高中数学:2.3(一)等差数列的前n项和(一)
2.3.1 等差数列的前n项和(1)

两式相加得: 2Sn = (a1+an )×n 算 法 : 倒 序 相 加 法
n( a1 an ) Sn 2
推导公式 (教材):
Sn a1 (a1 d ) ... [a1 (n 1)d ]
2.3.1 等差数列的前n项和(1)
问题1: 一个堆放铅笔的V形架的最下面一层放一 支铅笔,往上每一层都比它下面一层多放一支, 最上面一层放 100 支,这个V形架上共放着多少 支铅笔?
化归: 1+2+3+…+99+100 = ?
观察归纳
1 + 2 + 3 +…+50+51+…+98+99+100 1+100=101 2+ 99=101 3+ 98=101 ……
4.预习教辅第32页 ~35页内容
n( n 1) 公式 2:Sn na1 d 2
通项公式: an a1 (n 1)d
知三可求二. 共5个量,由三个公式联系,
例1、计 算:
n( n 1) (1)1+2+3+…+n = ________. 2
(2)1+3+5+…+(2n-1) (3)2+4+6+…+2n
2 =________ . n
4m 8m 12m
化归:
60m
4+8+12+…+60=?3; 8 +12 +…+52+56+60=? S15 60+56+52 +…+12+ 8 +4 =? S15
2.3.1(讲课)等差数列的前n项和公式

公差为d,求等差数列的前n项和Sn Sn=a1+ a2 +a3 +…+an-2+an-1+an 倒 Sn=a1+ a2 +a3 +…+an-2+an-1+an
Sn=an+an-1+an-2+…+a3 + a2 +a1 两式左右分别相加,得
序 相 加
2Sn=(a1+an)+ (a2+an-1)+ (a3+an-2)+…+ (an-2+a3)+ (an-1+a2)+ (an+a1)=n(a1+an)
2Sn n(a1 an )
n(a1 an ) 公式1 S n 2
an a1 (n 1)d
n(n 1) 公式2 Sn na1 d 2
一、等差数列的前n项和的公式:
n(a1 an ) Sn 2
an a1 (n 1)d
n(n 1) Sn na1 d 2
问题呈现
泰姬陵坐落于印度古都阿格,她宏伟壮观,纯白大理石砌建而成的主体建筑 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,
… … … …
…
问题就是 求 “1+2+3+4+…+100=?”
S=1 + 2+ 3+ … +98+99+100 S=100+99+98+ … + 3+ 2+ 1 ∴2S=(1+100) ×100=10100 ∴S=5050.
等差数列的前n项和(1)说课稿

《2.2.3等差数列的前n项和(1)》说课稿江苏省清浦中学时坤明【教材分析】数列在高中数学中占据非常重要的位置,主要以等差数列与等比数列为核心内容展开。
本节课是在学习了等差数列通项公式及简单性质的基础上进行了进一步研究,该内容也为日后学习各种数列的求和作出了引领与铺垫。
等差数列的前n项和公式是数列求和的最基本公式。
不论是公式的获取过程,还是公式推导及方法的发现过程,都是数学家们发现数学结论和数学方法的重要过程。
苏教版必修五旧教材中本课内容是以计算一堆钢管总数为例,从身边的生活实际出发,运用从特殊到一般的方法,进一步发现等差数列的前n项和公式的推导方法。
此法虽然比较实用,导向性比较明确,但个人认为其方式给予学生的思考空间比较狭隘、思维路径比较简短、思维方式过于单一。
参考2019年新出版的人教版高中数学必修五新教材中本课内容开头直接给出问题“?+++ ”,对学生的思维方法没有++4100321=作出任何限定,给了学生广阔的想象空间。
教师可以根据学情因地制宜的安排导入新课的方式,便于让学生更好的掌握本课内容。
除此而外,在例题及习题的编排上,新教材比旧教材更加注重了实用,题目也变得更加灵活,这也是新课程理念和思想在课标教材中的又一体现。
【学情分析】本课之前,学生已经学习了等差数列的通项公式及基本性质。
大部分学生对高斯算法有一定的认识,甚至有些同学对此算法原理比较熟练,然而熟练的只是高斯算法中的“?++++ ”这样一种特殊数列的求和,对于一般等差数列的求和方法+1001=423和公式,学生却没有详细了解。
江苏省常州高级中学是江苏省一所名校,学生的知识面、动脑能力、动手能力等各方面综合素质较高。
针对这一情况,教师所设置教学内容应具有一定的梯度性、关联性、灵活性及发散性。
教师应给予学生足够的展示平台和发挥空间,要处理好预设与生成的关系。
把握本质、紧扣主题,在达成目标的情况下适度外延,丰富知识内涵,体现数学的科学价值、人文价值及审美价值。
2.3等差数列前n项和公式(1)

nm
(3)在等差数列{an}中,由 m+n=p+q
am+an=ap+aq
问题 1:
求和:1+2+3+4+‥ ‥ +99=?
问题2:
求和:1+2+3+4+…+n=?
