【6套合集】河北邯郸市第一中学2020中考提前自主招生数学模拟试卷附解析

合集下载

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。

河北省邯郸市名校2020届数学中考模拟试卷

河北省邯郸市名校2020届数学中考模拟试卷

河北省邯郸市名校2020届数学中考模拟试卷一、选择题1.下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形.其中,既是轴对称图形又是中心对称图形的是( ) A .①②B .②③C .②④D .①④2.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=cx在同一平面直角坐标系中的图象可能是( )A .B .C .D .3在实数范围内有意义,则x 的取值范围是( )A.1x >-B.1x <-C.1x ≥-D.1x ≥-且0x ≠4.如图,在Rt △ACB 中,∠ACB =90°,AC =BC ,点D 是AB 上的一个动点(不与点A ,B 重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接DE ,DE 与AC 相交于点F ,连接AE ,若,AD =2BD ,则CF 等于( )A. B. C. D.5.如图,在半径为5的⊙O 中,,AB CD 是互相垂直的两条弦,垂足为P ,且8AB CD ==,则OP 的长为( )A .3B .4C .D . 6.将点A (﹣2,3)绕坐标原点逆时针旋转90后得到点A',则点A'的坐标为( ) A .(2,3)B .(3,2)C .(﹣2,﹣3)D .(﹣3,﹣2)7.下列图形,是轴对称图形的是( )A .B .C .D .8.若点A (a+1,b ﹣2)在第二象限,则点B (﹣a ,1﹣b )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限9.如图,在△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4,则BC 的长为( )A .4B .8C .12D .1610.若常数k 满足一元二次方程x 2+kx+4=0有实数根,则k 的值不可以取( )A .B .3.5C .﹣4D .﹣511.如图,在矩形纸片ABCD 中,3AB =,点E 在BC 上,将ABE ∆沿AE 折叠,点B 恰好落在CD 边上点F 处,且1CF =.则tan CFE ∠的值为( )A .12B .23C D 12.下列由年份组成的各项图形中,是中心对称图形的是( )A .B .C .D .二、填空题13.如图,AD 和BE 分别为三角形ABC 的中线和角平分线,AD BE ⊥,若4AD BE ==,则AC 的长__________.14.如图,在△ABC 中,∠ABC=90°,且BC=6,AB=3,AD 是∠BAC 的平分线,与BC 相交于点E ,点G 是BC 上一点,E 为线段BG 的中点,DG ⊥BC 于点G ,交AC 于点F ,则FG 的长为_____.15.如果二次函数22my mx -=(m 为常数)的图象有最高点,那么m 的值为______.16.如图,已知直线AB ∥CD ,∠1=60°,∠2=45°,则∠CBD 的度数为_____.17.如图,在4×5的正方形网格中点A,B,C都在格点上,则tan∠ABC=_____.18.如图,在▱ABCD中,AB=AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.三、解答题19.京东快递仓库使用机器人分拣货物,已知一台机器人的工作效率相当于一名分拣工人的20倍,若用一台机器人分拣8000件货物,比原先16名工人分拣这些货物要少用23小时(1)求一台机器人一小时可分拣多少件货物?(2)受“双十一”影响,重庆主城区某京东仓库11月11日当天收到快递72万件,为了在8小时之内分拣完所有快递货物,公司调配了20台机器人和20名分拣工人,工作3小时之后,又调配了若干台机器人进行增援,则该公司至少再调配多少台机器人进行增援才能在规定的时间内完成任务?20.已知二次函数y=x2﹣(k+1)x+14k2+1与x轴有交点.(1)求k的取值范围;(2)方程x2﹣(k+1)x+14k2+1=0有两个实数根,分别为x1,x2,且方程x12+x22+15=6x1x2,求k的值,并写出y=x2﹣(k+1)x+14k2+1的代数解析式.21.某商场用2500元购进A、B两种新型节能台灯共50盏,这两种台灯的进价、标价如下表所示.(2)在每种台灯销售利润不变的情况下,若该商场计划销售这批台灯的总利润至少为1400元,问至少需购进B种台灯多少盏?22.2019年1月有300名教师参加了“新技术支持未来教育”培训活动,会议就“面向未来的教育”和“家庭教育”这两个问题随机调查了60位教师,并对数据进行了整理、描述和分析.下面给出了部分信息:a.关于“家庭教育”问题发言次数的频数分布直方图如下(数据分成6组:0≤x<4,4≤x<8,8≤x<12,12≤x<16,16≤x<20,20≤x≤24):b.关于“家庭教育”问题发言次数在8≤x<12这一组的是:8 8 9 9 9 10 10 10 10 10 10 1111 11 11c.“面向未来的教育”和“家庭教育”这两问题发言次数的平均数、众数、中位数如下:(1)表中m的值为______;(2)在此次采访中,参会教师更感兴趣的问题是______(填“面向未来的教育”或“家庭教育”),理由是______;(3)假设所有参会教师都接受调查,估计在“家庭教育”这个问题上发言次数超过8次的参会教师有______位.23.如图,AB为⊙O的直径,C为⊙O外一点,且∠CAB=90°,BD是⊙O的弦,BD∥CO.(1)请说明:CD是⊙O的切线:(2)若AB=4,BC=.则阴影部分的面积为24.冰雪之王总决赛(以下简称“雪合战”)在我市落下帷幕.已知不同小组的甲、乙两队的五次预选赛成绩分别如下列不完整的统计表及统计图所示(每次比赛的成绩为0分,10分,20分三种情况).甲队五次预选赛成绩统计表(1)补全条形统计图;(2)求甲队成绩的平均数及x的值;(3)从甲、乙两队前3次比赛中随机各选一场比赛的成绩进行比较,求选择到的甲队成绩优于乙队成绩的概率.乙队五次预选赛成绩条形统计图25.计算:(1)(x+2y)(x﹣2y)+4(x+y)2(2)(212aa-++a﹣1)÷2244a aa a-++【参考答案】*** 一、选择题13.1415.-2 16.75°17.1 218.3三、解答题19.(1)一台机器人每小时可以分拣3000件货物(2)公司至少再调配15台机器人进行增援才能在规定时间内完成任务【解析】【分析】(1)设一名工人每小时可分拣x件货物,则一台机器人每小时可分拣20x件货物,对于8000件的工作量,时间相差23小时,即可列出以时间为等量关系的方程;(2)可设公司需再调配y台机器人进行增援,从总工作量上满足不少于720000件,列一元一次不等式即可.【详解】(1)设一名工人每小时可分拣x件货物,则一台机器人每小时可分拣20x件货物,根据题意得:800080002 16203x x-=,解得:x=150,经检验:x=150 是原方程的根,∴20x=3000,答:一台机器人每小时可以分拣3000件货物;(2)设公司需再调配y台机器人进行增援才能在规定时间内完成任务,根据题意得:8×(20×150+20×3000)+(8﹣3)×3000y≥720000, 可得:y≥14.4 ∵y 为正整数,∴y 的最小整数解为15,答:公司至少再调配15台机器人进行增援才能在规定时间内完成任务. 【点睛】本题考查的是分式方程的应用,并结合了一元一次不等式的应用,明确等量关系进行列式是解题的关键. 20.(1)32k ≥;(2)k 的值是4,y =x 2﹣5x+5. 【解析】 【分析】(1)根据题意可以得到关于k 的不等式,从而可以得到k 的取值范围;(2)根据题意和根据系数的关系,可以求得k 的值,进而可以写出y =x 2﹣(k+1)x+14k 2+1的代数解析式. 【详解】解:(1)∵二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点, ∴△=221[(k 1)]41k 14⎛⎫-+-⨯⨯+ ⎪⎝⎭≥0, 解得32k ≥, 所以,k 的取值范围是32k ≥; (2)∵方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2, ∴x 1+x 2=k+1,x 1x 2=14k 2+1, ∵x 12+x 22+15=6x 1x 2,∴(x 1+x 2)2﹣2x 1x 2+15=6x 1x 2, ∴(k+1)2﹣2(14k 2+1)+15=6×(14k 2+1), 解得,k =4或k =﹣2(舍去), ∴y =x 2﹣5x+5,所以,k 的值是4,y =x 2﹣(k+1)x+14k 2+1的代数解析式是y =x 2﹣5x+5. 【点睛】本题考查二次函数图象与系数的关系、根的判别式、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.21.(1)A 型台灯购进30盏,B 型台灯购进20盏(2)要使销售这批台灯的总利润不少于1400元,至少需购进B 种台灯27盏 【解析】 【分析】(1)根据题意可得等量关系:A 、B 两种新型节能台灯共50盏,A 种新型节能台灯的台数×40+B 种新型节能台灯的台数×65=2500元;设A 型台灯购进x 盏,B 型台灯购进y 盏,列方程组即可求得; (2)根据题意可知,总利润=A 种新型节能台灯的售价﹣A 种新型节能台灯的进价+B 种新型节能台灯的售价﹣B 种新型节能台灯的进价;根据总利润不少于1400元,设购进B 种台灯m 盏,列不等式即可求得. 【详解】(1)设A 型台灯购进x 盏,B 型台灯购进y 盏, 根据题意,得5040652500x y x y +=⎧⎨+=⎩,解得:3020x y =⎧⎨=⎩,答:A 型台灯购进30盏,B 型台灯购进20盏; (2)设购进B 种台灯m 盏,根据题意,得利润(100﹣65)•m+(60﹣40)•(50﹣m)≥1400, 解得,m≥803, ∵m 是整数, ∴m≥27,答:要使销售这批台灯的总利润不少于1400元,至少需购进B 种台灯27盏. 【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系以及不等关系是解题的关键.22.(1)11;(2)家庭教育问题,理由见解析;(3)210位. 【解析】 【分析】(1)根据频数(率)分布直方图中数据即可得到结论; (2)根据表中数据即可得到结论;(3)所有参会教师人数×在“家庭教育”这个问题上发言次数超过8次的参会教师占在“家庭教育”这个问题上发言的参会教师的人数即可得到结论. 【详解】解:(1)根据题意可知关于“家庭教育”问题发言次数的中位数落在8≤x<12这一组, ∴m=11, 故答案为:11;(2)在此次采访中,参会教师更感兴趣的问题是家庭教育问题,理由:“家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数; 故答案为:家庭教育,家庭教育”的平均数、众数、中位数都高于“面向未来的教育”的平均数、众数、中位数; (3)300×4260=210位, 答:发言次数超过8次的参会教师有210位. 【点睛】本题考查了频数(率)分布直方图,正确的理解题意是解题的关键.23.(1)详见解析;(2)23π-【解析】(1)连接OD,易证△CAO≌△CDO(SAS),由全等三角形的性质可得∠CDO=∠CAO=90°,即CD⊥OD,进而可证明CD是⊙O的切线;(2)过点O作OE⊥BD,垂足为E,首先利用勾股定理可求出AC,OC的长,证得△OBD是等边三角形,根据扇形和三角形的面积公式即可得到结论.【详解】(1)证明:如图,连接OD,∵BD∥CO,∴∠DBO=∠COA,∠ODB=∠COD,在⊙O中,OB=OD,∴∠DBO=∠ODB,∴∠COA=∠COD,在△CAO和△CDO中,OA ODCOA COD CO CO=⎧⎪∠=∠⎨⎪=⎩,∴△CAO≌△CDO(SAS).,∴∠CDO=∠CAO=90°,即 CD⊥OD,又∵OD是⊙O的半径,∴CD是⊙O的切线;(2)如图,过点O作OE⊥BD,垂足为E.在Rt△ABC中,AC=∴OC4,∴∠AOC=60°,∵△CAO≌△CDO,∴∠COD=∠COA=60°,∴∠BOD=60°,∴△BOD是等边三角形,∴BD=OD=2,OE∴阴影部分的面积=S扇形BOD﹣S△BOD=2602360π⋅⨯﹣1223π.故答案为:2 3π【点睛】本题考查了切线的判断和性质、全等三角形的判断和性质、勾股定理的运用,正确作出辅助线是解题的24.(1)见解析(2)20(3)4 9【解析】【分析】(1)由甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20可得乙第4场的成绩为20,据此可补全图形;(2)先计算出乙的平均成绩,据此可得甲的平均成绩,再根据平均数的公式列出关于x的方程,解之可得;(3)列表得出所有等可能结果,从中找到甲队成绩优于乙队成绩的结果数,利用概率公式计算可得.【详解】(1)甲、乙两队五次预选赛成绩的众数相同,且甲队成绩的众数为20,∴乙队成绩的众数为20,则第4场的成绩为20,补全图像如下:乙队五次预选赛成绩条形统计图(2)乙队五次成绩的平均数为1(1010202020)16 5⨯++++=,∴甲队成绩的平均数为16,由1(2002020)165x⨯++++=可得20x=;(3)列表如下:所以选择到的甲队成绩优于乙队成绩的概率为49.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计的有关概念.25.(1)5x2+8xy;(2)2 aa +【解析】【分析】(1)根据平方差公式和完全平方公式进行化简,再进行计算即可得到答案;(2)先对212aa-++a﹣1进行通分化简,再根据完全平方公式对2244a aa a-++的分母进行化简,进行计算即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+4(x+y)2=x2﹣4y2+4(x+y)2=x2﹣4y2+4(x2+2xy+y2)=x2﹣4y2+4x2+8xy+4y2=5x2+8xy(2)(212aa-++a﹣1)÷2244a aa a-++=21(1)(2)22a a aa a⎡⎤--++⎢⎥++⎣⎦÷2244a aa a-++=2221(22)a aaaa++-+--÷2244a aa a-++=12aa-+÷2(1)(2)a aa-+=12aa-+×2(2)(1)aa a+-=2aa+.【点睛】本题考查平方差公式和完全平方公式,解题的关键是掌握平方差公式和完全平方公式的计算.。

