站内轨道电路预叠加ZPW一2000A电码化
浅谈ZPW—2000A型站内电码化常见故障及处理方法

浅谈ZPW—2000A型站内电码化常见故障及处理方法文章着重以测量ZPW-2000A系统的发送通道、检测盘、系统发生器等设备电压为依据,针组成和功能特点,对ZPW-2000A电码化电路中常出现的一些故障进行判断、分析,从而提升处理故障的能力,大力压缩电码化故障延时。
标签:电码化;故障;处理方法随着列车速度的快速提升,机车信号的重要性愈加明显,如何才能确保ZPW-2000A型站内电码化的可靠工作以及缩短电码化故障延时显得至关重要。
文章着重针对ZPW-2000A电码化的组成及其功能特点,分析电码化运行中常见的一些故障,并且提出一系列有效措施。
1 ZPW-2000A型站内电码化的组成及特点ZPW-2000A闭环电码主要由室内设备和室外设备两部分组成,其中室内设备主要包括电码化发送器、发送调整器、发送检测器、防雷单元、闭环检测设备、轨道调整变压器、轨道及编码继电器以及室内隔离变压器等;室外设备主要包括数字电缆通道、轨道变压器、隔离盒、抗流连接线、钢轨通道以及电阻器。
ZPW-2000A电码化特点:不中断的电码化信息,主要运用预发码技术,运行前方区段以及本区段都在同一个时间发码,电码化在信息在时间上不会中断;对于轨道电路的影响较小,ZPW-2000A电码化信息主要是叠加与25Hz相敏的轨道线路上面,当ZPW-2000A站内码相关设备出现故障的时候,仅仅只是影响机车信号中发送信息,对于相敏轨道没有产生太大的影响;ZPW-2000A电码化主要采用冗余技术,当室内的发码设备出现故障时,发码报警以及控制台将会自动导入进N+1发码器。
2 ZPW-2000A型站内电码化常见的故障ZPW-2000A电码化主要分布于室内和室外,因此对于电码化故障分析可以利用室内和室外的差异性来进行判别,判断时所使用的仪表主要为ZPW-2000A 专用的数字表。
室内、室外故障的快速界定,要在分线盘处运用ZPW-2000A专用仪表进行测试,通常情况下电压的范围在3~110V之间,着重判断上、下行方向有无载频,其中是否有低频频率来进行界定。
ZPW-2000电码化调整标准、方法介绍

ZPW-2000电码化调整标准、方法介绍一、技术标准1、二元二位轨道继电器:北京全路通信信号研究设计院“ZPW-2000 系列站内电码化预发码技术”介绍:轨道继电器电压:15~18V有效值,调整电压18~26V。
据有的电务段介绍:调整状态时,轨道继电器线圈上的有效电压应不小于18V。
结合《维规》调整表对于电压参考范围:股道:18~21V;小于200m的无岔区段:15.5~18V;一送多受道岔区段:16~18V最大不超过20V。
(相关电务段有要求的按电务段有要求调)2、残压。
用0.06Ω标准分路线在轨道送受端分路时,轨道继电器残压≤7.4v。
3、轨道电路的限流电阻:(1)送电端限流电阻(Rx):一送一受区段,送受均设扼流变压器:Rx=4.4Ω一送一受区段,送受均无扼流变压器:Rx=0.9Ω一送多受道岔区段,送受均设扼流变压器:Rx=4.4Ω一送多受道岔区段,送受均无扼流变压器:Rx=1.6Ω(2)受电端限流电阻(Rs):一送多受道岔区段设扼流变压器时用:Rs=4.4Ω,无扼流变压器的区段不用限流电阻。
4、入口电流:在电码化轨道区段,于机车入口端用0.15Ω标准分路线分路时的短路电流,1700Hz、2000Hz、2300Hz不小于500ma,2600Hz不小于450ma。
5、轨道电路长度大于350m时,应设补偿电容。
载频1700Hz、2000Hz补偿电容容量80uf,载频2300Hz、2600Hz补偿电容容量60uf。
补偿电容间距为100m,均匀设置,补偿电容设置:以股道长度1010m 为例,电容个数11个,等距离长度△=L/Nc=1010/11=92m ,股道两头△/2=46m 。