记:Sn= 1 + 2 + 3 +…+(n-2)+(n-1)+n 2 +1 Sn = n+(n-1)+(n-2)+…+ 3 +
2Sn n(n 1)
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
二.等差数列an 的首项a1 0, 公差d 0时,前n项和S n 有最小值
2 d 1、利用S n:S n d n ( a 1 2 )n.借助二次函数最值问题 2
2、利用 an:借助通项公式 an的正负情况与前 n项和S n的 变化情况, an 0且an 1 0
等差数列平均分组,各组之和仍为等差数列。
如果an 为等差数列 ,则S k , S 2k S k , S3k S 2k 也成等差数列。
新的等差数列首项为 Sk,公差为k d。
2
二、例题 例3.已知一个等差数列{an}的前10项的和是310,前20项 变式.在等差数列 an 中 ,已知第 1 项到第 10 项的和为 310 , 的和是1220,由这些条件能确定这个等差数列的前 n 项 第 11 项到第 20 项的和为 910 , 求第 21 项到第 30 项的和 . 和的公式吗? 解:依题意知,S10=310,S20=1220 得
第二章 数列 2.3 等差数列的前n项和(一)

第二章 数列 2.3 等差数列的前n 项和(一)明目标、知重点 1. 掌握等差数列前n 项和公式及其获取思路.2. 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思.3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个. 知识梳理1. 数列前n 项和的概念把a 1+a 2+…+a n 叫数列{a n }的前n 项和,记做S n .a 1+a 2+a 3+…+a n -1=S n -1(n ≥2). 2. 等差数列前n 项和公式(1)若{a n }是等差数列,则S n 能够用首项a 1和末项a n 表示为S n =n (a 1+a n )2;(2)若首项为a 1,公差为d ,则S n 能够表示为S n =na 1+12n (n -1)d .3. 等差数列前n 项和的性质(1)若数列{a n }是公差为d 的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.(2)S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .(3)设两个等差数列{a n }、{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.[情境导学]“数学王子”高斯是德国数学家.在高斯10岁时,老师出一道数学题为1到100的所有整数的和为多少?很快高斯即得出答案为5 050.老师大吃一惊,而更使人吃惊的是高斯的算法,高斯的算法是老师未曾教过的方法,那么这是一个什么样的方法呢?它用于解决什么类型的问题呢?这种方法叫倒序相加法,是等差数列求和的一种重要方法,本节我们就来研究它. 探究点一 等差数列前n 项和公式思考1 高斯是用怎样的方法快速求出1+2+3+…+100=? .思考2 人们从“高斯的算法”受到启示,创造了“倒序相加法”,即设S =1+2+3+…99+100,把加数倒序写一遍:S =100+99+98+…+2+1.两式相加有2S =(1+100)+(2+99)+…+(99+2)+(100+1)=100×101,∴S =50×101=5050.你能利用此种方法1+2+3+…+n 等于多少吗? 答思考3 如何用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?答小结 (1)我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n . (2)等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d .例1 2000年11月14日教育部下发了《关于在中小学实施“校校通”的工程通知》.某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,2001年该市用于“校校通”工程的经费为500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从2001年起的未来10年内,该市在“校校通”工程中的总投入是多少?解依题意得,反思与感悟建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数.本题是根据首项和公差选择前n项和公式实行求解.易错方面:把前n项和与最后一项混淆,忘记答或写单位.跟踪训练1 甲、乙两物体分别从相距70 m的两处同时相向运动,甲第1分钟走2 m,以后每分钟比前1分钟多走1 m,乙每分钟走5 m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1 m,乙继续每分钟走5 m,那么开始运动几分钟后第二次相遇?解例2 已知一个等差数列{a n}前10项的和是310,前20项的和是1 220,由这些条件能确定这个等差数列的前n项和的公式吗?解方法一;方法二:反思与感悟(1)在解决与等差数列前n项和相关的问题中,要注意方程思想和整体思想的使用;(2)构成等差数列前n项和公式的元素有a1,d,n,a n,S n,知其三能求其二.跟踪训练2 在等差数列{a n}中,已知d=2,a n=11,S n=35,求a1和n.探究点二等差数列前n项和的性质思考1 设{a n }是等差数列,公差为d ,S n 是前n 项和,那么S m ,S 2m -S m ,S 3m -S 2m 也成等差数列吗?如果是,它们的公差是多少? 答思考2 设S n 、T n 分别为两个等差数列{a n }和{b n }的前n 项和,那么a n b n 与S 2n -1T 2n -1有怎样的关系?请证明之.答例3 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,求数列{a n }的前3m 项的和S 3m (2)两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,求a 5b 5的值.(3)解 (1)方法一 方法二反思与感悟 等差数列前n 项和S n 的有关性质在解题过程中,如果运用得当可以达到化繁为简、化难为易、事半功倍的效果.跟踪训练3 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n . 解当堂检测1. 在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( )解析 由S 10=10(a 1+a 10)2,得a 1+a 10=S 105=1205=24.2. 记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .7答案 B解析 方法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4S 4=4a 1+6d =20,解得d =3.方法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 3. 在一个等差数列中,已知a 10=10,则S 19=________.答案 190解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190.4. 已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n 及a n ;(2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ·32+(-12)×n (n -1)2=-15,整理得n 2-7n -60=0,解之得n =12或n =-5(舍去), a 12=32+(12-1)×(-12)=-4.