河北省邯郸市2020年中考模拟考试数学试卷(6套 含答案)

河北省邯郸市2020年中考模拟考试数学试卷(6套 含答案)

初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( )A.点PB.点QC.点MD.点N 2.下列运算正确的是( )A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+x B. 9)2(2=-x C. 1)2(2=+x D. 1)2(2=-x6.下列各因式分解正确的是( )A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x 7.若a>b,则下列式子一定成立的是( ) A.0>+b a B. 0>-b a C.0>ab D.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4 B. 5 C.32 D. 2 9.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( )A.021>>y yB.210y y >> B.C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A. 60°B.45°C. 30°D.25° 13.如图,在Rt △ABC中,∠C=90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。

2020年河北省邯郸市中考数学模拟试卷(4月份)(有答案解析)

2020年河北省邯郸市中考数学模拟试卷(4月份)(有答案解析)

2020年河北省邯郸市中考数学模拟试卷(4月份)一、选择题(本大题共15小题,共45.0分)1.在实数、0、、中,最小的实数是A. B. C. 0 D.2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A. B. C. D.3.下列立体图形中,主视图是三角形的是A. B. C. D.4.下列运算正确的是A. B.C. D.5.观察下列图形,是中心对称图形的是A. B. C. D.6.一元二次方程的解是A. B. ,C. ,D. ,7.抛物线的对称轴是A. B. C. D.8.已知一次函数的图象经过第一、二、四象限,则k的取值范围是A. B. C. D.9.在中,,,,则sin A的值为A. B. C. D.10.如图,是用一把直尺、含角的直角三角板和光盘摆放而成,点A为角与直尺交点,点B为光盘与直尺唯一交点,若,则光盘的直径是A. B. C. 6D. 311.如图,菱形OABC的顶点B在y轴上,顶点C的坐标为,若反比例函数的图象经过点A,则k的值为A.B.C. 3D. 612.如果点,,都在反比例函数的图象上,那么A. B. C. D.13.半径等于的中,弦AB长度为3,则弦AB所对的圆周角度数为A. B. 或 C. D. 或14.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点,平移后的对应点分别为点、则曲线段AB扫过的面积为A. 4B. 6C. 9D. 1215.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,,则在下面函数图象中,大致能反映y与x之间函数关系的是A. B. C.D.二、填空题(本大题共4小题,共12.0分)16.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是______.17.把抛物线向右平移2个单位,再向上平移4个单位,得到的抛物线的解析式是______.18.活动楼梯如图所示,,斜坡AC的坡度为1:1,斜坡AC的坡面长度为8m,则走这个活动楼梯从A点到C点上升的高度BC为______.19.以坐标原点O为圆心,作半径为1的圆,若直线与有交点,则b的取值范围是______.三、计算题(本大题共1小题,共7.0分)20.某同学化简的解题过程如下解:原式第一步第二步第三步该同学的解答过程从第______步开始出现错误.请写出此题正确的解答过程.四、解答题(本大题共6小题,共56.0分)21.有个填写运算符号的游戏:在“”中的每个内,填入,,,中的某一个可重复使用,然后计算结果.计算:;若,请推算内的符号;在“”的内填入符号后,使计算所得数最大,直接写出这个最大数.22.某中学九班数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,请根据统计图提供的信息,解答下列问题:请你补全条形统计图;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学男生2人,女生3人中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.23.已知矩形ABCD的一条边,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于O,连结AP、OP、OA.求证:∽;若与的面积比为1:4,求边AB的长.24.如图,用一段长为30米的篱笆围成一个一边靠墙的矩形苗圃园,已知墙长为18米,设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x的值.若平行于墙的一边长不小于8米,当x取何值时,这个苗圃园的面积有最大值,最大值是多少?25.如图,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.求证:AC平分.若,B为OE的中点,求tan E的值.在的前提下,若,垂足为点F,求CF的长.26.如图,已知抛物线的顶点为,抛物线与y轴交于点,与x轴交于C、D两点.点P是抛物线上的一个动点.求此抛物线的解析式.求C、D两点坐标及的面积.若点P在x轴下方的抛物线上.满足,求点P的坐标.-------- 答案与解析 --------1.答案:A解析:解:,在实数、0、、中,最小的实数是.故选:A.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个负实数绝对值大的反而小.2.答案:A解析:解:,故选:A.根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.本题考查科学记数法表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.答案:B解析:解:A主视图是矩形,C主视图是正方形,D主视图是圆,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.根据从正面看得到的图形是主视图,可得图形的主视图.本题考查了简单几何体的三视图,圆锥的主视图是三角形.4.答案:C解析:解:A、故本选项错误;B、,故本选项错误;C、,故本选项正确D、,故本选项错误.故选:C.根据整式的加减法,同底数幂的除法,积的乘方,二次根式的加减法法则计算即可.本题考查了合并同类项的法则,积的乘方运算性质,同底数幂的除法法则,二次根式的加减法的法则,比较简单.牢记法则是关键.5.答案:D解析:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选:D.根据中心对称图形的概念对各选项分析判断即可得解本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.答案:D解析:解:,,或,故选:D.根据因式分解法即可求出答案本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.7.答案:A解析:解:由对称轴公式:对称轴是.故选A.已知解析式为抛物线解析式的一般式,利用对称轴公式直接求解.主要考查了求抛物线的顶点坐标、对称轴的方法.8.答案:B解析:解:一次函数的图象经过第一、二、四象限,;故选:B.根据一次函数经过的象限确定其图象的增减性,然后确定k的取值范围即可.本题考查一次函数图象与系数的关系;熟练掌握一次函数,k与b对函数图象的影响是解题的关键.9.答案:A解析:解:中,,,,.故选:A.直接根据三角函数的定义求解即可.此题考查的是锐角三角函数的定义,比较简单,用到的知识点:正弦函数的定义:我们把锐角A的对边a与斜边c的比叫做的正弦,记作即的对边:斜边:c.10.答案:A解析:解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知,OA平分,,在中,,光盘的直径为,故选:A.设三角板与圆的切点为C,连接OA、OB,由切线长定理得出、,可得答案.本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.答案:D解析:解:与C关于OB对称,的坐标是.把代入得:,解得:.故选:D.根据菱形的性质,A与C关于OB对称,即可求得A的坐标,然后利用待定系数法即可求得k的值.本题考查了待定系数法求函数解析式,以及菱形的性质,正确求得A的坐标是关键.12.答案:B解析:【分析】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.直接把各点代入反比例函数的解析式,求出,,的值,再比较出其大小即可.【解答】解:点,,都在反比例函数的图象上,,,.,.故选B.13.答案:B解析:解:如图所示,连接OA、OB,过O作,则,,,,,,,,,.故选:B.先根据题意画出图形,连接OA、OB,过O作,由垂径可求出AF的长,根据特殊角的三角函数值可求出的度数,由圆周角定理及圆内接四边形的性质即可求出答案.此题考查的是圆周角定理及垂径定理,解答此题时要注意一条弦所对的圆周角有两个,这两个角互为补角.14.答案:C解析:解:将函数的图象沿y轴向下平移3个单位得到一条新函数的图象,所以,所以曲线段AB扫过的面积.故选:C.根据平移规律得到;曲线段AB扫过的面积,即可求解.此题主要考查了二次函数图象与几何变换,根据已知得出是解题关键.15.答案:C解析:解:根据题意知,,,且∽,则,即,所以,该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.通过相似三角形∽的对应边成比例列出比例式,从而得到y与x之间函数关系式,从而推知该函数图象.本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.16.答案:解析:解:在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是:.故答案为:.由在10个外观相同的产品中,有2个不合格产品,直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.注意用到的知识点为:概率所求情况数与总情况数之比.17.答案:解析:解:的顶点坐标为,把点向右平移2个单位,再向上平移4个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.由抛物线平移不改变二次项系数a的值,根据点的平移规律“左减右加,上加下减”可知移动后的顶点坐标,再由顶点式可求移动后的函数表达式.本题考查了二次函数图象与几何变换.解决本题的关键是得到新抛物线的顶点坐标.18.答案:解析:解:如图.米,BC::1.设米,则米.在中,,即,解得,即米.故上升高度是米.故答案为:.根据铅直高度:水平宽度:1,可用未知数表示出铅直高度和水平宽度的值,进而可用勾股定理求得铅直高度的值.本题考查了勾股定理在直角三角形中的运用,考查了坡度的定义以及直角三角形中三角函数值的计算.19.答案:解析:解:当直线与圆相切,且函数经过一、二、四象限时,如图.在中,令时,,则与y轴的交点是,当时,,则A的交点是,则,即是等腰直角三角形.连接圆心O和切点则.则即;同理,当直线与圆相切,且函数经过二、三、四象限时,.则若直线与相交,则b的取值范围是.故答案为:.求出直线与圆相切,且函数经过一、二、四象限,和当直线与圆相切,且函数经过二、三、四象限时b的值,则相交时b的值在相切时的两个b的值之间.本题考查了切线的性质,正确证得直线与圆相切时,可得是等腰直角三角形是关键.20.答案:一解析:解:该同学从第一步开始出现错误;故答案为:一原式利用整式乘法公式和整式的加减法则进行运算,并在计算过程中完成即可.本题考查了整式的乘法公式和整式的加减.掌握完全平方公式和平方差公式是解决本题的关键.21.答案:解:;,内的符号是“”;.解析:根据加减混合运算顺序和运算法则计算可得;按照混合运算顺序计算可知内运算法则;要使得出最大,减号前的得出应该尽可能的大,据此求解可得.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.答案:解:抽查的总人数为:人,类人数人,补全条形统计图如下:画树状图得:所有等可能的情况数有20种,其中一男一女的有12种,所以恰好抽到一男一女.解析:由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;根据题意画出树状图得出所有等可能结果,从中找出恰好抽到一男一女的结果数,根据概率公式求解可得.本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.答案:解:四边形ABCD是矩形,,,.由折叠可得:,,,...,.∽.与的面积比为1:4,.,,.,,.设,则,.在中,,,,,.解得:..边AB的长为10.解析:只需证明两对对应角分别相等即可证到两个三角形相似;根据相似三角形的性质求出PC长以及AP与OP的关系,然后在中运用勾股定理求出OP长,从而求出AB长.此题考查了相似三角形的性质和判定,翻折的性质,矩形的性质勾股定理,掌握三角形相似的判定方法是解决问题的关键.24.答案:解:由题意可得,,即,解得,,,当时,,故舍去;当时,,由上可得,x的值是12;设这个苗圃园的面积为S平方米,由题意可得,,平行于墙的一边长不小于8米,且不大于18米,,解得,,当时,S取得最大值,此时,答:当时,这个苗圃园的面积有最大值,最大值是平方米.解析:根据题意和图形,可以列出相应的一元二次方程,从而可以求得x的值,注意墙长是18米;根据题意和图形,可以得到S与x的函数关系式,再根据二次函数的性质,即可求得当x取何值时,这个苗圃园的面积有最大值,最大值是多少.本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的一元二次方程,利用二次函数的性质和数形结合的思想解答.25.答案:证明:连结OC,如图,与切于点C,,,,,,,,即AC平分;解:为OE的中点,,,;,,.解析:连结OC,如图,根据切线的性质得,而,根据平行线的性质得,所以,加上,则,所以AC平分;根据线段中点的定义得到,根据三角函数的定义得到结论;根据三角函数的定义即可得到结论.本题考查了切线的性质,角平分线的判定,解直角三角形等知识,综合程度较高,需要学生灵活运用所学知识.26.答案:解:抛物线的顶点为,设抛物线的解析式,把点代入得,,解得,抛物线的解析式为;由知,抛物线的解析式为;令,则,或,,;,;由知,;,,,,点P在x轴上方的抛物线上,,,抛物线的解析式为;,,,或.解析:设抛物线顶点式解析式,然后把点B的坐标代入求出a的值,即可得解;令,解方程得出点C,D坐标,再用三角形面积公式即可得出结论;先根据面积关系求出点P的坐标,求出点P的纵坐标,代入抛物线解析式即可求出点P的坐标.此题是二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.。