二、25Hz相敏轨道电路调整一)室外轨道变压器采用BG2-130/25:1、变压器和钢轨间有扼流变压器,送、受电端变压器一、二次侧输出电压固定在一定电压档:一次侧使用Ⅰ1、Ⅰ4连接Ⅰ2、Ⅰ3(220V档),二次侧使用Ⅲ1、Ⅲ3 (15.84V档)。
站内轨道电路预叠加ZPW一2000A电码化

一、叠加
在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。
非电气化区段25Hz相敏轨道电路设备构成见表LC9-2
图LC9-5非电气化25Hz相敏轨道电路预叠加ZPW一2000A电码化
表LC9-2非电气化区段25Hz相敏轨道电路设备
二、正线预叠加系统
为保证正线区段电码化设备稳定可靠,接车进路,发车进路ZPW一2000A电码化发送设备采用“N+l”冗余方式设计+发送防雷为两路输出。
⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。直到列车进入D股道,DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。
列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备I路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。
三、预叠加原理
电码化系统的设计原则为:正线区பைடு நூலகம்(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。侧线区段为占用发码叠加发码。
图LC9-3预叠加原理
我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码的应用原理。接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。图l中粗线表示的是站内电码化范围。与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。发送的I、Ⅱ路输出分别与相邻轨道区段的CJ相连,即I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连B、D、F、H区段的CJ.
ZPW-2000A轨道电路教材

术鉴定,决定在全路推广应用。
ZPW-2000A型无绝缘轨道电路,是在法国UM71无绝
缘轨道电路技术引进 及国产化基础上,结合国情进行提
高系统安全性、系统传输性能及系统可靠性的技术再开发。结合国情提高技术性能价格比、降低工程造价上都 有了提高。该系统于2002年10月在北京地铁五三站经过试 验验证,系统也适用于城市轻轨及地下铁道。
ZPW-2000A 无绝缘 轨道电路介绍
北京铁路信号工厂 2003年10月
主要内 容
第一章 概述
第二章 原理说明
第三章 设备结构及使用
第四章 站内轨道电路预叠加电码化
第五章 测试仪器仪表
第一章 概 述
一、研制背景
我国移频自动闭塞制式于70年代开始在全路推广应 用。经历了4信息、8信息、18信息研制、开发、应用 的历程。 由于其采用有绝缘轨道电路、载频选择频率低等原因, 存在抗干扰能力差、不能完成断轨检查、不适用于电气 化区段大牵引电流等问题,制约了中国铁路的发展。
8、轨道电路调整按固定轨道电路长度与允许最小道碴电阻方 式进行。既满足了1Ω· km标准道碴电阻、低道碴电阻传输长度 要求,又提高了一般长度轨道电路工作稳定性。 9、用SPT国产铁路信号数字电缆取代法国ZCO3电缆,减小铜 芯线径,减少备用芯组,加大传输距离,提高系统技术性能价 格比,降低工程造价。 10、采用长钢包铜引接线取代70mm2铜引接线,利于维修。 11、发送、接收设备四种载频频率通用,由于载频通用,使 器材种类减少,可降低总的工程造价; 12、发送器和接收器均有较完善的检测功能,发送器可实现 “N+1”冗余, 接收器可实现双机互为冗余。