(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171. [呈重点、现规律]1. 求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2. 等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *);若m +n =2p ,则a n +a m =2a p . 3. 本节基本思想:方程思想,函数思想,整体思想,分类讨论思想.一、基础过关1. 已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( )解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36.2. 等差数列{a n }中,S 10=4S 5,则a 1d等于( )A.12 B .2C.14D .4答案 A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ),∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12.3. 已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A .-9B .-11C .-13D .-15答案 D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15.4. 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27答案 B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45. ∴a 7+a 8+a 9=S 9-S 6=45.5. 在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .663答案 B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665.6. 含2n +1项的等差数列,其奇数项的和与偶数项的和之比为( )A.2n +1nB.n +1nC.n -1nD.n +12n答案 B解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2,∵a 1+a 2n +1=a 2+a 2n , ∴S 奇S 偶=n +1n .7. 设S n 为等差数列{a n }前n 项和,若S 3=3,S 6=24,求a 9.解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15. 二、能力提升8. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9答案 C解析 因为{a n }是等差数列,所以a m -1+a m +1=2a m ,由a m -1+a m +1-a 2m =0,得:2a m -a 2m =0,由S 2m-1=38知a m ≠0,所以a m =2,又S 2m -1=38,即(2m -1)(a 1+a 2m -1)2=38,即(2m -1)×2=38,解得m=10,故选C.9.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A .9B .10C .19D .29答案 B解析 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n =n (n +1)2.当n =19时,S 19=190.当n =20时,S 20=210>200. ∴n =19时,剩余钢管根数最少,为10根.10.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13C.18D.19答案 A 解析 方法一 S 3S 6=3a 1+3d 6a 1+15d =13, ∴a 1=2d ,S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11. 已知等差数列{a n }的前3项依次为a,4,3a ,前k 项和S k =2 550,求a 及k .解 设等差数列{a n }的公差为d ,则由题意得 ⎩⎪⎨⎪⎧a +3a =2×4d =4-a ka +k (k -1)2d =2 550,∴⎩⎪⎨⎪⎧a =2d =2k =50.(注:k =-51舍)∴a =2,k =50.12.一个等差数列的前10项之和为100,前100项之和为10,求前110项之和.解 方法一 设等差数列{a n }的公差为d ,前n 项和为S n , 则S n =na 1+n (n -1)2d .由已知得⎩⎨⎧10a 1+10×92d =100, ①100a 1+100×992d =10. ②①×10-②整理得d =-1150,代入①,得a 1=1 099100,∴S 110=110a 1+110×1092d=110×1 099100+110×1092×⎝⎛⎭⎫-1150=110⎝⎛⎭⎫1 099-109×11100=-110.故此数列的前110项之和为-110.方法二 设S n =an 2+bn .∵S 10=100,S 100=10,∴⎩⎪⎨⎪⎧102a +10b =100,1002a +100b =10,解得⎩⎨⎧a =-11100,b =11110.∴S n =-11100n 2+11110n .∴S 110=-11100×1102+11110×110=-110.三、探究与拓展13.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4,∴a n =4n -3. (2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c.∴b 1=11+c ,b 2=62+c ,b 3=153+c .∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12 (c =0舍去).经检验,c =-12符合题意,∴c =-12.。
高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和

n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回
高中数学全程学习方略配套课件:2.3.1等差数列的前n项和(人教A版必修5)

故n=13时,Sn有最大值169.
……………………12分
【误区警示】对解答本题时易犯错误的具体分析如下:
1.在等差数列{an}中,已知a1=4,a6=6,则前6项和S6=( )
(A)70 (B)35 (C)30 (D)12
【解析】选C.S6=(6 a1 a6)=6=(340.6)
2
2
2.等差数列{an}的前n项和为Sn,若a3+a17=10,则
1 099 100
11=0 -110190. (
2
11 50
)
故此数列的前110项之和为-110.
方法二:数列S10,S20-S10,S30-S20,…,S100-S90,S110-S100成等差 数列,设其公差为D,前10项和为10S10+102 9·D=S100=10 D=-22,∴S110-S100=S10+(11-1)D =100+10×(-22)=-120.
②若共有2n+1项,则S2n+1=(2n+1)an+1; S偶-S奇=-an+1;S偶∶S奇=n∶(n+1); ③“片段和”性质: 等差数列{an}中,公差为d,前k项的和为Sk,则Sk,S2k-Sk, S3k-S2k,…,Smk-S(m-1)k,…构成公差为k2d的等差数列.
【例2】Sn是等差数列{an}的前n项和,且S10=100,S100=10, 求S110. 【审题指导】题目给出等差数列{an}中的S10=100, S100=10,欲求S110,可由等差数列前n项和公式列出方程 组,求出a1和d,然后求出S110.或由等差数列“片段和”性 质Sk,S2k-Sk,S3k-S2k,…,Smk-S(m-1)k,…构成公差为 k2d的等差数列求出公差,然后求出S110.