2020年河北省邯郸市中考数学模拟试卷(原卷+解析卷)

2020年河北省邯郸市中考数学模拟试卷(原卷+解析卷)

试题解析一.选择题(共12小题)1.下列几个数中,属于无理数的数是()A.0.1B.√4C.πD.−3 4【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.√4=2,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.−34是分数,属于有理数,故本选项不合题意.故选:C.2.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克【解答】解:1克=1000毫克,将0.000037毫克用科学记数法表示为:3.7×10﹣8克.故选:D.3.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.18【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.4.下列函数中,y是x的反比例函数的是()A.y=2x B.y=−23x﹣1C.y=22x−1D.y=﹣x【解答】解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.5.函数y =√x−1x的自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≥1且x ≠0D .x ≤1【解答】解:根据题意得:x ﹣1≥0且x ≠0, 解得:x ≥1. 故选:B . 6.方程2x−3=12x+1的解为( )A .x =3B .x =2C .x =−53D .x =−12【解答】解:去分母得:4x +2=x ﹣3, 解得:x =−53,经检验x =−53是分式方程的解, 故选:C .7.已知二元一次方程组{x +y =12x +4y =9,则x 2−2xy+y 2x 2−y 2的值是( )A .﹣5B .5C .﹣6D .6【解答】解:{x +y =1①2x +4y =9②,②﹣①×2得,2y =7,解得y =72, 把y =72代入①得,72+x =1,解得x =−52,∴x 2−2xy+y 2x 2−y 2=(x−y)2(x+y)(x−y)=x−y x+y=−52−72−52+72=−6故选:C .8.若2m =a ,32n =b ,m ,n 为正整数,则23m +10n 的值等于( ) A .a 3b 2B .a 2b 3C .a 3+b 2D .3a +2b【解答】解:∵32n =b , ∴25n =b , ∴210n =b 2,∴23m +10n =(2m )3•210n =a 3b 2, 故选:A .9.A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm /h ,则根据题意可列方程为( ) A .180x −180(1+50%)x =1 B .180(1+50%)x −180x =1 C .180x−180(1−50%)x=1D .180(1−50%)x−180x=1【解答】解:设原来的平均车速为xkm /h ,则根据题意可列方程为:180x−180(1+50%)x=1.故选:A .10.由二次函数y =2(x ﹣3)2+1可知( ) A .其图象的开口向下 B .其图象的对称轴为x =﹣3C .其最大值为1D .当x <3时,y 随x 的增大而减小 【解答】解: ∵y =2(x ﹣3)2+1,∴抛物线开口向上,对称轴为x =3,顶点坐标为(3,1), ∴函数有最小值1,当x <3时,y 随x 的增大而减小, 故选:D .11.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =−ax 与正比例函数y =bx 在同一坐标系内的大致图象是( )A .B .C .D .【解答】解:∵二次函数y =ax 2+bx +c 的图象开口方向向下, ∴a <0,对称轴在y 轴的左边, ∴x =−b2a <0, ∴b <0,∴反比例函数y =−a x的图象在第一三象限, 正比例函数y =bx 的图象在第二四象限, 故选:D .12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16【解答】解:A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误;B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误;C 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16,故选:D .二.填空题(共6小题)13.若点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称,则m +n = ﹣4 . 【解答】解:∵点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称, ∴m +3=﹣4,n +1=4, 解得:m =﹣7,n =3, 则m +n =﹣4. 故答案为:﹣4.14.分解因式:4m 2﹣16n 2= 4(m +2n )(m ﹣2n ) . 【解答】解:原式=4(m +2n )(m ﹣2n ). 故答案为:4(m +2n )(m ﹣2n )15.已知:y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x =1时,y =3;x =﹣1时,y =1,则x =−12时,y = −32 . 【解答】解:∵y 1与x 2成正比例, ∴y 1=ax 2成正比例, ∵y 2与x 成反比例, ∴y 2=bx ∵y =y 1+y 2, ∴y =ax 2+bx,∵x =1时,y =3;x =﹣1时,y =1, ∴{3=a +b 1=a −b ,解得{a =2b =1,∴y =2x 2+1x ,则x =−12时,y =2×14−2=−32. 故答案为:−32.16.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有 (2m +3) 人(用含有m 的代数式表示)【解答】解:∵设会弹古筝的有m 人,则会弹钢琴的人数为:m +10, ∴该班同学共有:m +m +10﹣7=2m +3, 故答案为:(2m +3). 17.观察下面的变形规律:11×2=1−12,12×3=12−13,13×4=13−14,……(1)若n 为正整数,请你猜想:1n(n+1)=1n−1n+1;(2)求和:11×2+12×3+13×4+⋯+12019×2020= 20192020.【解答】解:(1)若n 为正整数,1n(n+1)=1n−1n+1,故答案为:1n −1n+1;(2)11×2+12×3+13×4+⋯+12019×2020=1−12+12−13+13−14+⋯+12019−12020 =1−12020 =20192020, 故答案为:20192020.18.某公司在农村租用了720亩闲置土地种植了乔木型、小乔木型和灌木型三种茶树.为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的75倍,但种植乔木型茶树的面积不得超过270亩.到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶,若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是 260 亩.【解答】解:设种植小乔木型茶树x 亩,则种植乔木型茶树2x 亩,灌木型茶树(720﹣3x )亩,依题意,得:{720−3x ≤75×2x 2x ≤270,解得:124429≤x ≤135.设有a 个工人来采摘茶叶,则2x 0.4a+x 0.5a+720−3x 0.6a=20,整理,得:x +600=10a , ∴a =60+x10, ∵a 为正整数, ∴x 10为整数,∴x 为10的倍数, 又∵124429≤x ≤135,∴x =130, ∴2x =260. 故答案为:260. 三.解答题(共5小题)19.先化简,再求值:(2x 2x+1−14x 2+2x )÷(1−4x 2+14x),其中x =3.【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)2=−22x−1, 当x =3时,原式=−25.20.已知关于x ,y 的二元一次方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,求k 的取值范围.【解答】解:{x +y =3①2x −3y =3k +4②,①×3+②得5x =3k +13 解得x =3k+135, ①×2﹣②得5y =2﹣3k 解得y =2−3k5, ∵方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,∴3k+135+2(2−3k)5>4,∴k 的取值范围是k <﹣1.21.如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上, ∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.22.如图,在△ABC 中,∠B =90°,cosA =57,D 是AB 上的一点,连接DC ,若∠BDC =60°,BD =2√3.试求AC 的长.【解答】解:在△ABC 中,∠B =90°,cosA =57, ∴AB AC=57.设:AB =5x ,AC =7x , 由勾股定理 得BC =2√6x ,在Rt △DBC 中,∠BDC =60°,BD =2√3, ∴BC =BD tan60°=2√3×√3=6, ∴2√6x =6, 解得 x =√62, ∴AC =7x =7√62.23.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元. (1)分别求出甲、乙两车每趟的运费; (2)若单独租用甲车运完此堆垃圾,需多少趟?(3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x ,y 均为正整数.①当x =10时,y = 16 ;当y =10时,x = 13 ; ②用含x 的代数式表示y ; 探究:(4)在(3)的条件下:①用含x 的代数式表示总运费w ;②要想总运费不大于4000元,甲车最多需运多少趟?【解答】(1)解:设甲、乙两车每趟的运费分别为m 元、n 元, 由题意得{m −n =20012(m +n)=4800解得:{m =300n =100答:甲、乙两车每趟的运费分别为300元、100元;(2)解:设单独租用甲车运完此堆垃圾,需运a 趟,由题意得 12(1a +12a)=1,解得 a =18,经检验a =18是原方程的解;答:单独租用甲车运完此堆垃圾,需运18趟; (3)①由题意得:x 18+y 36=1,∴当x =10时,y =16; 当y =10时,x =13; 故答案为:16,13. ②∵x 18+y 36=1,∴y =36﹣2x ,(4)①w =300x +100y =300x +100(36﹣2x ) =100x +3600,(0<x <18,且x 为正整数), ②由题意,得100x +3 600≤4 000. ∴x ≤4.答:甲车最多需运4趟.。

