等差数列及其前n项和 测试题
等差数列的前n项和公式同步练习(含解析)

《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。
巩固练习_提高_等差数列及其前n项和

【巩固练习】一、选择题1.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.已知等差数列{a n }的前三项依次为a -1,172a -,3,则该数列中第一次出现负值的项为( ) A .第9项B .第10项C .第11项D .第12项 3.已知{a n }是等差数列,a 3+a 11=40,则a 6-a 7+a 8等于( ) A .20B .48C .60D .72 4. 等差数列{a n }中,a 1=8,a 5=2,若在每相邻两项间各插入一个数,使之成等差数列,那么新的等差数列的公差是( ) A.34B .34-C .67-D .-1 5.(2015 新课标Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A . 172 B .192C .10D .12 6. 已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且7453n n A n B n +=+,则使得n n a b 为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 8.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则1212a ab b --=________. 9.把20分成四个数成等差数列,使第一项与第四项的积同第二项与第三项的积的比为2∶3,则这四个数从小到大依次为____________.10.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________.11.(2016 南通模拟)等差数列{}n a 中,1583,115a a a =-=,则其前n 项和n S 的最小值为 。
(完整版)等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。
高中数学等差数列的前n项和训练题(有答案)

高中数学等差数列的前 n 项和训练题(有答案)1.若一个等差数列首项为0,公差为2,则这个等差数列的前 20 项之和为 ()A .360 B.370C.380 D .390答案: C2.已知 a1= 1, a8=6,则 S8 等于 ()A .25 B.26C.27 D .28答案: D3.设等差数列 {an} 的前 n 项和为 Sn,若 a6= S3= 12,则{an}的通项 an=________.分析:由已知a1+ 5d= 123a1+ 3d= 12a1= 2,d= 2.故 an=2n.答案: 2n4.在等差数列 {an} 中,已知 a5= 14,a7= 20,求 S5.解: d=a7- a57- 5= 20- 142= 3,a1= a5- 4d= 14- 12= 2,因此 S5= 5a1+ a52=52+ 142= 40.一、选择题1. (2019 年杭州质检 )等差数列 {an} 的前 n 项和为 Sn,若 a2=1,a3= 3, S4=()A .12 B.10C.8 D.6分析: C.d= a3-a2= 2,a1=- 1,S4= 4a1+ 4322=8.2.在等差数列 {an} 中, a2+ a5=19, S5=40, a10=()A .24 B.27C.29 D .48分析: C.由已知 2a1+5d= 19, 5a1+ 10d= 40.解得 a1= 2, d= 3.a10=2+ 93= 29. X k b 1 . c o m3.在等差数列 {an} 中, S10= 120, a2+ a9=()A .12 B.24C.36 D .48分析: B.S10= 10a1+ a102= 5(a2+ a9)= 120.a2+a9= 24. 4.已知等差数列 {an} 的公差 1,且 a1+a2+⋯+ a98+ a99=99, a3+ a6+ a9+⋯+a96+ a99= ()A .99 B.66C.33 D .0分析: B.由 a1+ a2+⋯+ a98+ a99=99,得 99a1+ 99982= 99.a1=- 48, a3=a1+ 2d=- 46.又∵ {a3n} 是以 a3 首,以 3 公差的等差数列.a3+ a6+ a9+⋯+a99= 33a3+333223=33(48- 46)= 66.5.若一个等差数列的前 3 的和 34,最后 3 的和 146,且全部的和 390,个数列有 ()A .13B. 12C.11D. 10分析: A. ∵ a1+ a2+ a3=34,①an+ an- 1+ an- 2= 146,②又∵ a1+ an= a2+an-1= a3+an- 2,①+②得3(a1+ an)= 180, a1+an= 60.③Sn= a1+ann2=390.④将③代入④中得n= 13.6.