载频频率 下行:1700-1 1700-2 2300-1 2300-2 1701.4 Hz 1698.7Hz 2301.4Hz 2298.7 Hz 上行:2000-1 2000-2 2600-1 2600-2 2001.4 Hz 1998.7Hz 2601.4Hz 2598.7 Hz
四线制ZPW-2000站内及闭环电码化应用分析

第一章基本原理概述1.1 站内电码化的概念列车在区间运行时,机车信号都能不间断地反映地面信号机的显示状态。
当列车通过车站时,机车信号将无法正常工作。
为了使机车通过站内时机车信号不间断地工作,就必须对站内轨道电路实施电码化,即站内到发线及正线上的轨道电路能够传输根据列车运行前方信号机的显示所编制的各种信息。
站内电码化设备的主要任务是保证机车信号在站内正线上能够连续显示,在站内到发线也能够显示地面信号信息。
站内电码化设备在列车进入站内正线或到发线股道后,按照列车接近的地面信号显示,通过轨道电路向列车发送信息,在列车出清该区段后,恢复站内轨道电路的正常工作。
1.2 站内电码化的分类目前国内轨道电路电码化大致分为四类:切换式、叠加式、预发码式、闭环式站内电码化。
在设计电码化时,可根据轨道电路制式及运营需要,确定实施何种类型的电码化。
所谓“切换式”,即钢轨通过发码的接点条件,平时固定接向轨道电路设备,当需要向轨道发码时,切换到发码设备,轨道电路设备停止工作;当发码结束后,自动转接到轨道电路设备,恢复正常轨道电路状态。
当列车以较高速度通过站内较短的轨道电路区段时,由于传输继电器有0.6s的落下时间,因此经常造成“掉码”,使机车信号不能连续工作,不利于行车安全。
因此又出现了叠加方式的站内电码化,即当发码条件构成后,将移频轨道电路叠加在原轨道电路上,两种类型的轨道电路由隔离器隔离而互不影响。
机车信号连续显示的要求,所以站内正线采用预发码方式,即当列车压入前方区段本区段即向轨道发送信息。
为了及早发现和解决电码化电路存在的问题,保证电码化电路的完整性,需要对电码化电路实行闭环检查,即采用闭环电码化。
1.3 站内电码化的范围及技术要求1.3.1 经道岔直向的接车进路和自动闭塞区段经道岔直向的发车进路中的所有轨道电路区段、经道岔侧向的接车进路中的股道区段,应实施股道电码化。
1.3.2 在最不利条件下,入口电流应满足机车信号可靠工作的要求。
25Hz相敏轨道电路预叠加ZPW 2000A站内电码化资料

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。
本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A 电码化系统进行阐述。
关键词:电码化、轨道电路、预叠加在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信号的发展起着重要的作用。
随着铁路跨越式发展的不断深入,列车运行速度越来越快,提速区段越来越多,提速区段对机车信号有了更高的要求。
为确保机车信号的正确显示,与之配套的地面信号设备需要进行改造。
在自动闭塞区段,区间设备通常采用ZPW-2000A无绝缘轨道电路。
而站内轨道电路采用交流连续式轨道电路、25Hz 相敏轨道电路。
机车在区间和站内运行,需要接收相应的地面信息,保证列车运行安全。
为了使机车信号不间断地接收站内与区间的信息,站内正线上的各个轨道电路区段和侧线股道,均应实现电码化。
1 相关术语电码化:由轨道电路转发或叠加机车信号信息技术的总称。
车站股道电码化:车站内到发线的股道及正线实施的电码化。
车站接发车进路电码化:车站内按列车进路实施的电码化。
预叠加电码化:列车进入本区段时,不仅本区段且其运行前方相邻区段也实施的电码化。
2 实施车站闭环电码化的范围列车占用的股道区段;经道岔直向的接车进路,为该进路中的所有区段;半自动闭塞区段,包括进站信号机的接近区段;自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。