2020年中考数学全真模拟试卷8套附答案(适用于河北省邯郸市)

2020年中考数学全真模拟试卷8套附答案(适用于河北省邯郸市)

中考数学模拟试卷题号得分一二三四总分一、选择题(本大题共16 小题,共48.0 分)1.①a2+a2=a4②a2-a2=0 ③a2•a2=a4④a2÷a2=1,以上四个式子中,计算错误的是()A. ①B. ②C. ③D. ④2.2016 年末,北京市常住人口2172.9 万人,2017 年末比上年末减少2.2 万人,则2017年末北京市常住人口为()A. 2.1707×107 人B. 2.1751x107 人C. 2.1751×103 人D. 2.1707×103 人3.下列图形中,既是中心对称图形,也是轴对称图形的是()A.B.C.D.赵爽弦图科克曲线河图幻方谢尔宾斯基三角形4.用简便方法计算,将98×102变形正确的是()A. 98×102=1002+22 C. 98×102=1002-22B. 98×102=(100-2)2 D. 98×102=(100+2)25.图1 是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2 不可能是下面哪个组件的视图()A. B. C. D.6.四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A. P>R>S>QB. Q>S>P>RC. S>P>Q>RD. S>P>R>Q7.如图,是作线段AB的垂直平分线的尺规作图,其中没有用到依据是()A. 同圆或等圆的半径相等B. 两点之间线段最短C. 到线段两端距离相等的点在线段的垂直平分线上D. 两点确定一条直线8.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A. (a+b)(a-b)=a2-b2(a+b)(a-b)B. a2-b2=C. a2+b2=(a+b)2D. (a-b)2=a2-2ab+b29.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S和S,△OAB与△OCD的周长分别是1 2C和C,则下列等式一定成立的是()1 2A. B.D.C.10.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A. 点MB. 点NC. 点PD. 点Q11.如图,这是健健同学的小测试卷,他应该得到的分数是()A. 40B. 60C. 80D. 10012.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1 的是()A. y1B. y2C. y3D. y413.A、B、C、D四名同学随机分为两组,两个人一组去参加辩论赛,问A、B两人恰好分到一组的概率()A. B. C. D.14.已知,平面直角坐标系中,在直线y=3 上有A、B、C、D、E五个点,下列说法错误是()A. 五个点的横坐标的方差是2 C. 五个点的纵坐标的方差是2B. 五个点的横坐标的平均数是3 D. 五个点的纵坐标的平均数是315.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5 的范围内有解,则t的取值范围是()A. t>﹣5B. ﹣5<t<3C. 3<t≤4D. ﹣5<t≤416.如图,在四边形AOBC中,若∠1=∠2,∠3+∠4=180°,则下列结论正确的有()(1)A、O、B、C四点共圆(2)AC=BC(3)cos∠1=(4)S四边形AOBC=A. 1 个B. 2 个C. 3 个D. 4 个二、填空题(本大题共2 小题,共9.0 分)17.甲、乙、丙三名同学在某次数学考试中成绩都是80 分,在接下来的两次考试当中他们的成绩增长率如表第一次的增长率第二次的增长率甲乙丙20%15%30%10%15%0%经过这两次考试后,成绩最好的同学是______.18.如图,边长为1 的正方形ABCD在等边长的正六边形外部做顺时针滚动,滚动一周回到初始位置时停止.第一次滚动时正方形旋转了______°,点A在滚动过程中到出发点的最大距离是______.三、计算题(本大题共1 小题,共9.0 分)19.已知,如图,数轴上有A、B两点.(1)线段AB的中点表示的数是______;(2)线段AB的长度是______;(3)若A、B两点问时向右运动,A点速度是每秒3 个单位长度,B点速度是每秒2 个单位长度,问经过几秒时AB=2?四、解答题(本大题共6 小题,共54.0 分)2017 年我国“十二五”规划圆满完成,“十三五”规划顺利实施,经济社会发展取得历史性成就,发生历史性变革.这五年来,经济实力跃上新台阶,国内生产总值达到82.7 万亿元,2018 年,我国国内生产总值达到900309 亿元人民币,首次迈过90 万亿元门槛,比上一年同比增长66%,实现了65%左右的预期发展目标.下面的统计图反映了我国2013 年到2018 年国内生产总值及其增长速度情况,其中国内生产总值绝对数按现价计算,增长速度按不变价格计算20.根据以上信息,回答下列问题(1)把统计图补充完整;(2)我国2013 年到2018 年这六年的国内生产总值增长速度的中位数是______%;(3)2019 年政府工作报告提出,今年的预期目标是国内生产总值比2018 年增长6‰-6.5%,通过计算说明2019 年我国国内生产总值至少达到多少亿元,即可达到预期目标.21.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1 个至第4 个台阶上依次标着-3,-2,-1,0,且任意相邻四个台阶上数的和都相等.(1)求第五个台阶上的数x是多少?(2)求前21 个台阶上的数的和是多少?(3)发现:数的排列有一定的规律,第n个-2 出现在第______个台阶上;(4)拓展:如果倩倩小同学一步只能上1 个或者2 个台阶,那么她上第一个台阶的方法有1 种:1=1,上第二个台阶的方法有2 种:1+1=2 或2=2,上第三个台阶的方祛有3 种:1+1+1=3、1+2=3 或2+1=3,…,她上第五个台阶的方法可以有______种.22.如图,在△ABC中,AB=AC,AB是⊙O的直径,⊙O与BC交于点D,⊙O与AC交于点E,DF⊥AC于F,连接DE.(1)求证:D为BC中点;(2)求证:DF与⊙O相切;(3)若⊙O的半径为5,tan∠C= ,则DE=______.23.已知,如图,A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1)(1)求△ABC的面积是______;(2)求直线AB的表达式;(3)一次函数y=kx+2 与线段AB有公共点,求k的取值范围;(4)y轴上有一点P且△ABP与△ABC面积相等,则P点坐标是______.24.如图,已知正方形ABCD的边长为4、点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG、顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=______;(2)①点O与△APE的位置关系是______,并说明理由;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,线段AE的大小也在改变,当AP=______ ,AE达到最大值,最大值是______.25.如图,在平面直角坐标系中,抛物线y=ax2+2ax-3a(a<0)与x轴相交于A、B两点与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.(1)当a=-1 时,抛物线顶点D的坐标为______,OE=______;(2)OE的长是否与a值有关,说明你的理由;(3)设∠DEO=β,当β从30°增加到60°的过程中,点D运动的路径长;(4)以DE为斜边,在直线DE的右上方作等腰Rt△PDE.设P(m,n),请直接写出n关于m的函数解析式及自变量m的取值范围.答案和解析1.【答案】A【解析】解:①a2+a2=a2,故①错误;②a2-a2=0,故②正确;③a2•a2=a4,故③正确;④a2÷a2=1,故④正确;故选:A.直接利用同底数幂的乘除运算法则以及合并同类项法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及合并同类项法则,正确掌握相关运算法则是解题关键.2.【答案】A【解析】解:2172.9 万-2.2 万=2170.7 万用科学记数法表示为:2.1707×107,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10 时,n是正数;当原数的绝对值<1 时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后与原图重合.4.【答案】C【解析】解:98×102=(100-2)(100+2)=1002-22,故选C.根据(a+b)(a-b)=a2-b2 进行计算.此题考查了平方差公式,掌握(a+b)(a-b)=a2-b2 是解题的关键,是一道基础题,比较简单.5.【答案】C【解析】解:A、主视图和左视图从左往右2 列正方形的个数均依次为2,1,符合所给图形;B、主视图和左视图从左往右2 列正方形的个数均依次为2,1,符合所给图形;C、主视图左往右2 列正方形的个数均依次为1,1,不符合所给图形;D、主视图和左视图从左往右2 列正方形的个数均依次为2,1,符合所给图形.故选:C.依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.6.【答案】D【解析】解:观察前两幅图易发现S>P>R,再观察第一幅和第三幅图可以发现R>Q,所以S>P>R>Q.故选:D.由三个图分别可以得到,由①式可得Q+S>Q+P,代入③式得到P+R>Q+P,所以R>Q.所以它们的大小关系为S>P>R>Q.本题考查了不等式的相关知识,利用“跷跷板”的不平衡来判断四个数的大小关系,体现了“数形结合”的数学思想.7.【答案】B【解析】解:作线段AB的垂直平分线的尺规作图,其中用到的依据有:同圆或等圆的半径相等;到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故选:B.利用同圆或等圆的半径相等得到PA=PB=QA=QB;利用到线段两端距离相等的点在线段的垂直平分线上可判断点P、Q在线段AB的垂直平分线上;利用两点确定一条直线得到直线PQ.本题考查了作图-基本作图:熟练掌握5 种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.8.【答案】B【解析】解:如图,从左图到右图的变化过程中,解释的因式分解公式是:a2-b2=(a+b )(a-b),故选:B.分别求两图形的面积,可得出平方差公式.本题考查了平方差公式的几何背景,利用两个图形的面积相等列等式是关键,属于基础题.9.【答案】D【解析】【分析】根据相似三角形的性质判断即可.本题考查了相似三角形的性质,熟练掌握相似三角形的性质定理是解题的关键.