在数 2n+ 1 的等差数列中,全部奇数的和165,全部偶数的和150, n 等于 ()A.9 B.10C.11 D.12分析: B.由等差数列前n 和的性知S 偶 S 奇= nn+ 1,即 150165= nn+ 1, n= 10.二、填空7.数列 {an} 的首 a1=- 7,且足 an+ 1=an+ 2(nN*) ,a1+ a2+⋯+ a17= ________.分析:由意得an+1- an=2,{an} 是一个首a1=- 7,公差 d= 2 的等差数列.a1+ a2+⋯+ a17= S17=17(-7)+ 171622= 153.答案: 1538.已知 {an} 是等差数列, a4+ a6=6,其前 5 和 S5=10,其公差 d= __________.分析: a4+ a6=a1+ 3d+a1+ 5d= 6.①S5= 5a1+ 125(5-1)d=10.② w由①②得a1= 1, d=12.答案: 129. Sn 是等差数列 {an} 的前 n 和, a12=- 8, S9=- 9,S16= ________.分析:由等差数列的性知S9=9a5=- 9,a5=- 1.又∵ a5+ a12=a1+ a16=- 9,S16= 16a1+ a162= 8(a1+ a16)=- 72.答案:- 72三、解答10.已知数列 {an} 的前 n 和公式Sn= n2-23n- 2(nN*) .(1)写出数列的第 3 ;(2)判断 74 能否在数列中.解: (1)a3= S3- S2=- 18.(2)n= 1 , a1= S1=- 24,n2 , an=Sn- Sn- 1= 2n- 24,即 an=- 24, n= 1,2n- 24,n2,由题设得 2n-24= 74(n2),解得 n= 49.74在该数列中.11.(2019 年高考课标全国卷)设等差数列 {an} 知足 a3=5,a10=- 9.(1)求 {an} 的通项公式;(2)求 {an} 的前 n 项和 Sn 及使得 Sn 最大的序号n 的值.解: (1)由 an=a1+ (n- 1)d 及 a3= 5, a10=- 9 得a1+ 2d= 5, a1+ 9d=- 9,可解得a1=9,d=- 2,因此数列 {an} 的通项公式为an= 11-2n.(2)由 (1)知, Sn= na1+ nn- 12d=10n- n2.由于 Sn=- (n- 5)2+ 25,因此当 n= 5 时, Sn 获得最大值.12.已知数列 {an} 是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)Sn= 20,S2n= 38,求 S3n.解: (1)由题意知 a1+ a2+ a3+a4= 21,an- 3+ an- 2+an-1+ an=67,因此 a1+ a2+ a3+a4+ an- 3+ an-2+ an- 1+ an=88.因此 a1+ an= 884=22.由于 Sn= na1+ an2=286,因此 n=26.(2)由于 Sn, S2n-Sn,S3n-S2n 成等差数列,其实 ,任何一门学科都离不开照本宣科,重点是记忆有技巧, “死记”以后会“活用”。
等差数列前n项和及其应用(可编辑修改word版)

等差数列前n 项和及其应用一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.142.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.83.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n} 的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.40244.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S156.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.237.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.148.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=.11.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n=.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.等差数列前n 项和及其应用参考答案与试题解析一.选择题(共8 小题)1.已知数列{a n}的通项公式a n=26﹣2n,要使此数列的前n 项和S n 最大,则n 的值为()A.12 B.13 C.12 或13 D.14【分析】数列{a n}是首项为24,公差为2 的等差数列,从而S n=24n+=﹣n2+25n=﹣(n﹣)2+.由此能求出要使此数列的前n 项和S n 最大,n 的值.【解答】解:∵数列{a n}的通项公式a n=26﹣2n,∴a1=26﹣2=24,d=a n﹣a n﹣1=(26﹣2n)﹣[26﹣2(n﹣1)]=﹣2,∴数列{a n}是首项为24,公差为2 的等差数列,∴S n=24n+=﹣n2+25n=﹣(n﹣)2+.