判断△ABC的形状并说明理由;(2)如图2,M,N是OC上的点,且∠CAM=∠MAN=∠NAB,延长BN交AC于P,连接PM,判断PM 与AN的位置关系,并证明你的结论.(3)如图3,若点D为线段BC上的动点(不与B,C重合),过点D作DE⊥AB于E,点G为线段DE上一点,且∠BGE=∠ACB,F为AD的中点,连接CF,FG.求证:CF⊥FG.【答案】(1)△ABC是等腰三角形;(2)PM∥AN,证明见解析;(3)见解析【分析】(1)由题意可得a=-b,即OA=OB,根据线段垂直平分线的性质可得AC=BC,即△ABC是等腰三角形;(2)延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,根据等腰三角形的性质可得∠NAB=∠NBA,∠ANO=∠BNO,可得∠PNC=∠CNE,根据角平分线的性质可得PM平分∠CPB,根据三角形的外角的性质可得∠CPM=∠CAN=2∠NAB,即可得PM∥AN;(3)延长GF至点M,使FM=FG,连接CG,CM,AM,由题意可证△AMF≌△DGF,可得AM=DG,由角的数量关系可得∠BCO=∠BDG=∠DBG,即DG=BG,根据“SAS”可证△AMC≌△BGC,可得CM=CG,根据等腰三角形性质可得CF⊥FG.【详解】解:(1)∵a2+2ab+b2=1,∴(a+b)2=1,∴a=-b,∴OA=OB,且AB⊥OC,∴OC是AB的垂直平分线,∴AC=BC,∴△ACB是等腰三角形(2)PM∥AN,理由如下:如图,延长AN交BC于点E,连接PM,过点M作MH⊥AE,MD⊥BP,MG⊥AC,∵OC是AB的垂直平分线,∴AN=NB,CO⊥AB∴∠NAB=∠NBA,∠ANO=∠BNO∴∠PNC=∠CNE,且MH⊥AE,MD⊥BP,∴MD=MH,∵∠CAM=∠MAN=∠NAB,∴AM平分∠CAE,且MG⊥AC,MH⊥AE∴MG=MH∴MG=MD,且MG⊥AC,MD⊥BP,∴PM平分∠BPC∵∠CAM=∠MAN=∠NAB,∠PNA=∠NAB+∠NBA∴∠CAN=2∠NAB=∠PNA,∵∠CPB=∠CAN+∠PNA∴∠CPB=4∠NAB∵PM平分∠BAC∴∠CPM=2∠NAB∴∠CPM=∠CAN∴PM∥AN(3)如图,延长GF至点M,使FM=FG,连接CG,CM,AM,∵MF=FG,∠AFM=∠DFG,AF=DF,∴△AMF ≌△DGF (SAS )∴AM=DG ,∠MAD=∠ADG ,∵DE ⊥AB ,CO ⊥AB∴DE ∥CO∴∠BCO=∠BDE∵∠ACB=∠BGE ,∠BGE=∠BDE+∠DBG=∠BCO+∠DBG ,∠ACB=2∠BCO ,∴∠BCO=∠BDG=∠DBG∴DG=BG ,∴AM=BG∵∠CAM=∠MAD-∠CAD=∠ADG-∠CAD=∠ADB-∠BDE-∠CAD=∠ADB-∠OCB-∠CAD=∠OCB∴∠CAM=∠CBG ,且AC=BC ,AM=BG∴△AMC ≌△BGC (SAS )∴CM=CG ,且MF=FG∴CF ⊥FG【点睛】本题是三角形综合题,考查了线段垂直平分线的性质,角平分线的性质,等腰三角形的性质,全等三角形的判定和性质等知识,添加恰当的辅助线构造全等三角形是本题的关键,属于中考压轴题.19.分解因式:(1)234a b b -;(2)(2)(2)y a b x b a -+-.【答案】(1)(2)(2)b a b a b +-;(2)(2)()a b y x --【分析】(1)先提公因式,再利用平方差公式即可得到答案.(2)利用变形找到整体公因式即可.【详解】解:(1)234a b b -22(4)b a b =-(2)(2)b a b a b =+-.(2)(2)(2)y a b x b a -+-(2)(2)y a b x a b =---(2)()a b y x =--.【点睛】本题考查的是因式分解中的提公因式法和公式法,掌握这两种方法是关键.20.计算:()1()2【答案】(1);(2)1【分析】(1)先将二次根式进行化简,再合并同类二次根式;(2)利用平方差公式将【详解】(1=(2)22=-=32-=1【点睛】本题考查二次根式的混合运算,熟练掌握二次根式的化简是解题的关键.21.甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y (个)与甲加工时间x h ()之间的函数图象为折线OA AB BC ﹣﹣,如图所示. (1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件;(2)当36x ≤≤时,求y 与x 之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?。