2.3等差数列的前n项和(一)

§2.3 等差数列的前n 项和(一)学习目标 1.掌握等差数列前n 项和公式及其获取思路(重点);2.经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思;3.熟练掌握等差数列的五个量a 1,d ,n ,a n ,S n 的关系,能够由其中三个求另外两个(重、难点).预习教材P42-43完成下列问题: 知识点一 数列a n 与前n 项和S n 的关系 1.数列的前n 项和的概念一般地,我们称a 1+a 2+a 3+…+a n 为数列{a n }的前n 项和,用S n 表示,即S n =a 1+a 2+a 3+…+a n .2.数列的通项a n 与前n 项和S n 的关系当n ≥2时,有S n =a 1+a 2+a 3+…+a n ,S n -1=a 1+a 2+a 3+…+a n -1,所以S n -S n -1=a n ; 当n =1时,a 1=S 1.综上可得a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.【预习评价】1.利用数列的前n 项和S n 求数列的通项公式时,能不能直接运用S n -S n -1=a n 求解?提示 不能.因为当n =1时,S 1-S 0没有意义. 2.已知数列{a n }的前n 项和S n =n 2,怎样求a 1,a n? 提示 a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1, 又n =1时也适合上式,所以a n =2n -1,n ∈N *.知识点二 等差数列的前n 项和公式 1.等差数列的前n 项和公式2.两个公式的关系:把a n =a 1+(n -1)d 代入S n =1n 2中,就可以得到S n=na 1+n (n -1)2d .【预习评价】1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)=101×50迅速求出了等差数列前100项的和.如果是求1+2+3+…+n ,不知道共有奇数项还是偶数项怎么办?提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采用倒序相加来回避这个问题:设S n =1+2+3+…+(n -1)+n , 又S n =n +(n -1)+(n -2)+…+2+1,∴2S n =(1+n )+[2+(n -1)]+…+[(n -1)+2]+(n +1), ∴2S n =n (n +1),∴S n =n (n +1)2.2.能否用“倒序相加法”求首项为a 1,公差为d 的等差数列{a n }的前n 项和S n 呢?提示 由上节课学到的性质:在有穷等差数列中,与首末两项“等距离”的两项之和等于首项与末项的和.即a 1+a n =a 2+a n -1=a 3+a n -2=….“倒序相加法”可以推广到一般等差数列求前n 项和,其方法如下: S n =a 1+a 2+a 3+…+a n -1+a n=a 1+(a 1+d )+(a 1+2d )+…+[a 1+(n -2)d ]+[a 1+(n -1)d ];S n =a n +a n -1+a n -2+…+a 2+a 1=a n +(a n -d )+(a n -2d )+…+[a n -(n -2)d ]+[a n -(n -1)d ]. 两式相加,得2S n =(a 1+a n )×n ,由此可得等差数列{a n }的前n 项和公式:S n =n (a 1+a n )2.根据等差数列的通项公式a n =a 1+(n -1)d , 代入上式可得S n =na 1+n (n -1)2d .知识点三 等差数列前n 项和的性质 1.若数列{a n }是公差为d的等差数列,则数列⎩⎨⎧⎭⎬⎫S n n 也是等差数列,且公差为d2.2.若S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 也成等差数列,公差为m 2d .3.设两个等差数列{a n },{b n }的前n 项和分别为S n ,T n ,则a n b n =S 2n -1T 2n -1.4.若等差数列的项数为2n ,则S 2n =n (a n +a n +1), S 偶-S 奇=nd ,S 偶S 奇=a n +1a n. 5.若等差数列的项数为2n +1,则S 2n +1=(2n +1)a n +1, S 偶-S 奇=-a n +1,S 偶S 奇=nn +1.【预习评价】1.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( ) A .-2 B.-1 C .0D.1解析 等差数列前n 项和S n 的形式为S n =an 2+bn ,∴λ=-1. 答案 B2.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5=( )A .1 B.-1 C.2D.12解析 由于S 2n -1=(2n -1)a n ,则, S 9S 5=9a 55a 3=95×59=1. 答案 A题型一 数列的前n 项和S n 与通项a n 之间的关系【例1】 已知数列{a n }的前n 项和为S n =na 1+12n (n -1)d (d 为常数).求证:数列{a n }是等差数列.证明 根据S n =na 1+12n (n -1)d , a n +1=S n +1-S n=(n +1)a 1+12(n +1)[(n +1)-1]·d -⎣⎢⎡⎦⎥⎤na 1+12n (n -1)d=a 1+nd .① 当n >1时, a n =S n -S n -1=na 1+12n (n -1)d -⎣⎢⎡⎦⎥⎤(n -1)a 1+12(n -1)(n -2)d=a 1+(n -1)d ,当n =1时,a 1=S 1,适合此式. ∴a n =a 1+(n -1)d (n ∈N *).∴a n +1-a n =(a 1+nd )-[a 1+(n -1)d ]=d (常数),对任意n ∈N *成立. ∴数列{a n }是等差数列.规律方法 已知前n 项和S n 求通项a n ,先由n =1时,a 1=S 1求得a 1,再由n ≥2时,a n =S n -S n -1求a n ,最后验证a 1是否符合a n ,若符合则统一用一个解析式表示.【训练1】 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?解 根据S n =a 1+a 2+…+a n -1+a n 可知S n -1=a 1+a 2+…+a n -1(n >1), 当n >1时,a n =S n -S n -1=n 2+12n -⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)=2n -12,① 当n =1时,a 1=S 1=12+12×1=32,也满足①式.