∴要使此数列的前n 项和S n 最大,则n 的值为12 或13.故选:C.【点评】本题考查等差数列的前n 项和最大时项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.等差数列{a n}的前n 项和为S n,已知a1=13,S3=S11,当S n 最大时,n 的值是()A.5 B.6 C.7 D.8【分析】由等差数列的性质可得a7+a8=0,可得该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,进而可得答案.【解答】解:∵S3=S11,∴S11﹣S3=a4+a5+a6+…+a11=0,故可得(a4+a11)+(a5+a10)+…+(a7+a8)=4(a7+a8)=0,∴a7+a8=0,结合a1=13 可知,该数列的前7 项均为正数,从第8 项开始全为负数,故数列的前7 项和最大,故选:C.【点评】本题考查等差数列的前n 项和,涉及等差数列的性质,从数列自身的特点入手是解决问题的关键,属中档题.3.若{a n}是等差数列,首项公差d<0,a1>0,且a2013(a2012+a2013)<0,则使数列{a n}的前n 项和S n>0 成立的最大自然数n 是()A.4027 B.4026 C.4025 D.4024【分析】由题意可知数列是递减数列,由a2013(a2012+a2013)<0,知a2012>0,a2013<0,由此推得答案.【解答】解:由题意可得数列{a n}单调递减,由a2013(a2012+a2013)<0 可得:a2012>0,a2013<0,|a2012|>|a2013|.∴a2012+a2013>0.则S4025=4025a2013<0,故使数列{a n}的前n 项和S n>0 成立的最大自然数n 是4024.故选:D.【点评】本题考查了等差数列的前n 项和,考查了对递减数列的项的符号的判断,关键在于分清从那一项开始为负值,且判出正负相邻两项和的符号,是中档题.4.已知数列{a n}为等差数列,其前n 项和为S n,2a7﹣a8=5,则S11 为()A.110 B.55 C.50 D.不能确定【分析】利用等差数列的通项公式与性质及其求和公式即可得出.【解答】解:2a7﹣a8=2(a1+6d)﹣(a1+7d)=a1+5d=a6=5,∴.故选:B.【点评】本题考查了等差数列的通项公式与性质及其求和公式,考查了推理能力与计算能力,属于中档题.5.在等差数列{a n}的前n 项和为S n,若a2+a4+a15 的值为常数,则下列为常数的是()A.S7 B.S8 C.S13 D.S15【分析】利用等差数列的通项公式及其性质即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a15=3a1+18d=3a7 为常数,∴S13==13a7 为常数.故选:C.【点评】本题考查了等差数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.6.设等差数列{a n}的前n 项和为S n,若S23>0,S24<0,则S n 取最大值时n 的值为()A.11 B.12 C.13 D.23【分析】等差数列{a n}的前n 项和为S n,S23>0,S24<0,从而a12>0,a13<0,由此能求出S n 取最大值时n 的值.【解答】解:等差数列{a n}的前n 项和为S n,S23>0,S24<0,,a12>0,a13<0,∴S n 取最大值时n 的值为:12.故选:B.【点评】本题考查等差数列的前n 项和取最大值时n 的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想.7.在等差数列{a n}中,,若它的前n 项和S n 有最大值,则当S n>0 时,n 的最大值为()A.11 B.12 C.13 D.14【分析】公差d<0,首项a1>0,{a n}为递减数列,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,由此能求出结果.【解答】解:∵数列{a n}是等差数列,它的前n 项和S n 有最大值,∴公差d<0,首项a1>0,{a n}为递减数列,∵<0,∴a6•a7<0,a6+a7<0,由等差数列的性质知:2a6=a1+a11>0,a6+a7=a1+a12<0,∵S n=(a1+a n),∴S n>0 时,n 的最大值为11.故选:A.【点评】本题考查等差数列中满足前n 项和为正的n 的最大值的求法,考查等差数列的性质等基础知识,考查推运算求解能力,考查函数与方程思想,是基础题.8.等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,则()A.S10<0,S11>0 B.S19<0,S20>0C.S5<0,S6>0 D.S20<0,S21>0【分析】由等差数列的性质可得:S20=>0,S19=19•a10<0.