3 电码化主要设备(1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。
(2)ZPW-2000系列闭环电码化调制频率为10.3 Hz、11.4 Hz、12.5 Hz、13.6 Hz、14.7 Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。
ZPW-2000A型二线制站內电码化室外故障处理

降低。
同时,本系统还对指针偏移稳定性、等级、证书编号以及仪表零位等功能进行了实现,能够更好的对检定数据进行判断。
另外,软件也通过第三方控件的应用实现了检定结果报表的生成以及检定功能,以此使系统具有了更好的实用性。
3应用实例为了能够对本压力表检定自动化系统应用进行更好的描述,我们以一块等级为1.5、量程为0至25MPa 的一般类型压力表为例进行检定工作。
当我们将该仪表同本检定系统的压力表接口实现连接之后,只需要按步骤实现下述操作即可完成检定工作。
3.1参数设置在对检定上限、检定下限以及检定点数进行确定之后,则可以在系统中对仪表的基本信息进行填写并点击确认。
之后,则需要对标准器进行选择,系统即进入到了新建检定仪表信息页面。
3.2压力检定当我们对被检定表参数全部设置完毕之后,则可以进入到普通压力表页面,并根据检定规程的设置根据先升后降的方式对轻敲表壳前后的压力示值进行读取。
读取方法方面,我们首先需要对相关的数据表格项进行选择,之后再对数据按钮进行点击,以此对当前压力值的数值进行显示与读取。
在整个数据处理过程中,压力表所存在的测量误差以及允许误差都可以经过系统的一系列计算之后将计算结果显示到界面中。
3.3后续处理对于软件操作部分,需要我们首先对指针偏移稳定性、零位以及外观等进行判断,并在观察其是否合格之后给出相关的检定结论。
同时,系统的录入审核人员也应当对相关数据进行及时的观察与保存。
而当所有操作完成、获得最终检定结果之后,则可以点击软件的报表打印按钮,将本次检定工作的记录进行打印,并生成检定证书。
4结束语在上文中,我们以C++为开发平台,以智能压力校验仪以及液压源的应用建立了压力表的自动化检定系统,有效的在实现压力表检定工作相关功能的基础上使其具有着更为稳定、准确以及快速的检定特点,具有着较好的实用意义。
参考文献:[1]刘玉畅.压力表检定过程中常见故障及排除方法[J].中小企业管理与科技(上旬刊),2010(06):55-57.[2]金瑾.工作用一般压力表的检定和调修[J].科技创新导报,2011(21):101-102.[3]蒲正红.浅谈计量机构全面质量管理的实施办法[J].中小企业管理与科技(上旬刊),2011(10):77-78.[4]殷春前.万用表在电接点压力表检定中的运用[J].计量与测试技术,2010(01):89-90.作者简介:张乔(1970-),女,河北辛集人,工学学士,中级工程师,研究方向:站库自动化。
25Hz相敏轨道电路预叠加ZPW-2000A站内电码化

25Hz相敏轨道电路预叠加ZPW-2000A站内电码化摘要:随着铁路的大发展,站内电码化技术作为保证行车安全的基础设备已被广泛采用。
本文介绍电码化的基本原理,分析接发车进路预叠加电码化电路,对电化区段25HZ相敏轨道电路预叠加ZPW-2000A电码化系统进行阐述。
关键词:电码化、轨道电路、预叠加在信号系统设备中,车站电码化是一个重要的组成部分,它对于加强站内行车安全以及机车信自动闭塞区段,经道岔直向的发车进路,为该进路中的所有区段。
3电码化主要设备(1)ZPW-2000A电码化发送设备:载频为1700Hz、2000Hz、2300Hz、2600Hz。
(2)ZPW-2000系列闭环电码化调制频率为10.3Hz、11.4Hz、12.5Hz、13.6Hz、14.7Hz、15.8Hz、16.9Hz、18Hz、19.1Hz、20.2Hz、21.3Hz、22.4Hz、23.5Hz、24.6Hz、25.7Hz、26.8Hz、27.9Hz、29Hz。