∴数列{a n }的通项公式为a n =2n -12.由此可见:数列{a n }是以32为首项,2为公差的等差数列.题型二 等差数列前n 项和的有关运算 【例2】 在等差数列{a n }中, (1)a 1=56,a n =-32,S n =-5,求n 和d ;(2)a 1=4,S 8=172,求a 8和d .解 (1)由题意得,S n =n (a 1+a n )2=n ⎝ ⎛⎭⎪⎫56-322=-5,解得n =15.又a 15=56+(15-1)d =-32,∴d =-16.∴n =15,d =-16.(2)由已知得S 8=8(a 1+a 8)2=8(4+a 8)2=172,解得a 8=39,又∵a 8=4+(8-1)d =39,∴d =5. ∴a 8=39,d =5.规律方法 等差数列中基本计算的两个技巧(1)利用基本量求值.(2)利用等差数列的性质解题.【训练2】 在等差数列{a n }中, (1)已知a 6=10,S 5=5,求a 8和S 10; (2)已知a 3+a 15=40,求S 17.解(1)⎩⎨⎧S 5=5a 1+5×42d =5,a 6=a 1+5d =10,解得a 1=-5,d =3. ∴a 8=a 6+2d =10+2×3=16,S 10=10a 1+10×92d =10×(-5)+5×9×3=85.(2)S 17=17×(a 1+a 17)2=17×(a 3+a 15)2=17×402=340.【例3】 (1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A.13 B.35 C.49D.63(2)等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,已知S n T n =7n n +3,则a 5b 5等于( )A.7B.23 C.7013 D.214(3)已知数列{a n }的通项公式为a n =2n +1(n ∈N *),其前n 项和为S n ,则数列{S nn }的前10项的和为________.解析 (1)S 7=72(a 1+a 7)=72(a 2+a 6)=72(3+11)=49. (2)a 5b 5=a 1+a 92b 1+b 92=S 9T 9=7×99+3=214.(3)∵S n =n (3+2n +1)2=n (n +2).∴S nn =n +2,∴数列{S nn }是以首项为3,公差为1的等差数列,∴{S nn }的前10项和为10×3+10×92×1=75. 答案 (1)C (2)D (3)75【迁移1】 已知两个等差数列{a n }与{b n }的前n (n >1)项和分别是S n 和T n ,且S n ∶T n =(2n +1)∶(3n -2),求a 9b 9的值.解 法一 a 9b 9=2a 92b 9=a 1+a 17b 1+b 17=a 1+a 172×17b 1+b 172×17=S 17T 17=2×17+13×17-2=3549=57. 法二 ∵数列{a n },{b n }均为等差数列, ∴S n =A 1n 2+B 1n ,T n =A 2n 2+B 2n . 又S n T n =2n +13n -2,∴令S n =tn (2n +1),T n =tn (3n -2),t ≠0,且t ∈R . ∴a n =S n -S n -1=tn (2n +1)-t (n -1)(2n -2+1) =tn (2n +1)-t (n -1)(2n -1)=t (4n -1)(n ≥2), b n =T n -T n -1=tn (3n -2)-t (n -1)(3n -5) =t (6n -5)(n ≥2).∴a n b n =t (4n -1)t (6n -5)=4n -16n -5, ∴a 9b 9=4×9-16×9-5=3549=57. 【迁移2】 已知两个等差数列{a n }与{b n }的前n 项和分别是S n 和T n ,且a n ∶b n =(2n +1)∶(3n -2),则S 9T 9=________.解析 ∵{a n },{b n }均为等差数列, 则S 9T 9=9a 59b 5=2×5+13×5-2=1113.答案1113规律方法 等差数列前n 项和运算的几种思维方法(1)整体思路:利用公式S n =n (a 1+a n )2,设法求出整体a 1+a n ,再代入求解.(2)待定系数法:利用S n 是关于n 的二次函数,设S n =An 2+Bn (A ≠0),列出方程组求出A ,B 即可,或利用S n n 是关于n 的一次函数,设S nn =an +b (a ≠0)进行计算. (3)利用S n ,S 2n -S n ,S 3n -S 2n 成等差数列进行求解.课堂达标1.在等差数列{a n }中,S 10=120,那么a 1+a 10的值是( ) A.12 B.24 C.36D.48解析 S 10=10(a 1+a 10)2=5(a 1+a 10)=120,∴a 1+a 10=24. 答案 B2.记等差数列前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( ) A.2 B.3 C.6D.7解析 法一 由⎩⎪⎨⎪⎧S 2=2a 1+d =4,S 4=4a 1+6d =20,解得d =3.法二 由S 4-S 2=a 3+a 4=a 1+2d +a 2+2d =S 2+4d ,所以20-4=4+4d ,解得d =3. 答案 B3.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( ) A.5 B.6 C.7D.8解析 由题意知a 1+a 2+a 3+a 4=124, a n +a n -1+a n -2+a n -3=156, ∴4(a 1+a n )=280, ∴a 1+a n =70.又S =n (a 1+a n )2=n2×70=210,∴n =6.答案 B4.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 解析 ∵a 24=0,∴a 1<0,a 2<0,…,a 23<0,故S 23=S 24最小. 答案 23或245.已知等差数列{a n }中,(1)a 1=32,d =-12,S n =-15,求n ; (2)a 1=1,a n =-512,S n =-1 022,求d . 解 (1)∵S n =n ×32+⎝ ⎛⎭⎪⎫-12×n (n -1)2=-15,整理得n 2-7n -60=0, 解之得n =12或n =-5(舍去).(2)由S n =n (a 1+a n )2=n (1-512)2=-1 022,解之得n =4.