随机信号通过线性系统的分析

合集下载

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机过程通过线性系统

随机过程通过线性系统
现代通信原理
随机过程通过线性系统
通信的目的在于传输信号,信号和系统总是联系在一起的。 通信系统中的信号或噪声一般都是随机的,因此在以后的讨论 中我们必然会遇到这样的问题:随机过程通过系统(或网络) 后,输出过程将是什么样的过程?
这里,我们只考虑平稳过程通过线性时不变系统的情况。 随机信号通过线性系统的分析,完全是建立在确知信号通过线 性系统的分析原理的基础之上的。我们知道,线性系统的响应 vo(t)等于输入信号vi(t)与系统的单位冲激响应h(t)的卷积,即
度,然后讨论输出过程的概率分布问题。
1. 输出过程ξo(t)的数学期望
E[ξo(t)]= e[h( ) ξi(t-τ)dτ ]

h(
0
)E[1[i
(t
)]d
a
h( )d
0
式中利用了平稳性假设E[ξi(t-τ)]=E[ξi(t)]=a(常数)。 又因为
H(W)=
h(t)e
jwtd
t
0
求得
H(0)= h(t)dt
可见, ξo(t)的自相关函数只依赖时间间隔τ而与时间起点t1 无关。
若线性系统的输入过程是平稳的,那么输出过程也是平 稳的。
3. 输出过程ξo(t)的功率谱密度
对式(2.4 - 7)进行傅里叶变换, 有
p0(w)
R0
(
)e
jw
d
0
[h(a)h(
0
)Ri (
)dad ]e jwrd
噪声平均功率。理想低通的传输特性为
H(ω)=
K0e-jwt 0
w wH
其他
解 由上式得|H(ω)|2=
K02
,|ω|≤ωH。输出功率谱密度为

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性时不变系统

实验三 随机信号通过线性系统的分析一、实验目的1 模拟产生特定相关函数的连续随机序列或者离散的随机序列,考察其特性。

2 模拟高斯白噪声环境下信号通过系统的问题,实现低通滤波。

3 掌握系统输出信号的数字特征和功率谱密度的求解。

二、实验设备1计算机2 Matlab 软件三、实验原理随机信号通过线性系统分析的中心问题是:给定系统的输入函数(或统计特性:均值和 自相关函数)和线性系统的特性,求输出函数。

如下图所示,H 为线性变换,信号X (t )为系统输入, Y (t )为系统的输出,它也是随机信号。

图3.1 随机信号通过系统的示意图并且满足: H [X (t )] = Y (t )在时域:若X(t)时域平稳,系统冲激响应为h(t),则系统输入和输出的关系为:()()*()()()()()Y t X t h t X h t d h X t d ττττττ∞∞-∞-∞==-=-⎰⎰ 输出期望:∑∞===0m XY )m (h m )]t (Y [E m 输出的自相关函数:)(h )(h )(R )(R X Y τ*τ-*τ=τ输出平均功率:⎰⎰∞∞-∞∞--=τdvdu )u (h )v (h )u v (R )(R X Y 互相关:)()()()()(ττσσσττh R d h R R X X XY *=-=⎰∞∞-在频域:输入与输出的关系:)(H )(X )(Y ωω=ω输出的功率谱:2X X Y )(H )(S )(H )(H )(S )(S ωω=ωω-ω=ω功率谱:)(H )(S )(S X XY ωω=ω四、实验内容与步骤1已知平稳随机过程X(n)的相关函数为:5),()(22==σδσm m R ; 线性系统的单位冲击响应为111,0,)(+-=≥=实验者学号后两位r k r k h k 。

编写程序求:1)输入信号的功率谱密度、期望、方差、平均功率;2)利用时域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;3)利用频域分析法求输出信号的自相关函数、功率谱密度、期望、方差、平均功率;4)利用频域分析法或时域分析法求解输入输出的互相关函数、互功率谱密度。