(3)机车信号信息的定义L3 准许列车按规定速度运行,表示运行前方5个及以上闭塞分区空闲。
L2 准许列车按规定速度运行,表示运行前方4个及以上闭塞分区空闲。
L 准许列车按规定速度运行。
LU 准许列车按规定速度注意运行。
LU2 要求列车减速到规定的速度等级越过接近的地面信号机,并预告次一架地面信号机显示一个黄色灯光。
U2U3-1。
-1。
等间距:)()(电容个数轨道电路长度∑=∆L数量:Σ=N+AN :百米位数A :个位、拾位数为0时为0个位、拾位数不为0时为1Δ表示等间距长度;轨道电路两端与第一个电容距离为Δ/2,安装允许误差±0.5m 。
4电化区段25Hz相敏轨道电路预叠加ZPW-2000A站内电码化原理25Hz相敏轨道电路主要用于电化区段,二线制预叠加ZPW-2000A的原理如图1所示:图125HZ预叠加ZPW-2000A电码化原理图(1)电码化发送器ZWP·F型:产生18种低频信号8种载频(上下行各四种)的高精度、高稳定的移频信号;产生足够功率的输出信号;调整轨道电路;对移频信号特征的自检测,故障时给出报警及N+1冗余运用的转换条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
站内轨道电路预叠加ZPW一2000A电码化
一、叠加
在交流电气化牵引区段,通常采用与25Hz相敏轨道电路“叠加”移频机车信号信息的电码化方式。
所谓“叠加”即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在。
传输继电器的作用是在发码时机到来之际,将发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息。
二、预叠加
随着铁路运输的发展,提速区段对机车信号和超速防护有了更高的需求(即在发码区段内,保证机车信号在时间和空间上二均连续)。
目前的“切换和叠加”电码化技术已不满足提速要求,必须在原有电码化“叠加发码”方式的基础上进行改进,采用“叠加预发码”方式,才能保证列车接收地面信息在“时间和空间”上的连续。
“预”就是在列车占用某一区段时,其列车运行前方,与本区段相邻的下一个区段也开始发码。
三、预叠加原理
电码化系统的设计原则为:正线区段(包括无岔和道岔区段)为“逐段预先发码(简称‘预叠加’)”,保证列车在正线区段行驶的全过程,地面电码化能不间断地发送机车信号。
侧线区段为占用发码叠加发码。
图LC9-3 预叠加原理
我们以下行正线接发车为例(站场示意见图LC9-3),略述正线区段逐段预先发码的应用原理。
接车进路、发车进路ZPW--2000A电码化发送设备采用“N+l”冗余方式设计。
图l中粗线表示的是站内电码化范围。
与下行电码化方向相对应,迎着列车行驶方向进行发码,进路内每一轨道区段均设置一台传输继电器CJ。
发送的I 、Ⅱ路输出分别与相邻轨道区段的CJ相连,即
I路输出若连A、C、E.G区段的C J,Ⅱ路输出则连B、D、F、H区段的CJ.
⑴列车进入YG区段时,接车进路已排通,即正线继电器ZXJ↑,进站信号开放,LXJ↑,则接车电码化继电器JMJ↑。
直到列车进入D股道,DGJF↓,切断JMJ的KZ电源,JMJ才落下,表明接车电码化已结束。
列车进入YG区段,YGJF↓,传输继电器电路中ACJ↑,发送设备I路的移频信息叠加进A区段的轨道电路信息中,站内电码化开始工作,预发(叠加)第一个码。
(2)列车进入站内电码化第一个区段A,ADGJF↓,ACJ通过自闭电路保持吸起,发送设备I路输出继续向A区段轨道传递机车信号信息,同时BCJ↑,发送设备Ⅱ路的移频信息叠加进B 区段的轨道电路信息中,使列车运行在A区段时,B区段已预先发码。
同样,列车进入B区段,BDGJF↓。
BC J通过自闭电路保持吸起,发送的Ⅱ路输出继续向B区段轨道传递机车信号信息。