又由a n =a 1+(n -1)d ,即-512=1+(4-1)d , 解之得d =-171.课堂小结1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量,若已知其中三个量,通过方程思想可求另外两个量,在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a n +a m =a p +a q (n ,m ,p ,q ∈N *),若m +n =2p ,则a n +a m =2a p .3.本节基本思想:方程思想、函数思想、整体思想、分类讨论思想.基础过关1.已知等差数列{a n }中,a 2+a 8=8,则该数列的前9项和S 9等于( ) A.18 B.27 C.36D.45解析 S 9=92(a 1+a 9)=92(a 2+a 8)=36. 答案 C2.等差数列{a n }中,S 10=4S 5,则a 1d 等于( )A.12B.2C.14D.4解析 由题意得:10a 1+12×10×9d =4⎝ ⎛⎭⎪⎫5a 1+12×5×4d ,∴10a 1+45d =20a 1+40d , ∴10a 1=5d ,∴a 1d =12.答案 A3.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( )A.-9B.-11C.-13D.-15解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 答案 D4.在一个等差数列中,已知a 10=10,则S 19=________.解析 S 19=19(a 1+a 19)2=19(a 10+a 10)2=19a 10=19×10=190. 答案 1905.已知等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析 设等差数列{a n }的首项为a 1,公差为d ,由6S 5-5S 3=5,得3(a 1+3d )=1,所以a 4=13. 答案 136.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,求a 9. 解 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1,S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8.由⎩⎪⎨⎪⎧a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.7.已知S n 是等差数列{a n }的前n 项和,且S 10=100,S 100=10,求S 110. 解 法一 设等差数列{a n }的首项为a 1,公差为d ,∵S 10=100,S 100=10,∴⎩⎨⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎪⎨⎪⎧a 1=1 099100,d =-1150. ∴S 110=110a 1+110(110-1)2d =110×1 099100+110×1092×⎝ ⎛⎭⎪⎫-1150=-110. 法二 ∵S 10,S 20-S 10,S 30-S 20,…,S 100-S 90,S 110-S 100,…成等差数列,设公差为d ,∴该数列的前10项和为10×100+10×92d =S 100=10,解得d =-22,∴前11项和S 110=11×100+11×102×(-22)=-110.能力提升8.在等差数列{a n }中,前四项之和为20,最后四项之和为60,前n 项之和是100,则项数n 为( )A.9B.10C.11D.12解析 由题意及等差数列的性质可得4(a 1+a n )=20+60=80,∴a 1+a n =20.∵前n 项之和是100=n (a 1+a n )2,解得n =10,故选B. 答案 B9.等差数列{a n }中,已知前15项的和S 15=90,则a 8等于( )A.452B.12C.6D.454解析 在等差数列{a n }中, ∵S 15=90,由S 15=15a 8=90,得a 8=6.故选C.答案 C10.已知{a n }为等差数列,a 2+a 8=43,则S 9等于________.解析 由等差数列的求和公式可得:S 9=9(a 1+a 9)2=9(a 2+a 8)2=9×432=6. 答案 611.含2n +1项的等差数列,其奇数项的和与偶数项的和之比为________.解析 S 奇=(n +1)(a 1+a 2n +1)2,S 偶=n (a 2+a 2n )2. ∵a 1+a 2n +1=a 2+a 2n ,∴S 奇S 偶=n +1n . 答案 n +1n12.已知数列{a n }的前n 项和S n =32n -n 2+1,(1)求数列{a n }的通项公式;(2)求数列{a n }的前多少项和最大.解 (1)当n =1时,a 1=S 1=32-1+1=32;当n ≥2时,a n =S n -S n -1=(32n -n 2+1)-[32(n -1)-(n -1)2+1]=33-2n ;所以:a n =⎩⎪⎨⎪⎧32,n =1,33-2n ,n ≥2;(2)S n =32n -n 2+1=-(n 2-32n )+1=-(n -16)2+162+1;所以,前16项的和最大.13.(选做题)已知数列{a n }的通项公式为a n =6n +5(n ∈N *),数列{b n }是等差数列,且a n =b n +b n +1.(1)求数列{a n }的前n 项和;(2)求数列{b n }的通项公式. 解 (1)∵a n =6n +5(n ∈N *), ∴a n +1-a n =[6(n +1)+5]-(6n +5)=6(n ∈N *). ∴数列{a n }是以公差为6的等差数列. 又∵a 1=11,∴数列{a n }的前n 项和:S n =n (a 1+a n )2=n [11+(6n +5)]2=3n 2+8n . (2)∵a n =b n +b n +1, ∴a 1=b 1+b 2,a 2=b 2+b 3. ∴⎩⎪⎨⎪⎧b 1+b 2=11,b 2+b 3=17. 设数列{b n }的公差为d , 则⎩⎪⎨⎪⎧2b 1+d =11,2b 1+3d =17,∴⎩⎪⎨⎪⎧b 1=4,d =3. ∴数列{b n }的通项公式:b n =3n +1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)ab55=b1+2 b9=TS99=79×+93=241. 2
(3)∵Sn=n(3+22n+1)=n(n+2). ∴Snn=n+2, ∴数列{Snn}是以首项为 3,公差为 1 的等差数列, ∴{Snn}的前 10 项和为 10×3+10× 2 9×1=75.