随机信号分析实验:随机过程通过线性系统的分析

随机信号分析实验:随机过程通过线性系统的分析

实验三 随机过程通过线性系统的分析实验目的1. 理解和分析白噪声通过线性系统后输出的特性。

2. 学习和掌握随机过程通过线性系统后的特性,验证随机过程的正态化问题。

实验原理1.白噪声通过线性系统设连续线性系统的传递函数为)(ωH 或)(s H ,输入白噪声的功率谱密度为2)(0N S X =ω,那么系统输出的功率谱密度为2)()(02N H S Y ⋅=ωω (3.1) 输出自相关函数为⎰∞∞-=ωωπτωτd e H N R j Y 20)(4)( (3.2)输出相关系数为)0()()(Y Y Y R R ττγ=(3.3) 输出相关时间为⎰∞=00)(ττγτd Y (3.4)输出平均功率为[]⎰∞=202)(2)(ωωπd H N t Y E (3.5)上述式子表明,若输入端是具有均匀谱的白噪声,则输出端随机信号的功率谱主要由系统的幅频特性)(ωH 决定,不再是常数。

2.等效噪声带宽在实际中,常常用一个理想系统等效代替实际系统的)(ωH ,因此引入了等效噪声带宽的概念,他被定义为理想系统的带宽。

等效的原则是,理想系统与实际系统在同一白噪声的激励下,两个系统的输出平均功率相等,理想系统的增益等于实际系统的最大增益。

实际系统的等效噪声带宽为⎰∞=∆022max)()(1ωωωωd H H e (3.6)或⎰∞∞--=∆j j e ds s H s H H j )()()(212maxωω (3.7)3.线性系统输出端随机过程的概率分布 (1)正态随机过程通过线性系统若线性系统输入为正态过程,则该系统输出仍为正态过程。

(2)随机过程的正态化随机过程的正态化指的是,非正态随机过程通过线性系统后变换为正态过程。

任意分布的白噪声通过线性系统后输出是服从正态分布的;宽带噪声通过窄带系统,输出近似服从正态分布。

实验内容设白噪声通过图3.1所示的RC 电路,分析输出的统计特性。

图3.1 RC 电路(1)试推导系统输出的功率谱密度、相关函数、相关时间和系统的等效噪声带宽。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

随机信号通过线性系统分析

随机信号通过线性系统分析
离散和连续时间系统 双侧系统和单侧系统
4.1 线性系统的基本理论
若对于任意常数a和b、输入信号x1(t)和x2(t),有
L[ax1(t) bx2 (t)] aL[x1(t)] bL[x2 (t)] 则称系统为线性系统。 若输入信号x(t)时移c段时间,输出y(t)也只引起一 个相同的时移,即
n
h(n) 1
2 j
l H (z)zn1dz
式中l表示包含 H (z)zn1 所有极点的单位圆。
4.1 线性系统的基本理论
如果系统的单位冲激响应满足 h(n) 0 当n 0时
那么该系统称为因果系统。所以实际运行的物理可实现 系统都是因果的。于是对于物理可实现的系统来说

1. 若输入X(t)是宽平稳的,则系统输出Y(t)也是宽平稳 的,且输入与输出联合宽平稳。

mY (t) mX 0 h( )d


RXY (t1,t2 ) 0 h(u)RX (t2 t1 u)du 0 h(u)RX ( u)du RXY ( )

RY (t1,t2 ) 0 0 h(u)h(v)RX (t2 t1 v u)dudv
重点及其要求:
(1)掌握以下五条性质: 1.双侧宽或严平稳随机 信号通过线性系统后的输出仍是宽或严平稳的,且 输入与输出联合宽平稳;2.双侧宽遍历随机信号通 过线性系统后的输出仍是宽遍历的;3.高斯随机信 号通过线性系统后的输出仍然是高斯随机信号;4. 若线性系统的输入随机信号的带宽远大于系统的带 宽,则无论输入信号具有何种概率密度函数,系统 输出的概率密度函数皆近似于高斯分布;5.线性系 统输出的随机信号的相关时间与系统的带宽成反比。
2. 输出的均值 输出的均值。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档