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

模拟卷:2018-2019学年八年级数学上学期期末原创卷B卷(河北)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷B 卷(河北)八年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:冀教版八上全册。

第Ⅰ卷一、选择题(本大题共16小题,共42分,1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .2.16的算术平方根是( ) A .4B .±4C .±2D .23.在实数|-3|,-2,0,π中,最小的数是( ) A .|-3|B .-2C .0D .π4.要使得代数式12x x --在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .1x ≥ C .2x ≠D .1x ≥且2x ≠5.如果132x y x +=,那么yx的值为( ) A .12 B .23 C .13D .256.下列运算错误的是( ) A .532-=B .632÷=C .6332⨯=D .2333-=7.已知a 、b 、c 是三角形的三边长,如果满足2(6)8|10|0a b c -+-+-=,则三角形的形状是( ) A .底与边不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形8.下列命题中,真命题的是( )A .相等的两个角是对顶角B .若a >b ,则|a |>|b |C .两条直线被第三条直线所截,内错角相等D .等腰三角形的两个底角相等9.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则 ∠CBE 的度数为( )A .80°B .70°C .40°D .30°10.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑4米,那么梯子的底部在水平方向上滑动了( )A .4米B .6米C .8米D .10米11.数学课上,小丽用尺规这样作图:(1)以点O 为圆心,任意长为半径作弧,交OA ,OB 于D ,E 两点;(2)分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧交于点C ;(3)作射线OC 并连数学试题第3页(共6页)数学试题第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………接CD,CE,下列结论不正确的是()A.∠1=∠2 B.S△OCE=S△OCD C.OD=CD D.OC垂直平分DE12.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是()A.BF=DF B.∠1=∠EFD C.BF>EF D.FD∥BC13.已知:如果二次根式28n是整数,那么正整数n的最小值是()A.1 B.4 C.7 D.2814.如图,∠AOB=30º,∠AOB内有一定点P,且OP=12,在OA上有一动点Q,OB上有一动点R.若△PQR 周长最小,则最小周长是()A.6 B.12 C.16 D.2015.若关于x的方程2222x mx x++=--的解为正数,则m的取值范围是()A.m<6 B.m>6 C.m<6且m≠0D.m>6且m≠816.在△ABC中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④AD=CE,⑤A1F=CE.其中一定正确的有()A.①②④B.②③④C.①②⑤D.③④⑤第Ⅱ卷二、填空题(本大题共3小题,共12分.17~18小题各3分;19小题有两个空,每空3分)17.同学们都知道,蜜蜂建造的蜂房既坚固又省料.那你知道蜂房蜂巢的厚度吗?事实上,蜂房的蜂巢厚度仅仅约为0.000073m.此数据用科学记数法表示为__________.18.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.19.在方格纸中,选择标有序号的一个小正方形涂黑,与图中阴影构成中心对称图形,涂黑的小正方形序号为__________;若与图中阴影构成轴对称图形,涂黑的小正方形序号为__________.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)计算下列各题:(1)03816(21)-++-;(2)211(3)||292----+-.21.(本小题满分9分)如图,某公路上A,B两点的正南方有D,C两村庄,现要在公路AB上建一个车站E,使C,D两村到E站的距离相等,已知AB=50 km,DA=20 km,CB=10 km,请你设计出E站的位置,并计算车站E距A点多远?数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________22.(本小题满分9分)如图,△ABC 中,AB 的垂直平分线分别交AB ,BC 于D ,E ,AC 的垂直平分线分别交AC ,BC 于F ,G .(1)若△AEG 的周长为10,求线段BC 的长. (2)若∠BAC =128°,求∠EAG 的度数.23.(本小题满分9分)如图,在△ABC 中,∠BAC =90°,AC =AB ,点D 为BC 边上的一个动点(点D 不与B ,C 重合),以AD 为边作等腰直角△ADE ,∠DAE =90°,连接CE . (1)求证:△ABD ≌△ACE .(2)试猜想线段BD ,CD ,DE 之间的等量关系,并证明你的猜想.24.(本小题满分10分)某地下管道,若由甲队单独铺设,恰好在规定时间内完成;若由乙队单独铺设,需要超过规定时间15天才能完成,如果先由甲、乙两队合做10天,再由乙队单独铺设正好按时完成. (1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为5000元,乙队每天的施工费用为3000元,为了缩短工期以减少对居民交通的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成,那么该工程施工费用是多少? 25.(本小题满分10分)如图,在△ABC 中,AB =AC ,D ,E ,F 分别在三边上,且BE =CD ,BD =CF ,G为EF 的中点.(1)若∠A =40°,求∠B 的度数; (2)试说明:DG 垂直平分EF .26.(本小题满分11分)如图1,△ABC 中,CD ⊥AB 于D ,且BD ∶AD ∶CD =2∶3∶4,(1)试说明△ABC 是等腰三角形;(2)已知S △ABC =40 cm 2,如图2,动点M 从点B 出发以每秒1 cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒),①若△DMN 的边与BC 平行,求t 的值;②若点E 是边AC 的中点,问在点M 运动的过程中,△MDE 能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