法二 ∵数列{an},{bn}均为等差数列, ∴Sn=A1n2+B1n,Tn=A2n2+B2n.
又TSnn=23nn+-12,
∴令 Sn=tn(2n+1),Tn=tn(3n-2),t≠0,且 t∈R.
∴an=Sn-Sn-1 =tn(2n+1)-t(n-1)(2n-2+1) =tn(2n+1)-t(n-1)(2n-1) =t(4n-1)(n≥2), bn=Tn-Tn-1 =tn(3n-2)-t(n-1)(3n-5) =t(6n-5)(n≥2). ∴abnn=tt( (46nn- -15) )=46nn- -15, ∴ab99=46× ×99- -15=3459=57.
【预习评价】 1.高斯用1+2+3+…+100=(1+100)+(2+99)+…+(50+51)
=101×50迅速求出了等差数列前100项的和.如果是求1+2+3 +…+n,不知道共有奇数项还是偶数项怎么办? 提示 不知共有奇数项还是偶数项导致不能配对.但我们可以采 用倒序相加来回避这个问题:设 Sn=1+2+3+…+(n-1)+n, 又 Sn=n+(n-1)+(n-2)+…+2+1, ∴2Sn=(1+n)+[2+(n-1)]+…+[(n-1)+2]+(n+1), ∴2Sn=n(n+1),∴Sn=n(n+ 2 1).
A.-2
B.-1
C.0
D.1
解析 等差数列前n项和Sn的形式为Sn=an2+bn,∴λ=-1. 答案 B
2.设 Sn 是等差数列{an}的前 n 项和,若aa53=59,则SS95=(
)
A.1
B.-1
1
C.2
D.2
解析 由于 S2n-1=(2n-1)an,则,
SS95=95aa53=95×59=1.
规律方法 已知前n项和Sn求通项an,先由n=1时,a1=S1求得a1, 再由n≥2时,an=Sn-Sn-1求an,最后验证a1是否符合an,若符 合则统一用一个解析式表示.
【训练 1】 已知数列{an}的前 n 项和为 Sn=n2+12n,求这个数列的 通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别 是什么?
4.若等差数列的项数为 2n,则 S2n=n(an+an+1), S 偶-S 奇=nd,SS偶奇=aan+n 1.
5.若等差数列的项数为 2n+1,则 S2n+1=(2n+1)an+1, S 偶-S 奇=-an+1,SS偶奇=n+n 1.
【预习评价】
1.数列{an}为等差数列,它的前n项和为Sn,若Sn=(n+1)2+λ, 则λ的值是( )
§2.3 等差数列的前n项和(一)
学习目标 1.掌握等差数列前n项和公式及其获取思路(重点); 2.经历公式的推导过程,体会数形结合的数学思想,体验从特 殊到一般的研究方法,学会观察、归纳、反思;3.熟练掌握等 差数列的五个量a1,d,n,an,Sn的关系,能够由其中三个求 另外两个(重、难点).
【预习评价】
1.利用数列的前n项和Sn求数列的通项公式时,能不能直接运用 Sn-Sn-1=an求解? 提示 不能.因为当n=1时,S1-S0没有意义.
2.已知数列{an}的前n项和Sn=n2,怎样求a1,an? 提示 a1=S1=1; 当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1, 又n=1时也适合上式,所以an=2n-1,n∈N*.
答案 B
4.已知数列{an}的通项公式是an=2n-48,则Sn取得最小值时, n为________. 解析 ∵a24=0,∴a1<0,a2<0,…,a23<0,故S23=S24最小. 答案 23或24
5.已知等差数列{an}中, (1)a1=32,d=-12,Sn=-15,求 n; (2)a1=1,an=-512,Sn=-1 022,求 d. 解 (1)∵Sn=n×32+-12×n(n- 2 1)=-15, 整理得 n2-7n-60=0,
2.能否用“倒序相加法”求首项为a1,公差为d的等差数列{an}的 前n项和Sn呢? 提示 由上节课学到的性质:在有穷等差数列中,与首末
两项“等距离”的两项之和等于首项与末项的和.即a1+an=a2 +an-1=a3+an-2=….“倒序相加法”可以推广到一般等差 数列求前n项和,其方法如下: Sn=a1+a2+a3+…+an-1+an =a1+(a1+d)+(a1+2d)+…+[a1+(n-2)d]+[a1+(n-1)d];
解之得 n=12 或 n=-5(舍去). (2)由 Sn=n(a12+an)=n(1-2512)=-1 022, 解之得 n=4.