【解答】解:∵△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,∴∴∴,A错误;,C错误;,D正确;不能得出,B错误;故选:D.10.【答案】C,OM= ,ON= ,OP= 【解析】解:由图形可得:OA=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.分别得出OA,OM,ON,OP,OQ的长判断即可.此题考查坐标与旋转问题,关键是根据各边的长判断.11.【答案】B【解析】解:(1)(x≠0)是分式,故错误;(2)(-2x2)3=-8x6,故错误;(3)(a-b)2=a2-2ab+b2,故错误;(4),故错误;(5)65°的补角是115°,故错误,故健健只做对了3 道,得60 分故选:B.根据分式的定义、幂的乘方与积的乘方、完全平方公式、算术平方根、补角的定义逐项判断即可.此题考查分式的定义、幂的乘方与积的乘方、完全平方公式、算术平方根、补角的定义,熟练掌握运算性质和法则是解题的关键.12.【答案】A【解析】解:由图象可知:抛物线y的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y= (1 1x+2)2-2;抛物线y的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y=x2-12 2;抛物线y的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y=(x-13 3)2+1;抛物线y的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y=2(4 4x-1)2-3;综上,解析式中的二次项系数一定小于1 的是y1故选:A.由图象的点的坐标,根据待定系数法求得解析式即可判定.本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.13.【答案】C【解析】【分析】本题考查了概率公式、树状图法,树状图法适合两步或两步以上完成的事件;画出树状图是解题的关键.画出树状图,再根据概率公式列式计算即可.【解答】解:根据题意画树状图如下:共有12 种情况,A,B两名同学分在同一组的情况有2 种,则A、B恰好分到同一组的概率为= .故选:C.14.【答案】C【解析】解:根据题意可得:五个点的横坐标的平均数=五个点的横坐标的方差==3,五个点的纵坐标的平均数= =3五个点的纵坐标的方差是0,故选:C.根据方差和平均数的概念解答即可.此题考查方差问题,关键是根据方差和平均数的概念解答.15.【答案】D【解析】【分析】本题考查抛物线与x轴的交点、一元二次方程等知识,解题的关键是学会利用图象法解决问题,画出图象是解决问题的关键,属于中考选择题中的压轴题.如图,关于x的一元二次方程-x2+mx-t=0 的解就是抛物线y=-x2+mx与直线y=t的交点的横坐标,利用图象法即可解决问题.【解答】解:如图,关于x的一元二次方程-x2+mx-t=0 的解就是抛物线y=-x2+mx与直线y=t的交点的横坐标,根据对称轴为直线x=2,可知m=4,所以解析式为y=-x2+4x,当x=1 时,y=3,当x=5 时,y=-5,由图象可知关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5 的范围内有解,直线y=t在直线y=-5 和直线y=4 之间包括直线y=4,∴-5<t≤4.故选D.16.【答案】D【解析】解:∵∠3+∠4=180°,∴A、O、B、C四点共圆,(1)正确;作CD⊥OA于D,CE⊥OB于E,如图所示:则∠CDA=∠CEB=90°,∵∠1=∠2,∴CD=CE,∵∠3+∠4=180°,∠3+∠CAD=180°,∴∠CAD=∠4,在△ACD和△BCE中,,∴△ACD≌△BCE(AAS),∴AD=BE,AC=BC,(2)正确;∵cos∠1= = ,cos∠2= = ,∴cos∠1+cos∠2= + = = ,∵∠1=∠2,∴cos∠1=cos∠2,∴2cos∠1= ∴cos∠1=,,(3)正确;∵CD=CE,sin∠1= ,∴CD=c×sin∠1,∴S四边形AOBC=S△OAC+S△BOC= a×CD+ b×CE= (a+b)CD= (a+b)×c×sin∠1= ,(4)正确;正确的结论有4 个,故选:D.由圆内接四边形的判定定理得出A、O、B、C四点共圆,(1)正确;作CD⊥OA于D,CE⊥OB于E,由角平分线的性质得出CD=CE,证出∠CAD=∠4,由AAS 证明△ACD≌△BCE,得出AD=BE,AC=BC,(2)正确;由三角函数定义得出cos∠1+cos∠2= + = ,即可得出(3)正确;,(4)正确;即可得出结论由三角形面积公式和三角函数得出S四边形AOBC=.本题是四点共圆综合题目,考查了圆内接四边形的判定定理、角平分线的性质、全等三角形的判定与性质、三角形面积公式、三角函数定义等知识;本题综合性强,证明三角形全等是解题的关键.17.【答案】乙【解析】解:甲同学:80×(1+20%)×(1+10%)=105.6 分,乙同学:80×(1+15%)×(1+15%)=105.8 分,丙同学:80×(1+30%)=104 分,综合比较乙同学两次后成绩最好;故答案为乙;根据增长率的意义,分别求出三人的最后成绩为:甲同学:80×(1+20%)×(1+10%)=105.6 分,乙同学:80×(1+15%)×(1+15%)=105.8 分,丙同学:80×(1+30%)=104 分;本题考查增长率的意义;熟练掌握增长率的算法是解题的关键.18.【答案】150 +【解析】解:如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.易知EH=EA2=在△AEF中,∵AF=EF=1,∠AFE=120°,∴AE=∴AH=AE+EH=∴点A在滚动过程中到出发点的最大距离为故答案为:150,= ,,+ .+ .+如图,点A的运动轨迹是图中红线.延长AE交红线于H,线段AH的长,即为点A在滚动过程中到出发点的最大距离.本题考查旋转变换,正方形的性质,正六边形的性质,解直角三角形等知识,解题的关键是理解题意,学会正确寻找点A的运动轨迹,属于中考填空题中的压轴题.19.【答案】(1)(2)5(3)设经过x秒后,线段AB的长度为2,依题意得:①A点还没有追上B点某一时刻相距2 个单位长度时,5+2x=3x+2解得:x=3,②A点追上B点后某一时刻相距2 个单位长度时,3x=2x+5+2解得:x=7综合所述经过3 秒或7 秒时,线段AB的长度为2.【解析】解:如图所示:(1)∵有A、B两点在数轴上对应的数分别为-2,3∴线段AB的中点表示的数是;故答案为.(2)线段AB的长度是|-2-3|=|-5|=5;故答案为5.(3)见答案(1)线段AB的中点对应的数为两端点对应的数的和的一半;(2)线段AB的长度是两端点对应的数的差的绝对值;(3)两个不同动点相距2 个单位长度,两种情况:一是相遇前相距2 单位长度,二是相遇后相距2 个单位长度,最后根据路,速度和时间的关系建立等量关系.本题考查了数轴上的点与实数的对应关系,两点之间的距离与绝对值的几何意义和一元一次方程的应用;易错点数轴上速度不同两个动点相遇前后两种不同情况相距2 个单位长度.20.【答案】(1)把统计图补充完整,如图所示;(2)6.9;(3)900309×(1+6%)=954327.54 亿元,答:2019 年我国国内生产总值至少达到954327.54 亿元,即可达到预期目标.【解析】解:(1)见答案;(2)我国2013 年到2018 年这六年的国内生产总值增长速度的中位数是6.9%;(3)见答案.【分析】(1)根据题意把统计图补充完整即可;(2)根据中位线的定义即可得到结论;(3)根据题意列式计算即可.本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.【答案】解:(1)由题意得:-3-2-1+0=-2-1+0+x,x=-3,答:第五个台阶上的数x是-3;(2)由题意知:台阶上的数字是每4 个一循环,-3-2-1+0=-6,∵21÷4=5…1,∴5×(-6)+(-3)=-33,答:前21 个台阶上的数的和是-33;(3)(4n-2);(4)8.【解析】解:(1)见答案;(2)见答案;(3)第一个-2 在第2 个台阶上,第二个-2 在第6 个台阶上,第三个-2 出现在第10 个台阶上;…第n个-2 出现在第(4n-2)个台阶上;故答案为:(4n-2);(4)上第五个台阶的方法:1+1+1+1+1=5,1 种,1+1+1+2=5,1+2+2=5,1+2+1+1=5,1+1+2+1=5,4 种,2+2+1=5,2+1+2=5,2+1+1+1=5,3 种,∴1+4+3=8 种,答:她上第五个台阶的方法可以有8 种.故答案为:8.【分析】(1)将两组相邻4 个数字相加可得;根据“相邻四个台阶上数的和都相等”列出方程求解可得x;(2)根据“台阶上的数字是每4 个一循环”求解可得;(3)台阶上的数字是每4 个一循环,根据规律可得结论.(4)根据第一步上1 个台阶和2 个台阶分情况讨论可得结论.本题考查数字的变化类,解答本题的关键是明确题目中数字的变化特点,求出相应的结果.22.【答案】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴D为BC中点;(2)解:连接OD,∵AO=BO,BD=CD,∴OD∥AC,∴∠DFC=∠ODF,∵DF⊥AC,∴∠ODF=90°,°OD⊥DF,∴DF与⊙O相切;(3)6.【解析】(1)证明:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴D为BC中点;(2)解:连接OD,∵AO=BO,BD=CD,∴OD∥AC,∴∠DFC=∠ODF,∵DF⊥AC,∴∠ODF=90°,°OD⊥DF,∴DF与⊙O相切;(3)解:∵OD⊥DF,DF⊥AC,∴AC∥OD,∴∠AED+∠ODE=180°,∵∠AED+∠B=180°,∴∠B=∠EDO,∵∠EDF+∠EDO=∠CDF+∠ODB=90°,∴∠EDF=∠CDF,∴DE=CD,∵⊙O的半径为5,tan∠C= ,∴AB=10,BD=6,∴DE=CD=BD=6.故答案为:6.【分析】(1)连接AD,根据圆周角定理得到∠ADB=90°,根据等腰三角形的性质即可得到结论;(2)连接OD,根据平行线的性质得到∠DFC=∠ODF,根据切线的判定定理即可得到结论;(3)根据平行线的性质和圆内接四边形的性质得到∠B=∠EDO,根据余角的性质得到∠EDF=∠CDF,得到DE=CD,解直角三角形即可得到结论.本题考查了切线的判定和性质,等腰三角形的性质,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.23.【答案】(1)4(2)设直线AB的表达式为y=kx+b.