BDGJF l切断了ACJ的KZ电源,ACJ↓,A区段不再接收到I路的移频信息;与此同时CCJ↑,I路的移频信息由CCJ 叠加进C区段的轨道电路信息中,使列车运行在B区段时,C 区段已预先发码。
(3)列车在压入股道前一个区段C时,DCJ↑,将电码化信息预叠加到D股道,当列车压入D股道时,DGJF ↓,JMJ ↓,表明接车进路电码化到此结束。
由于列车在D股道,DGJF ↓.在检查了lLQ空闲和发车进路排通后,发车电码化继电器FMJ↑,则ECJ ↑,发车进路电码化开始工作,这样亦能连续向发车进路预发码。
(4)发车进路的预发码直至列车压入站内电码化最后一个区段H时结束,并直至列车压入lLQ,FM J ↓,叠加电码化信息的工作才结束。
移频电码化发送设备的两路输出信息就是如此被一个接着一个地轮流叠加至站内相邻的两个轨道区段的。
它的设计与使用,既满足了任一瞬间发送的每一路输出只向一个区段发码,又满足了任一瞬间都有两个相邻区段在发码,完全实现了“预叠加”方式对站内正线电码化技术的要求。
接车进路、发车进路ZPW- 2000A电码化发送设备采用“N+l”冗余方式设计,接车或发车进路发送设备故障,自动转换至+1设备并报警,确保正线行车安全可靠。
25Hz相敏轨道电路预叠加ZPW一2000A电码化
一、设备构成
25Hz相敏轨道电路分电气化区段和非电气化区段两大类,其预叠加电码化系统原理及设备构成基本相同。
25Hz相敏轨道电路电码化设备由发送器、发送检测盘、防雷单元、室内隔离盒、室外隔离盒、25Hz防护盒,轨道变压器等构成。
①电气化区段25Hz相敏轨道电路系统
电气化区段25Hz相敏轨道电路系统原理见图LC9-4
电气化区段25Hz相敏轨道电路预叠加ZPW一2000A电码化
电气化区段25Hz相敏轨道电路设备构成见下表,适用于25Hz相敏轨道电路及97型25Hz相敏轨道电路。
表LC9-1 电气化区段25Hz相敏轨道电路设备
②非电气化区段25Hz相敏轨道电路系统
非电气化区段25Hz相敏轨道电路系统原理见图LC9-5。
非电气化区段25Hz相敏轨道电路设备构成见表LC9-2
图LC9-5 非电气化25Hz相敏轨道电路预叠加ZPW一
2000A电码化
表LC9-2 非电气化区段25Hz相敏轨道电路设备
二、正线预叠加系统
为保证正线区段电码化设备稳定可靠,接车进路,发车进路ZPW一2000A电码化发送设备采用“N+l”冗余方式设计+发送防雷为两路输出。
正常情况下,电源屏提供直流24V电源供给发送器工作。
发送器输出经过报警继电器FBJ吸起接点输出到防雷单元,经预叠加继电器接点条件电路,将移频电码化信息叠加至室内隔离盒、室内防雷模块,再经传输电缆、室外隔离盒、轨道变压器、室外防雷模块等设备送至轨道。
接车进路或发车进路发送器故障后,对应的报警继电器FBJ 落下,自动倒向“+l”发送器,“+l”发送器投人工作,并通过FBJ 落下接点接通报警电路,通知值班人员。
另外,在轨道电路送电端设有BMT型室内电源调整变压器,根据轨道电路长度可以在室内进行电源电压调整。
在轨道电路接收端设有HF3--25型防护盒,防护电气化区段50Hz牵引电流对轨道继电器的干扰,同时对25Hz信号频率的无功电流分量及轨道电路相位角进行补偿,保证JRJXC轨道继电器正常工作。
三、侧线叠加系统原理
侧线叠加电码化系统与正线区段电码化系统工作原理基本相同,只是发送器采用单套设备,发送器防雷使用一路输出信号。
正常情况下,电源屏提供直流24V电源供给发送器工作。
发送器输出经过防雷单元、叠加继电器接点条件电路,将移频电码化信息叠加至室内隔离盒、室内防雷模块,再经传输电缆、室外隔离盒,轨道变压器、室外防雷模块等设备送至轨道。
叠加移频电码化基本相同。
为保证正线区段电码化设备稳定可靠,接车进路、发车进路ZPW一2000A电码化发送设备采用“N+l” 冗余方式设计,发送防雷为两路输出.
机车入口电流标准:用0.15Ω分路线机车入口端短路,测出机车信号轨道的入口电流的短路电流要符合要求,2600Hz大于450mA,2000Hz、2300Hz、1700Hz大于500mA。