【解答】解:∵等差数列{a n}中,a10<0,a11>0 且a11>|a10|,S n 为其前n 项和,∴由等差数列的性质可得:S20=>0,S19=19•a10<0,故选:B.【点评】本题考查命题真假的判断,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.二.填空题(共4 小题)9.已知等差数列{a n},{b n}前n 项和分别为S n 和T n,若=,则=.【分析】由等差数列的求和公式和性质可得:=,问题得以解决.【解答】解:=======,故答案为:【点评】本题考查等差数列的求和公式和等差数列的性质,属基础题.10.设等差数列{a n}的前n 项和为S n,若3a5﹣a1=10,则S13=65 .【分析】利用等差数列通项公式求出2a7=10,由此能求出S13 的值.【解答】解:∵等差数列{a n}的前n 项和为S n,3a5﹣a1=10,∴3(a1+4d)﹣a1=2a1+12d=2a7=10,∴S13===.故答案为:65.【点评】本题考查等差数列的前13 项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.1.数列{a n}的前n 项和为S n,且S n=n2﹣n(n∈N*),则通项公式a n= 2n﹣2 .【分析】由已知条件利用能求出结果.【解答】解:∵S n=n2﹣n(n∈N*),∴a1=S1=1﹣1=0,n≥2 时,=(n2﹣n)﹣[(n﹣1)2﹣(n﹣1)]=2n﹣2.当n=1 时,2n﹣2=0=a1,∴a n=2n﹣2.故答案为:2n﹣2.【点评】本题考查数列的通项公式的求法,是基础题,解题时要认真审题,注意公式的灵活运用.12.已知两个等差数列{a n}、{b n}的前n 项和分别为S n、T n.且,则=.【分析】题目给出了两个等差数列的前n 项和的比值,求解两个数列的第11 项的比,可以借助等差数列的前n 项和在n 为奇数时的公式进行转化.【解答】解:因为数列{a n}、{b n}都是等差数列,根据等差中项的概念知数列中的第11 项为数列前21 项的等差中项,所以S21=21a11,T21=21b11,所以.故答案为.【点评】本题主要考查了等差数列的性质和数列的求和.解题的关键是利用了等差数列的前n 项和在n 为奇数时的公式,若n 为奇数,则.三.解答题(共4 小题)13.等差数列{a n}的前n 项和为S n,且a3+a5=a4+7,S10=100.(1)求{a n}的通项公式;(2)求满足不等式S n<3a n﹣2 的n 的值.【分析】(1)由a3+a5=a4+7,S10=100,列出方程组,求出首项和公差,由此能求出{a n} 的通项公式.(2)由a1=1,a n=2n﹣1,求出S n=n2,从而得到n2﹣6n+5<0,由此能求出n 的值.【解答】(本题10 分)解:(1)设数列{a n}的公差为d,由a3+a5=a4+7,得2a1+6d=a1+3d+7,①.…(1 分)由S10=100,得10a1+45d=100,②…(2 分)解得a1=1,d=2,…(4 分)所以a n=a1+(n﹣1)d=2n﹣1.…(5 分)(2)因为a1=1,a n=2n﹣1,所以=n2,…(7 分)由不等式S n<3a n﹣2,得n2<3(2n﹣1)﹣2,所以,n2﹣6n+5<0,解得1<n<5,…(9 分)因为n∈N*,所以n 的值为2,3,4.…(10 分)【点评】本题考查等差数列的通项公式、项数n 的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.14.记S n 为等差数列{a n}的前n 项和,已知a1=10,S3=24.(1)求{a n}的通项公式;(2)求S n,并求S n 的最大值.【分析】(1)设等差数列{a n}的公差为d,由a1=10,S3=24.利用求和公式解得d,即可得出a n.(2)利用求和公式、二次函数的单调性即可得出.【解答】解:(1)设等差数列{a n}的公差为d,∵a1=10,S3=24.∴3×10+d=24,解得d=﹣2.∴a n=10﹣2(n﹣1)=12﹣2n.(2)S n==﹣n2+11n=﹣+.∴当n=5 或 6 时,S n 最大,S n=﹣52+55=30.【点评】本题考查了等差数列的通项公式与求和公式、二次函数的单调性,考查了推理能力与计算能力,属于中档题.15.在等差数列{a n}中,a10=18,前5 项的和S5=﹣15.(1)求数列{a n}的通项公式;(2)求数列{a n}的前n 项和的最小值,并指出何时取最小.【分析】(1)由等差数列{a n}中,a10=18,前5 项的和S5=﹣15,,由此能求出数列{a n}的通项公式.(2)由a1=﹣9,d=3,a n=3n﹣12,知=﹣,由此能求出当n=3 或4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【解答】解:(1)∵等差数列{a n}中,a10=18,前5 项的和S5=﹣15,∴,解得a1=﹣9,d=3,∴a n=3n﹣12.(2)∵a1=﹣9,d=3,a n=3n﹣12,∴==﹣,∴当n=3 或 4 时,前n 项的和S n 取得最小值S3=S4=﹣18.