∵A点坐标是(1,3),B点坐标是(5,1),∴,解得,∴直线AB的表达式为y=- x+ ;(3)当k>0 时,y=kx+2 过A(1,3)时,3=k+2,解得k=1,∴一次函数y=kx+2 与线段AB有公共点,则0<k≤1;当k<0 时,y=kx+2 过B(5,1),1=5k+2,解得k=- ,∴一次函数y=kx+2 与线段AB有公共点,则- ≤k<0.综上,满足条件的k的取值范围是0<k≤1或- ≤k<0;(4)(0,)或(0,)【解析】解:(1)∵A点坐标是(1,3),B点坐标是(5,1),C点坐标是(1,1),∴AC=3-1=2,BC=5-1=4,∠C=90°,∴S△ABC= AC•BC= ×2×4=4.故答案为4;(2)见答案(3)见答案(4)过C点作AB的平行线,交y轴于点P,此时△ABP与△ABC是同底等高的两个三角形,所以面积相等.设直线CP的解析式为y=- x+n,∵C点坐标是(1,1),∴1=- +n,解得n= ,∴直线CP的解析式为y=- x+ ,∴P(0,).设直线AB:y=- x+ 交y轴于点D,则D(0,).将直线AB向上平移- =2 个单位,得到直线y=- x+ ,与y轴交于点P′,此时△ABP′与△ABP是同底等高的两个三角形,所以△ABP与△ABC面积相等,易求P′(0,).综上所述,所求P点坐标是(0,)或(0,).故答案为(0,)或(0,).(1)根据A、B、C三点的坐标可得AC=3-1=2,BC=5-1=4,∠C=90°,再利用三角形面积公式列式计算即可;(2)设直线AB的表达式为y=kx+b.将A(1,3),B(5,1)代入,利用待定系数法即可求解;(3)由于y=kx+2 是一次函数,所以k≠0,分两种情况进行讨论:①当k>0 时,求出y=kx+2 过A(1,3)时的k值;②当k<0 时,求出y=kx+2 过B(5,1)时的k值,进而求解即可;(4)过C点作AB的平行线,交y轴于点P,根据两平行线间的距离相等,可知△ABP 与△ABC是同底等高的两个三角形,面积相等.根据直线平移k值不变可设直线CP的解析式为y=- x+n,将C点坐标代入,求出直线CP的解析式,得到P点坐标;再根据到一条直线距离相等的直线有两条,可得另外一个P点坐标.本题考查了三角形的面积,待定系数法求一次函数的解析式,一次函数图象与系数的关系,一次函数图象上点的坐标特征,直线平移的规律等知识,直线较强,难度适中.利用数形结合、分类讨论是解题的关键.24.【答案】(1) ;(2) ①点O在△APE的外接圆上②连接OA、AC,如图2 所示,∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC= =4 ,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA= AC=2 ,即点O经过的路径长为2 ;(3) 2 1【解析】解:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC,∴△APE∽△BCP,∴,即,解得:AE= ;故答案为:;(2)①点O在△APE的外接圆上,理由是:证明:如图1,取PE的中点Q,连接AQ,OQ,∵∠POE=90°,∴OQ= PE,∵△APE是直角三角形,∴点Q是Rt△APE外接圆的圆心,∴AQ= PE,∴OQ=AQ=EQ=PQ,∴O在以Q为圆心,以OQ为半径的圆上,即点O在△APE的外接圆上;(到圆心的距离等于半径的点必在此圆上),故答案为:点O在△APE的外接圆上;②见答案;(3)设AP=x,则BP=4-x,由(1)得:△APE∽△BCP,∴∴,,∴AE= (x-2)2+1,∴x=2 时,AE的最大值为1,即当AP=2 时,AE的最大值为1.故答案为:2,1.(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠BPC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=4 ,由圆周角定理得出∠OAP=∠OEP=45°,点O 在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设AP=x,则BP=4-x,由:△APE∽△BCP,得,计算AE= (x-2)2+1,得结论.本题是四边形的综合题目,考查了正方形的性质、四点共圆、圆周角定理、三角形的外接圆、相似三角形的判定与性质、勾股定理、二次函数的最值等知识;本题综合性强,难度较大.25.【答案】解:(1)(-1,4) 3(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax-3a,∴C(0,-3a),D(-1,-4a),∴直线CD的解析式为y=ax-3a,当y=0 时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)如图,当β=30°时,OC= OE=∴-3a=,,∴a=- ,此时点D′的坐标是(-1,).当β=60°时,在Rt△OCE中,OC= OE=3 ,∴-3a=3 ,∴a=- ,此时点D的坐标是(-1,4 ).∴点D运动的路径长为:4 - = ;(4)如图,作PM⊥对称轴于M,PN⊥x轴于N.∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN,∴△DPM≌△EPN(AAS),∴PM=PN,DM=EN,∵D(-1,-4a),E(3,0),∴由PM=PN得到:n=m+1.由DM=EN得到:m-3=-4a-n.当顶点D在x轴上时,P(1,2),此时m的值1,∵抛物线的顶点在第二象限,∴m>-1.∴n=m+1(m>-1).【解析】解:(1)当a=-1 时,抛物线的解析式为y=-x2-2x+3,∴顶点D(-1,4),C(0,3),∴直线CD的解析式为y=-x+3,∴E(3,0),∴OE=3,故答案为:(-1,4),3.(2)(3)(4)见答案【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可点D运动的路径长;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.本题考查二次函数综合题、一次函数的应用、等腰直角三角形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.中考数学模拟试卷(二)题号得分一 二 三 四 总分一、选择题(本大题共 16 小题,共 42.0 分)1. 如图,点 A ,B ,C ,D 在数轴上,其中表示互为相反数的点是( ) A. 点 A 与点 D2. 下列单项式中,与 ab 2 是同类项的是( ) A. 2ab B. 3ab 2 C. 4a 2b3. 把 a 2-4a 多项式分解因式,结果正确的是( )B. 点 B 与点 DC. 点 A 与点 CD. 点 B 与点 CD. 5a 2b 2 A. a (a -4)C. a (a +2)(a -2) B. (a +2)(a -2)D. (a -2)2-44. 如图,D ,E 分别是△ABC 的边 BA ,BC 延长线上的点,连接 DC .若∠B =25°,∠ACB =50°,则下列角中度数为 75°的是( )A. ∠ACDB. ∠CADC. ∠DCED. ∠BDC5. 下列各图中,OP 是∠MON 的平分线,点 E ,F ,G 分别在射线 OM ,ON ,OP 上, 则可以解释定理“角的平分线上的点到角的两边的距离相等”的图形是( )A. C.B.D.6. 在“百善孝为先”朗诵比赛中,晓晴根据七位评委所给的某位参赛选手的分数制作 了如下表格:众数中位数 平均数 方差 8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是( )A. 平均数B. 中位数C. 众数D. 方差7. 下列四个图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.8. 某几何体的三视图如图所示,则该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 三棱柱当 x =1 时,代数式 x 3+x +m 的值是 7,则当 x =-1 时,这个代数式的值是( ) 9. A. 7 B. 3 C. 1 D. -710. 如图,已知⊙O 的直径为 10,锐角△ABC 内接于⊙O ,BD ⊥AC于点 D ,AB =8,则 tan ∠CBD 的值等于( )A.B.C.D.11. 下列图形都是由几个黑色和白色的正方形按一定规律组成,图①中有 2 个黑色正方形,图②中有 5 个黑色正方形,图③中有 8 个黑色正方形,图④中有 11 个黑色正 方形,…,依次规律,图⑩中黑色正方形的个数是( )A. 32B. 29C. 28D. 2612. 如图,在▱ABCD 中,对角线 AC 与 BD 相交于点 O ,过点 O 作 EF ⊥AC 交 BC 于点 E,交 AD 于点 F ,连接 AE 、CF .则四边形 AECF 是( )A. 梯形B. 矩形C. 菱形D. 正方形 13. 二次函数 y =ax 2+bx +c (a ,b ,c 为常数,且 a ≠0)中的 x 与 y 的部分对应值如表:xy -1 -1 0 3 1 5 3 3 下列结论错误的是( )A. ac <0B. 当 x >1 时,y 的值随 x 的增大而减小C. 3 是方程ax2+(b-1)x+c=0 的一个根D. 当-1<x<3 时,ax2+(b-1)x+c>014.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y= 在第一象限内的图象与△ABC有交点,则k的取值范围是()A. 2≤k≤B. 6≤k≤10C. 2≤k≤6D. 2≤k≤15.如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.则下列结论:(1)图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2 倍;(3)CD+CE= OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A. 1 个B. 2 个C. 3 个D. 4 个16.对于实数c、d,我们可用min{ c,d}表示c、d两数中较小的数,如min{3,-1}=-1.若关于x的函数y=min{2x2,a(x-t)2}的图象关于直线x=3 对称,则a、t的值可能是()A. 3,6B. 2,-6C. 2,6D. -2,6二、填空题(本大题共3 小题,共10.0 分)17.若分式有意义,则x的取值范围是______.18.如图,在平面直角坐标系中,A(-6,0),曲线上每一点到x轴与y轴的距离的乘积都相等,过曲线上横坐标分别为-6,-4,-2 的三点B,C,D分别向x轴、y轴作垂线,已知图中的阴影部分是由这些垂线围成的,且其面积是6,则由O,A,C三点围成的三角形的面积为______.19.如图,边长为4 的正方形ABCD的顶点B,C在⊙O上,点A,D都在⊙O内,⊙O的半径为4,现将正方形ABCD绕点C顺时针旋转,当点B的对应点B′第一次落在⊙O上时,点B运动的路径长为______.。