20182019年八年级数学上册期末试卷含答案解析

20182019年八年级数学上册期末试卷含答案解析
BC+DE=2,∠B=∠AED=90°,∴CD=EF+DE=DF.在△ABC 与△AEF 中, Error!∴△ABC≌△AEF(SAS),∴AC=AF。在△ACD 与△AFD 中, Error!∴△ACD≌△AFD(SSS), ∴五边形 ABCDE 的面积 S=2S△ADF=2×Error!·DF·AE=2×Error!×2×2= 4.故答案为 4.
23.(10 分)如图,在△ABC 中,D 是 BC 的中点,过点 D 的直线 GF 交 AC 于 F,交 AC 的平行线 BG 于点 G,DE⊥DF,交 AB 于点 E,连接 EG,EF.
(1)求证:BG=CF; (2)请你判断 BE+CF 与 EF 的大小关系,并说明理由.
2018-2019 年八年级数学上册期末试卷含答案解析(word 版可编辑修改)
90°,∴五边形 ABCDE 中,∠BAE=540°-140°×2-90°×2=80°. (10 分) 23.(1)证明:∵BG∥AC,∴∠DBG=∠DCF.∵D 为 BC 的中点, ∴BD=CD.(2 分)在△BGD 与△CFD 中,Error! ∴△BGD≌△CFD(ASA),∴BG=CF.(5 分) (2)解:BE+CF>EF。(6 分)理由如下:由(1)知△BGD≌△CFD,∴GD=FD,BG= CF。又∵DE⊥FG,∴DE 垂直平分 GF,∴EG=EF.(8 分)∵在△EBG 中,BE +BG>EG,∴BE+CF>EF。(10 分) 24.解:(1)设甲工程队每天修路 x 千米,则乙工程队每天修路(x-0。5) 千米.根据题意,得 1.5×Error!=Error!,(3 分)解得 x=1。5。经 检验,x=1。5 是原分式方程的解,则 x-0.5=1。 答:甲工程队每天修路 1。5 千米,乙工程队每天修路 1 千米.(5 分) (2)设甲工程队修路 a 天,则乙工程队需要修路(15-1。5a)千米,∴乙工 程队需要修路Error!=(15-1。5a)(天).由题意可得 0.5a+0.4(15- 1。5a)≤5。2,(8 分)解得 a≥8。 答:甲工程队至少修路 8 天.(10 分) 25.(1)证明:∵∠ACB=∠DCE=α, ∴∠ACD=∠BCE。(1 分) 在△ACD 和△BCE 中, ∴△ACD≌△BCE(SAS),∴BE=AD。(3 分) (2)解:由(1)知△ACD≌△BCE, ∴∠CAD=∠CBE。∵∠BAC+∠ABC=180°-α,

2018~2019学年度新人教版八年级数学第一学期期末质量监测试卷(含答案)