【点评】本题考查等差数列的通项公式和前n 项和公式的灵活运用,是基础题.解题时要认真审题,仔细解答,注意配方法的合理运用.16.已知等差数列{a n}中,a1=1,a3=﹣3.(1)求数列{a n}的通项公式;(2)若数列{a n}的前k 项和S k=﹣35,求k 的值.【分析】(1)根据等差数列的通项公式,先求出d,即可得到答案,(2)根据等差数列的前n 项和公式即可求出.【解答】解:(1)设等差数列{a n}的公差为d,由a1=1,a3=﹣3,得a3=a1+2d,解得d=﹣2,∴a n=a1+(n﹣1)d=1﹣2(n﹣1)=3﹣2n,(2)S k==﹣35,即k2﹣2k﹣35=0,解得k=7 或k=﹣5(舍去)故k=7.【点评】本题考查了等差数列的通项公式和前n 项和公式,属于基础题.。
等差数列前N项和测试训练题(含答案)

等差数列前N项和测试题一、单选题(共11题;共22分)1.(2020高一下·太和期末)一个等差数列共有2n+1项,其奇数项的和为512,偶数项的和为480,则中间项的值为()A. 30B. 31C. 32D. 332.(2020高一下·太和期末)等差数列的前n项和为,且,则()A. 8B. 9C. 10D. 113.(2020高一下·温州期末)等差数列中,,,是数列的前n项和,则()A. B. C. D.4.数列中,已知且则()A. 19B. 21C. 99D. 1015.(2020高一下·七台河期末)等差数列的首项为1,公差不为0,若成等比数列,则的前6项的和为()A. -24B. 3C. 8D. 116.(2020高一下·七台河期末)已知是公差为1的等差数列,为的前n项和.若,则()A. 10B. 12C.D.7.(2020高一下·鹤岗期末)设为等差数列的前n项和,若,,则()A. -12B. -10C. 10D. 128.(2020高一下·鹤岗期末)已知是等差数列的前n项和,,设为数列的前n项和,则()A. 2014B. -2014C. 2015D. -20159.(2020高一下·哈尔滨期末)若一个等差数列的前3项和为24,最后3项的和为126,所有项的和为275,则这个数列共有()A. 13项B. 12项C. 11项D. 10项10.(2020高一下·台州期末)已知等差数列的前n项和为,若,,,则()A. B. C. D.11.(2020高一下·广东月考)等差数列中,若,且,为前n项和,则中最大的是()A. B. C. D.二、填空题(共8题;共10分)12.(2020高一下·湖州期末)设公差为d的等差数列的前n项和为,若,,则________,取最小值时,n=________.13.(2020高一下·上海期末)已知等差数列满足:,,数列的前n项和为,则的取值范围是________.14.(2020高一下·上海期末)等差数列的前项和为,,则________.15.(2020高一下·上海期末)已知为等差数列, , 前n项和取得最大值时n的值为________.16.(2020高一下·南宁期末)已知为等差数列的前n项和,且,,则________.17.(2020高一下·黑龙江期末)已知为等差数列,其公差为2,且是与的等比中项,为前n项和,则的值为________.18.(2020高一下·金华月考)已知数列满足:,其前n项和为,则________,当取得最小值时,n的值为________.19.(2020高一下·尚义期中)设等差数列的前n项和为.若,,则正整数________.三、解答题(共6题;共55分)20.(2020高一下·六安期末)记为等差数列的前n项和,已知.(1)若,求的通项公式;(2)若,求使得的n的取值范围.21.(2020高一下·徐汇期末)设等差数列的前n项和为,若,,. (1)求常数k的值;(2)求的前n项和.22.在公差为d的等差数列中,已知,且成等比数列,为数列的前n 项和.(1)求;(2)若,求的最大值.23.(2020高一下·台州期末)已知等差数列中,为其前n项和,,.(Ⅰ)求数列的通项公式;(Ⅱ)记,,求数列的前n项和.24.(2020高一下·尚义期中)已知等差数列的前n项和为,且,.(1)求数列的通项公式;(2)设,求数列的前n项和.25.(2020高一下·崇礼期中)已知等差数列的前项和为,,,.(1)求数列的通项公式;(2)设,求数列的前n项和.答案解析部分一、单选题1.【答案】C【解析】【解答】中间项为.因为,,所以.故答案为:C.【分析】利用等差数列前n项和公式,对奇数项的和、偶数项的和列式.通过等差数列的性质,都转化为的形式,然后两式相减,可得到的值.2.【答案】B【解析】【解答】∵等差数列的前n项和为,且,解得故答案为:B.【分析】利用已知条件结合等差数列通项公式和前n项和公式,建立关于等差数列首项和公差的方程组,从而求出首项和公差,进而用等差数列通项公式求出等差数列第八项的值。
等差数列及前n项和习题

教学目标: 求和公式的性质及应用,Sn与an的关系以及
数列求和的方法。
教学重点:求和公式的性质应用。
难点:求和公式的性质运用以及数列求和的方法
引入
Sn
=na1
+
n
n-1
2
d=
d 2
n2
+
a1
-
d 2
n