河北省邯郸市2020版中考数学模拟试卷C卷

河北省邯郸市2020版中考数学模拟试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共26分)1. (3分)下列图形即使轴对称图形又是中心对称图形的有:()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A . 1个B . 2个C . 3个D . 4个2. (3分) (2019七上·绍兴期中) 中国的“天眼”绝对是我们中国人额骄傲,他可以一眼看穿130亿光年以外,换计划来说就是它们接收的到130亿光年之外的电磁信号,几何可以达到我们人类现在所了解到的宇宙的极限边缘.数据130亿(精确到亿)正确的表示是()A . 1.3×1010B . 1.30×1010C . 0.13×1011D . 130×1083. (3分)(2020·武侯模拟) 下列各式计算正确的是()A . 2x3•3x3=6x9B . (﹣ab)4÷(﹣ab)2=﹣a2b2C . 3x2+4x2=7x2D . (a+b)2=a2+b24. (3分) (2018七下·龙湖期末) 不等式x﹣1<2的正整数解有()A . 1个B . 2个C . 3个D . 4个5. (3分)(2017·深圳模拟) 某小组7位学生的中考体育成绩(满分30分)依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是().A . 30,27B . 30,29C . 29,306. (3分)(2018·成都模拟) 关于的一元二次方程有两个不相等的实数根,则的取值范围是()A . <B . ≤C . >且≠2D . ≥ 且≠27. (3分)一次函数y=2x+1的图象不经过第()象限A . 一B . 二C . 三D . 四8. (2分) (2016七上·龙湖期末) 如图所示的四条射线中,表示北偏西30°的是()A . 射线OAB . 射线OBC . 射线OCD . 射线OD9. (3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是()A . ①②B . ①③D . ①②③二、填空题 (共7题;共28分)10. (4分)(2020·铜川模拟) 如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是________.11. (4分)(2017·惠阳模拟) 因式分解:x2﹣36=________.12. (4分) (2019七下·芷江期末) 已知与是同类项,则 ________.13. (4分)(2017·河池) 圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是________.14. (4分)设有理数a、b在数轴上对应的位置如图所示,化简|a﹣b|﹣|a|的结果是________.15. (4分)(2018·河南) 如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC 与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为________.16. (4分) (2019八下·成华期末) 如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为________.三、解答题(一) (共3题;共18分)17. (6分)计算:4cos45°-.18. (6分)(2018·达州) 化简代数式:,再从不等式组的解集中取一个合适的整数值代入,求出代数式的值.19. (6分) (2020八下·渭滨期末) 如图,在△ABC中, .请用尺规在AC上作点P,使点P到A、B的距离相等保留作图痕迹,不写作法和证明四、解答题(二) (共3题;共24分)20. (8分)收发微信红包已成为各类人群进行交流联系,增强感情的一部分,下面是甜甜和她的双胞胎妹妹在六一儿童节期间的对话.请问:(1) 2015年到2017年甜甜和她妹妹在六一收到红包的年增长率是多少?(2) 2017年六一甜甜和她妹妹各收到了多少钱的微信红包?21. (8分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;EG⊥CG.(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了“频率分布表”和“频数分布条形图”.请你根据图表中提供的信息,解答下列问题:代号教学方式最喜欢频数频率1老师讲,学生听200.102老师提出问题,学生探索思考1003学生自行阅读教材,独立思考300.154分组讨论,解决问题0.25(1)补全“频率分布表”;(2)在“频数分布条形图”中,将代号为4的部分补充完整;(3)你最喜欢以上哪种教学方式或另外的教学方式,请提出你的建议,并简要说理由.五、解答题(三)(本大题2小题,每小题10分,共20分) (共2题;共20分)23. (10.0分) (2019九上·东台期中) 如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF.①求证:AC=CF;②若AD=1,求线段FG的长.24. (10.0分) (2019九上·甘井子期中) 定义:将函数C的图象绕点P(0,n)旋转180°,得到新的函数C1的图象,我们称函数C1是函数C关于点P的相关函数.(1)当n=0时,①二次函数y=x2关于点P的相关函数为________;②点A(2,3)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值;________(2)函数关于点P的相关函数是,则n=________;(3)当 n﹣1≤x≤ n+3时,函数的相关函数的最小值为7,求n的值.参考答案一、选择题 (共9题;共26分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共7题;共28分)10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(一) (共3题;共18分)17-1、18-1、19-1、四、解答题(二) (共3题;共24分) 20-1、20-2、21-1、21-2、22-1、22-2、22-3、五、解答题(三)(本大题2小题,每小题10分,共20分) (共2题;共20分)23-1、24-1、24-2、24-3、。

河北省邯郸市2020版中考数学模拟试卷(II)卷

河北省邯郸市2020版中考数学模拟试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·沈阳开学考) 的相反数是()A . ﹣8B . ±8C . ﹣4D . ±42. (2分)下面四个几何体中,俯视图不是圆的几何体的个数是()A . 1B . 2C . 3D . 43. (2分) (2019七下·长兴期末) 在长方形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),设图1中未被这两张正方形纸片覆盖的面积为S1 ,图2中未被这两张正方形纸片覆盖的面积为S2 ,当S2-S1=b时,AD-AB的值为()A . 1B . 2C . 2a-2bD . b4. (2分)(2020·苏家屯模拟) 如图,Rt△ABC中,∠B=90°,∠A=55°,45°的直三角板DEF的锐角顶点D在斜边AC上,直角边DE//BC,则∠FDC的度数为()A . 10°B . 15°C . 20°D . 25°5. (2分) (2015九下·黑龙江期中) 点A(5,y1)和B(2,y2)都在直线y=﹣x上,则y1与y2的关系是()A . y1≥y2B . y1=y2C . y1<y2D . y1>y26. (2分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A . 90°B . 60°C . 45°D . 30°7. (2分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A . 与2015年相比,2016年我国与东欧地区的贸易额有所增长B . 2011﹣2016年,我国与东南亚地区的贸易额逐年增长C . 2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D . 2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多8. (2分)(2019·上海模拟) 已知一次函数y=mx+n的图象如图所示,则m、n的取值范围()A . m>0,n<0B . m<0,n>0C . m>0,n>0D . m<0,n<09. (2分) (2018九上·库伦旗期末) 如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于().A . 120°B . 90°C . 60°D . 30°10. (2分) (2019九下·巴东月考) 二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2-4ac;③方程2ax2+2bx+2c-5=0没有实数根;④m(am+b)+b<a(m≠-1).其中正确结论的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共4题;共4分)11. (1分)(2020·拱墅模拟) 若sinα=cos60°,则锐角α=________.12. (1分) (2019八上·恩平期中) 如图,将等边三角形剪去一个角后,则的大小为________.13. (1分) (2018九下·夏津模拟) 若反比例函数和一次函数的图象有两个交点,且有一个交点的纵坐标为6,则b=________。

2020届中考模拟河北省邯郸市中考数学一模试卷(含参考答案)

河北省邯郸市数学中考一模试卷一、单选题1.下列各数中,比-1小的数是()A.0B.0.5C.-0.5D.-2【答案】D【考点】有理数大小比较【解析】【解答】正数一定大于负数,排除A,D项;故答案为:D.【分析】根据正数大于0,0大于负数,两个负数比大小,绝对值大的反而小即可得出答案。

2.如图,“中国天眼”即500米口径球面射电望远镜(FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面,把4600表示成(其中,1≤a<10,n为整数)的形式,则n为()A.-1B.2C.3D.4【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】4600表示成(其中,1≤a<10,n为整数)的形式为:故答案为:C.【分析】科学记数法表示绝对值较大的数,一般表示成a ×10n,的形式,其中1 ≤∣a ∣<10, n是原数的整数位数减一。

3.如图,若∠1=50°,则∠2的度数为()A.30°B.40°C.50°D.90°【答案】B【考点】对顶角、邻补角【解析】【解答】根据平角的概念可知:故答案为:B.【分析】根据平角的定义即可得出答案。

4.下列运算中,正确的是()A. B. C. D.【答案】A【考点】整式的加减运算,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】A.符合题意.B. 故不符合题意.C.不是同类项,不能合并.故不符合题意.D. 故不符合题意.故答案为:A.【分析】根据幂的乘方,底数不变,指数相乘;同底数的幂相乘,底数不变,指数相加;整式加减的实质就是合并同类项,只有字母相同,相同字母的指数也相同的项才是同类项;积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;根据法则一一判断即可。

5.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,则Rt△ABC的中线CD的长为()A.5B.6C.8D.10【答案】A【考点】直角三角形斜边上的中线,勾股定理【解析】【解答】在Rt△ABC中,CD是斜边的中线,故答案为:A.【分析】在Rt△ABC中,根据勾股定理得出AB的长,再根据直角三角形斜边上的中线等于斜边的一半即可得出答案。