预习教材 P42-43 完成下列问题:
知识点一 数列an与前n项和Sn的关系 1.数列的前n项和的概念
一般地,我们称a1+a2+a3+…+an为数列{an}的前n项和,用 Sn表示,即Sn=a1+a2+a3+…+an. 2.数列的通项an与前n项和Sn的关系 当n≥2时,有Sn=a1+a2+a3+…+an,Sn-1=a1+a2+a3+… +an-1,所以Sn-Sn-1=an; 当n=1时,a1=S1. 综上可得 an=SS1n,-nS=n-11,,n≥2.
知识点三 等差数列前n项和的性质 1.若数列{an}是公差为 d 的等差数列,则数列Snn也是等差数列,
且公差为d2. 2.若Sm,S2m,S3m分别为{an}的前m项,前2m项,前3m项的和,
则Sm,S2m-Sm,S3m-S2m也成等差数列,公差为__m__2_d__.
3.设两个等差数列{an},{bn}的前 n 项和分别为 Sn,Tn,则abnn=TS22nn--11.
【迁移 2】 已知两个等差数列{an}与{bn}的前 n 项和分别是 Sn 和 Tn,且 an∶bn=(2n+1)∶(3n-2),则TS99=________. 解析 ∵{an},{bn}均为等差数列, 则TS99=99ab55=23××55+-12=1113.
答案
11 13
规律方法 等差数列前 n 项和运算的几种思维方法 (1)整体思路:利用公式 Sn=n(a12+an),设法求出整体 a1+an, 再代入求解.
题型二 等差数列前n项和的有关运算
【例2】 在等差数列{an}中, (1)a1=56,an=-32,Sn=-5,求 n 和 d; (2)a1=4,S8=172,求 a8 和 d.
解 (1)由题意得,Sn=n(a12+an)=n56-2 32=-5,解得 n=15. 又 a15=56+(15-1)d=-32,∴d=-16. ∴n=15,d=-16.
(2)由已知得 S8=8(a12+a8)=8(4+2 a8)=172, 解得 a8=39, 又∵a8=4+(8-1)d=39,∴d=5. ∴a8=39,d=5.
规律方法 等差数列中基本计算的两个技巧 (1)利用基本量求值.
(2)利用等差数列的性质解题.
【训练2】 在等差数列{an}中, (1)已知a6=10,S5=5,求a8和S10; (2)已知a3+a15=40,求S17. 解 (1)S5=5a1+5×2 4d=5,解得 a1=-5,d=3. a6=a1+5d=10,
解 根据 Sn=a1+a2+…+an-1+an 可知 Sn-1=a1+a2+…+an-1(n >1), 当 n>1 时,an=Sn-Sn-1 =n2+12n-(n-1)2+12(n-1)=2n-12,① 当 n=1 时,a1=S1=12+12×1=32,也满足①式. ∴数列{an}的通项公式为 an=2n-12. 由此可见:数列{an}是以32为首项,2 为公差的等差数列.
A.13
B.35
分别是 Sn 和 Tn,已知TSnn=n7+n3,
则ab55等于(
)
2
A.7
B.3
70
21
C.13
D. 4
(3)已知数列{an}的通项公式为 an=2n+1(n∈N*),其前 n 项和为
Sn,则数列{Snn}的前 10 项的和为________.
(2)待定系数法:利用 Sn 是关于 n 的二次函数,设 Sn=An2+ Bn(A≠0),列出方程组求出 A,B 即可,或利用Snn是关于 n 的一 次函数,设Snn=an+b(a≠0)进行计算. (3)利用 Sn,S2n-Sn,S3n-S2n 成等差数列进行求解.
课堂达标
1.在等差数列{an}中,S10=120,那么a1+a10的值是( )
知识点二 等差数列的前n项和公式 1.等差数列的前n项和公式
已知量 首项、末项与项数 首项、公差与项数
求和公式
Sn=
n(a1+an) 2
Sn= na1+n(n-2 1)d
2.两个公式的关系:把 an=a1+(n-1)d 代入 Sn=n(a12+an)中, 就可以得到 Sn=na1+n(n- 2 1)d.
Sn=an+an-1+an-2+…+a2+a1 =an+(an-d)+(an-2d)+…+[an-(n-2)d]+[an-(n-1)d]. 两式相加,得 2Sn=(a1+an)×n, 由此可得等差数列{an}的前 n 项和公式:Sn=n(a12+an). 根据等差数列的通项公式 an=a1+(n-1)d, 代入上式可得 Sn=na1+n(n- 2 1)d.
当 n>1 时, an=Sn-Sn-1 =na1+12n(n-1)d-(n-1)a1+12(n-1)(n-2)d =a1+(n-1)d, 当 n=1 时,a1=S1,适合此式. ∴an=a1+(n-1)d(n∈N*). ∴an+1-an=(a1+nd)-[a1+(n-1)d]=d(常数),对任意 n∈N*成立. ∴数列{an}是等差数列.