可见d≠0时,Sn是关于n的缺常数项的 二次函数,其二次项系数是公差的一半。
1、求和公式的性质:
性质1、若数列{an}的前n项和为Sn=an2+bn (a,b为常数),则数列{an}是等差数列。
{an}是等差数列 Sn=an2+bn(a,b为常数)
性质2、等差数列{an}的前n项和为Sn,则
n an+1
Sn
=
n 2
2
an
2
+a
n 2
+1
(n为奇数) (n为偶数)
b1
b2
bn是否存在最大的整数m
,使得对任意的n均有sn
m 总成立?若存在,求出m,不存在,说明理由. 32
(1)an 10 2n
(2)m 7
5、方程f(x)=x的根称为函数f(x)的不动点,若函数f(x)=
a(xx+2)有唯一不动点,且x1 1000,xn1
1 f( 1
)
xn
求x2005
即n≤12时,an>0而n≥14时an<0
所以S12和S13最大
最大值为130
例6:设f(x)=log2x-logx 2(0<x<1),数列a n 满足
f(2an ) 2n(n 1,2,3 )
等差数列的前n项和习题(含答案)

[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5 第二章
等差数列及其前
n 项和 测试题1
(满分100分,100分钟完卷)
制卷:王小凤 学生姓名
一.选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一个是符合题目要求的.
1.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,则20a 等于( ) A .1-
B .1
C .3
D .7
2.等差数列{}n a 的前n 项和为n S ,若=则432,3,1S a a ==( ) A .12
B .10
C .8
D .6
3.设{n a }为等差数列,公差2d =-,n S 为其前n 项和.若1011S S =,则1a =( ) A .18
B .20
C .22
D .24
4.等差数列{}n a 中,11a =,3514a a +=,其前n 项和100n S =,则n =( ) A .9 B .10 C .11 D .12
5.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 ( )
A .5
B .4
C .3
D .2
6.在等差数列{}n a 中,若4612a a +=,S n 是数列{}n a 的前n 项和,则9S 的值为
( ) A .48
B .54
C .60
D .66
7.设n S 是等差数列{}n a 的前n 项和,若361,3S S =则612
S
S = ( ) A .
310 B .13 C .18 D .1
9
8.在等差数列中,已知前10项和为5,前20项和为15,则前30项和为( ) A .20 B .25 C .30 D .35 9.已知等差数列{}n a 满足1231010a a a a ++++=L 则有( )
A .11010a a +>
B .21000a a +<
C .3990a a +=
D .5151a = 10.一群羊中,每只羊的重量数均为整数公斤数,其总重量为65公斤,已知最轻的一只羊重7公斤,除去一只10公斤的羊外,其余各只羊的公斤数恰好能组成一个等差数列,则这群羊共有( ) A .5只
B .6只
C .8 只
D .7 只
二.填空题:本大题共5小题,每小题4分,共20分.
11.设数列{}n a 的首项17a =-,且()12n n a a n N *+=+∈,则1217a a a +++=
L ____.
12.一个首项为23,公差为整数的等差数列,如果前6项均为正数,第7项起
为负数,则它的公差是
13.已知数列的通项52n a n =-+,则其前n 项和为n S = ________.
14.{a n }为等差数列,公差d =-2,S n 为其前n 项和.若S 10=S 11,则a 1= ______.
15.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有 项.
三.解答题:本大题共4小题,每小题10分,共40分. 解答应写出文字说明、证明过程或演算步骤.
16.已知数列{}n a 是一个等差数列,且21a =,55a =-. (1)求{}n a 的通项n a ;
(2)求{}n a 前n 项和n S 的最大值.
17.设{}n a 为等差数列,n S 为数列{}n a 的前n 项和,已知77=S ,7515=S ,n T 为
数列⎭⎬⎫
⎩⎨⎧n S n 的前n 项和,求n T .
18.已知数列{}n a 的各项均为正数,前n 项和为S n ,且满足2
24n n S a n =+-.
(1)求证{}n a 为等差数列; (2)求{}n a 的通项公式.
19.已知等差数列{}n a 满足:73=a ,2675=+a a ,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令1
12
-=n n a b (*
N n ∈),求数列{}n b 的前n 项和为n T .。