2018~2019学年度新人教版八年级数学第一学期期末质量监测试卷(含答案)
∠B=∠DEF,AB=DE,求证:BE=CF.
第18题图
19.解分式方程:
四、解答题(二)(本大题3小题,每小题7分,共21分)
20.先化简,再求值: ,其中a=2.
21.如图所示,在△ABC中,∠ABC=∠ACB.
(1)尺规作图:过顶点A,作△ABC的角平分线AD;
(不写作法,保留作图痕迹)
(2)在AD上任取一点E,连接BE、CE.
求证:BE=CE.第21题图
22.小明的家距离学校1600米,一天小明从家里出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课ห้องสมุดไป่ตู้去追他,正好在校门口追上了他,已知爸爸的速度是小明速度的2倍,求小明和爸爸的速度分别为多少?
五、解答题(三)(本大题3小题,每小题9分,共27分)
23.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
那么0.000037毫克可用科学记数法表示为( ▲ )
A.0.37×10﹣5毫克B.3.7×10﹣6毫克C.37×10﹣7毫克D.3.7×10﹣5毫克
8. 一个多边形的外角和与它的内角和相等,则多边形是( ▲ )
A.三角形B.四边形C.五边形D.六边形
9.如图,已知∠ABC=∠DCB,下列所给条件不能证明
五、解答题(本大题共3小题,每小题9分,共27分,本解答题参考答案只提供一种解法,考生选择其它解法只要解答正确,相应给分。)
23.证明:(1)∵AD∥BC
∴∠ADC=∠ECF-----1分
∵E是CD的中点
∴DE=EC-----2分
∵在△ADE与△FCE中,
第23题图
∴△ADE≌△FCE(ASA)-----4分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018—2019学年年度第一学期期末质量检测
八年级数学试题
考生须知:
1.试题共6页,含三道大题,26道小题,满分100分.考试时间90分钟; 2.答题前填写好自己的姓名、班级、考号等信息;
3.请将答案正确填涂在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.
一、选择题(本大题共有16个小题,在每题所给出的四个选项中,只有一项是符合题
目要求的,其中前10个小题每题3分,后6个小题每题2分,共42分) 1.9的平方根是( ) A .3
B .±3
C .±81
D .±3
2.下列变形从左到右一定正确的是( ) A .a b =a -2b -2
B .a b =ac bc
C .a b =a 2b
2
D .ax bx =a b
3.实数a ,b 在数轴上对应点的位置如图所示,则下列结论正确的是( ) A .a >b B .|a |<|b |
C .a +b <0
D .a <﹣b
4.下列图形中,既是中心对称,又是轴对称的是( )
A .
B .
C .
D .
5.下列根式中,能与3合并的二次根式为( ) A .24
B .
32
C .12
D .18
6.如图,点E 、F 在AC 上,AD =BC ,DF =BE ,要使△ADF ≌△CBE ,还需要添加一个条件是( ) A .AD ∥BC B .DF ∥BE C .∠A =∠C
D .∠
D =∠B
第3题图
第6题图
7.无论x 取什么数,总有意义的分式是( ) A .3x x 2+1
B .x (x +1)2
C .4x x 3+1
D .x -2x
2
8.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( ) A .50° B .70°
C .75°
D .80°
9.关于x 的方程3x +a 2x -3=1的解是非负数,则a 的取值范围是( )
A .a ≥﹣3
B .a ≤﹣3
C .a ≥﹣3且a ≠-3
2
D .a ≤﹣3且a ≠-9
2
10.如图,△ABC ≌△ADE ,点D 落在BC 上,且∠B =55°,则∠EDC 的度数等于( ) A .50° B .60°
C .70°
D .80°
11.对于四舍五入得到的近似数1.50万,下列说法中正确的是( )
A .该近似数精确到百分位
B .该近似数精确到百位
C .该近似数精确到十分位
D .该近似数精确到千位
12.已知∠BOP 与OP 上点C ,点A (在C 的左侧),嘉嘉进行如下作图:
①以点O 为圆心,OC 为半径画弧,交OB 于点D ,连接CD ②以点A 为圆心,OC 为半径画弧MN ,交AP 于点M
③以点M 为圆心,CD 为半径画弧,交弧MN 于点E ,连接ME ,作射线AE 如图所示,则下列结论不成立的是( ) A .∠OAE =∠BDC B .∠ODC =∠AEM C .CD ∥EM
D .A
E ∥OB
第8题图
第10题图
13.下列计算中,正确的是()
A.33+22=55B.33·32=36
C.8÷2=2D.(-6)2=﹣6
14.满足下列条件的△ABC不是直角三角形的是()
A.BC=1,AC=2,AB=3B.BC=1,AC=2,AB=5
C.BC:AC:AB=3:4:5D.∠A:∠B:∠C=3:4:5
15.已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:
①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾;
②因此假设不成立.∴∠B<90°;
③假设在△ABC中,∠B≥90°;
④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.
这四个步骤正确的顺序应是()
A.①②③④B.③④②①C.③④①②D.④③①②16.一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a千米/时,第二次往返航行时,正遇上发大水,水流速度为b千米/时(b>a),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是()
A.第一次往返航行用的时间少B.第二次往返航行用的时间少
C.两种情况所用时间相等D.以上均有可能
二、填空题(本大题共有3个小题,17、18题,每小题3分,19题每空2分,共4分,
总计10分)
17.分式1
2xy2与
1
3y(x-y)
的最简公分母是.
18.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,于是小明用2﹣1表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.已知:2+3=x+y,其中x是整数,且0<y<1,写出x﹣y的相反数.
19.如图,在Rt △ABC 中,∠C =90°,∠A =60°,AB =12cm ,若点P 从B 点出发以2cm /秒的速度向A 点运动,点Q 从A 点出发以1cm /秒的速度向C 点运动,设P 、Q 分别从B 、A 同时出发,运动时间为t 秒.线段AC 的长为 cm ;若△APQ 是以PQ 为底的等腰三角形,则t = 秒.
三、解答题(本大题共有7个小题,要求写出必要的解题过程,共48分)
20.(6分)已知A =
m -n
m +n +10是m +n +10的算术平方根,B =
m -2n +3
4m +6n -1是
4m +6n ﹣1的立方根,
(1)求出m 、n 的值; (2)求A -B 的平方根.
21.(6分)先化简,再求值:(a +2+2a +5a +2)÷a +3
2a +4,其中,a =﹣3+5.
22.(6分)某广告公司招标了一批灯箱加工工程,需要在规定时间内加工1400个灯箱,该公司按一定速度加工5天后,发现按此速度加工下去会延期10天完工,于是又抽调了一批工人投入灯箱加工,使工作效率提高了50%,结果如期完成工作. (1)求该公司前5天每天加多少个灯箱; (2)求规定时间是多少天.
第19题图
23.(7分)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC =∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
24.(7分)先阅读,再解答
由(5+3)(5-3)=(5)2﹣(3)2=2可以看出,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式,在进行二次根式计算时,利用有理化因式,有时可以化去分母中的根号.
例如:
1
3+2

3-2
(3+2)(3-2)
=3-2.
请完成下列问题:
(1)2﹣1的有理化因式是;
(2)化去式子分母中的根号:2
32=,
3
3-6
=;
(3)比较2019-2018与2018
-2017的大小,并说明理由.
25.(8分)文文和彬彬在证明“有两个角相等的三角形是等腰三角形”这一命题时,画出图形,写出“已知”,“求证”(如图),她们对各自所作的辅助线描述如下:
第23题图
文文:“过点A 作BC 的中垂线AD ,垂足
为D ”;
彬彬:“作∠BAC 的平分线,交BC 于点
D ”.
数学老师看了两位同学的辅助线作法后,说:“彬彬的作法是正确的,而文文的作法需要订正”.
(1)请你简要说明文文的辅助线作法错在哪里;
(2)根据彬彬的辅助线作法,完成证明过程.
26.(8分)在△ABC 中,BC =a ,AC =b ,AB =c ,设c 为最长边,当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,探究△ABC 的形状(按角分类).
(1)当△ABC 三边分别为6、8、9时,△ABC 为 三角形;当△ABC 三边分别为6、8、11时,△ABC 为 三角形.
(2)猜想,当a 2+b 2 c 2时,△ABC 为锐角三角形;当a 2+b 2 c 2时,△ABC 为钝角三角形.
(3)判断当a =2,b =4时,△ABC 的形状,并求出对应的c 的取值范围.
已知:如图,在△ABC 中,∠B =∠C . 求证:AB =AC .。

相关文档
最新文档