河北省邯郸市2019-2020学年中考一诊数学试题含解析

河北省邯郸市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .82.某城2014年底已有绿化面积300公顷,经过两年绿化,到2016年底增加到363公顷,设绿化面积平均每年的增长率为x ,由题意所列方程正确的是( ). A .300(1)363x +=B .2300(1)363x +=C .300(12)363x +=D .2300(1)363x -=3.在刚过去的2017年,我国整体经济实力跃上了一个新台阶,城镇新增就业1351万人,数据“1351万”用科学记数法表示为( ) A .13.51×106B .1.351×107C .1.351×106D .0.1531×1084.如图,比例规是一种画图工具,它由长度相等的两脚AC 和BD 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OC ,OB=3OD ),然后张开两脚,使A ,B 两个尖端分别在线段a 的两个端点上,当CD=1.8cm 时,则AB 的长为( )A .7.2 cmB .5.4 cmC .3.6 cmD .0.6 cm5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,则可列方程组为( )A .100131003x y x y +=⎧⎪⎨+=⎪⎩B .100131003x y x y +=⎧⎪⎨+=⎪⎩C .1003100x y x y +=⎧⎨+=⎩D .1003100x y x y +=⎧⎨+=⎩6.计算-3-1的结果是( )A .2B .-2C .4D .-4 7.下列计算正确的是( ) A .(a 2)3=a 6 B .a 2+a 2=a 4 C .(3a )•(2a )2=6aD .3a ﹣a =38.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的函数关系的大致图象是( )A .B .C .D .9.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+10.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=67°,则∠1=( )A .23°B .46°C .67°D .78°11.如图,若a ∥b ,∠1=60°,则∠2的度数为( )A .40°B .60°C .120°D .150°12.潍坊市2018年政府工作报告中显示,潍坊社会经济平稳运行,地区生产总值增长8%左右,社会消费品零售总额增长12%左右,一般公共预算收入539.1亿元,7家企业入选国家“两化”融合贯标试点,潍柴集团收入突破2000亿元,荣获中国商标金奖.其中,数字2000亿元用科学记数法表示为( )元.(精确到百亿位)A .2×1011B .2×1012C .2.0×1011D .2.0×1010 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 14.计算:263⨯+=________. 15.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r=(2,3),b r =(4,m ),且a r ∥b r,则m=_____.16.抛物线y =2x 2+3x+k ﹣2经过点(﹣1,0),那么k =_____.17.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是 .18.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)网瘾低龄化问题已经引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,绘制出以下两幅统计图.请根据图中的信息,回答下列问题: (1)这次抽样调查中共调查了 人; (2)请补全条形统计图;(3)扇形统计图中18﹣23岁部分的圆心角的度数是;(4)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数20.(6分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=1x+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=1x+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=1x+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.21.(6分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x 之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x 的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?22.(8分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA 上存在点F ,使S △DCF =S △BDC ,请直接写出相应的BF 的长23.(8分)如图,在平面直角坐标系中,二次函数y=(x-a )(x-3)(0<a<3)的图象与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点D ,过其顶点C 作直线CP ⊥x 轴,垂足为点P ,连接AD 、BC .(1)求点A 、B 、D 的坐标;(2)若△AOD 与△BPC 相似,求a 的值;(3)点D 、O 、C 、B 能否在同一个圆上,若能,求出a 的值,若不能,请说明理由.24.(10分)如图,在梯形ABCD 中,//AD BC ,5AB DC ==,1AD =,9BC =,点P 为边BC 上一动点,作PH ⊥DC ,垂足H 在边DC 上,以点P 为圆心,PH 为半径画圆,交射线PB 于点E . (1)当圆P 过点A 时,求圆P 的半径;(2)分别联结EH 和EA ,当ABE CEH ∆∆∽时,以点B 为圆心,r 为半径的圆B 与圆P 相交,试求圆B 的半径r 的取值范围;(3)将劣弧¼EH沿直线EH 翻折交BC 于点F ,试通过计算说明线段EH 和EF 的比值为定值,并求出次定值.25.(10分)在平面直角坐标系中,已知点A (2,0),点B (0,3,点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A 、B 旋转后的对应点为A′、B′,记旋转角为α. (I )如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P ,求证:AA′⊥BB′; (Ⅲ)若0°<α<360°,求(Ⅱ)中的点P 纵坐标的最小值(直接写出结果即可).26.(12分)计算:201()(π7)3---+3〡-2〡+6tan30︒27.(12分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y ).(1)如图2,ω=45°,矩形OAB C 中的一边OA 在x 轴上,BC 与y 轴交于点D ,OA =2,OC =l . ①点A 、B 、C 在此斜坐标系内的坐标分别为A ,B ,C . ②设点P (x ,y )在经过O 、B 两点的直线上,则y 与x 之间满足的关系为 . ③设点Q (x ,y )在经过A 、D 两点的直线上,则y 与x 之间满足的关系为 .(2)若ω=120°,O 为坐标原点.①如图3,圆M 与y 轴相切原点O ,被x 轴截得的弦长OA =43 ,求圆M 的半径及圆心M 的斜坐标. ②如图4,圆M 的圆心斜坐标为M (2,2),若圆上恰有两个点到y 轴的距离为1,则圆M 的半径r 的取值范围是 .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】∵直径AB垂直于弦CD,∴CE=DE=12 CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:,即:,∴,故选C.2.B【解析】【分析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1+x),2016年的绿化面积为300(1+x)(1+x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1+x)2=363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.【解析】 【分析】根据科学记数法进行解答. 【详解】1315万即13510000,用科学记数法表示为1.351×107.故选择B. 【点睛】本题主要考查科学记数法,科学记数法表示数的标准形式是a×10n (1≤│a│<10且n 为整数). 4.B 【解析】【分析】由已知可证△ABO ∽CDO,故CD OC AB OA = ,即1.813AB =. 【详解】由已知可得,△ABO ∽CDO,所以,CD OCAB OA = , 所以,1.813AB =, 所以,AB=5.4 故选B【点睛】本题考核知识点:相似三角形. 解题关键点:熟记相似三角形的判定和性质. 5.B 【解析】 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩, 故选:B . 【点睛】本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组. 6.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.7.A【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.8.B【解析】分析:根据题意出教室,离门口近,返回教室离门口远,在教室内距离不变,速快跑距离变化快,可得答案.详解:根据题意得,函数图象是距离先变短,再变长,在教室内没变化,最后迅速变短,B符合题意;故选B.点睛:本题考查了函数图象,根据距离的变化描述函数是解题关键.9.B【解析】【分析】根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,∴a+b<0,∴|a+b|= -a-b.故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.【解析】【分析】根据圆的半径相等可知AB=AC,由等边对等角求出∠ACB,再由平行得内错角相等,最后由平角180°可求出∠1.【详解】根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠ACB=180°-∠1-∠ACB=180°-67°-67°=46º.故选B.【点睛】本题考查等腰三角形的性质,平行线的性质,熟练根据这些性质得到角之间的关系是关键.11.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重点高中提前招生模拟考试数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共12个小题,每小题3分,共36分.每小题给出的四个选项中,只有一个符合题目的要求)1.﹣4的相反数是()A.B.﹣C.4 D.﹣42.绵阳科技城是四川省第二大城市,2012年国民生产总值约为14000000万元,用科学记数法表示应为()万元.A.14×107B.1.4×107C.1.4×106D.0.14×1073.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是984.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.15.已知x是实数,且(x﹣2)(x﹣3)=0,则x2+x+1的值为()A.13 B.7 C.3 D.13或7或36.如图,在四边形ABCD中,E,F分别是AB,AD的中点.若EF=2,BC=5,CD=3,则sinC等于()A.B.C.D.7.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(6,1)D.点(5,1)8.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A.y=3(x+2)2+1 B.y=3(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=3(x﹣2)2﹣19.下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,有且只有一个是正确的,正确的是()A.B.C.D.10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB 的值是()A.B.C.D.11.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC ﹣CE运动到点E后停止,动点Q从点E开始沿EF﹣FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是()A.B.C.D.12.如图,在△ABC中,AB=AC=5,CB=8,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.B.25π﹣24 C.25π﹣12 D.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填入答题卡相应的横线上.)13.函数中自变量x的取值范围是.14.分解因式:a3﹣4a2+4a=.15.已知⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,且两圆的圆心距O1O2=t+2,若这两个圆相交,则t的取值范围为.16.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A7的坐标为;若点A n的坐标为(2014,2013),则n=.17.如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为.18.在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD,连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③;④,其中结论正确的是.三、解答题(本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤)1)计算:+(﹣1)0﹣2sin60°+3﹣1.(2)先化简,后计算:(÷)•,其中a=﹣3.20.近年来,北京郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据北京市统计局2013年1月发布的“北京市主要经济社会发展指标”的相关数据绘制的统计图表的一部分.北京市2009﹣2012年农业观光园经营年收入增长率统计表年份年增长率(精确到1%)2009年12%2010年2011年22%2012年24%请根据以上信息解答下列问题:(1)北京市2010年农业观光园经营年收入的年增长率是;(结果精确到1%)(2)请补全条形统计图并在图中标明相应数据;(结果精确到0.1)(3)如果从2012年以后,北京市农业观光园经营年收入都按30%的年增长率增长,请你估算,若经营年收入要不低于2008年的4倍,至少要到年.(填写年份)21.如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C 两点,若BC=8,AO=1,求⊙O的半径.22.某科技开发公司研制出一种新型产品,每件产品的成本为2300元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2500元.(1)商家一次购买这种产品多少件时,销售单价恰好为2500元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.23.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB 于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=,求EB的长.24.如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m ∠ACD.(1)已知,求m的值,及∠BCD、∠ACD的度数各是多少?(2)在(1)的条件下,且,求弦CD的长;(3)当时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.25.如图1,在平面直角坐标系xOy中,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣),抛物线y=x2+bx+c经过点B,且与直线l的另一个交点为C(n,).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<n).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请求出点A1的横坐标.参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分.每小题给出的四个选项中,只有一个符合题目的要求)1.﹣4的相反数是()A.B.﹣C.4 D.﹣4考点:相反数.专题:常规题型.分析:根据相反数的定义作答即可.解答:解:﹣4的相反数是4.故选C.点评:本题考查了相反数的知识,注意互为相反数的特点:互为相反数的两个数的和为0.2.绵阳科技城是四川省第二大城市,2012年国民生产总值约为14000000万元,用科学记数法表示应为()万元.A.14×107B.1.4×107C.1.4×106D.0.14×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将14000000万用科学记数法表示为1.4×107万元,故选B.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是98考点:极差;算术平均数;中位数;众数.分析:根据平均数、中位数、众数和极差的定义求解.解答:解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A错误.故选A.点评:本题重点考查平均数,中位数,众数及极差的概念及求法.4.在一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到黄球的概率为()A.B.C.D.1考点:概率公式.专题:计算题.分析:根据概率的求法,找准两点:①全部情况的总数为6;②符合条件的情况数目为2;二者的比值就是其发生的概率.解答:解:∵黄球共有2个,球数共有3+2+1=6个,∴P(黄球)==,故选B.点评:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.已知x是实数,且(x﹣2)(x﹣3)=0,则x2+x+1的值为()A.13 B.7 C.3 D.13或7或3考点:二次根式有意义的条件.分析:根据二次根式的性质求出x≤1,求出x的值,代入求出即可.解答:解:∵要使(x﹣2)(x﹣3)有意义,∴1﹣x≥0,∴x≤1,∵x是实数,且(x﹣2)(x﹣3)=0,∴x﹣2=0,x﹣3=0,=0,∴x=2或x=3或x=1,∴x=1,∴x2+x+1=12+1+1=3,故选C.点评:本题考查了二次根式的性质和求代数式的值的应用,关键是求出x的值.6.如图,在四边形ABCD中,E,F分别是AB,AD的中点.若EF=2,BC=5,CD=3,则sinC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理.分析:如图,连接BD,由三角形中位线定理得到BD的长度,然后利用勾股定理的逆定理推知△BCD为直角三角形,最后由锐角三角函数的定义进行解答.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,EF=BD,∵EF=2,∴BD=4,又∵BC=5,CD=3,∴BD2+CD2=BC2,∴△BDC是直角三角形,∴sinC==,故选:C.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.7.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(6,1)D.点(5,1)考点:切线的判定;坐标与图形性质.专题:数形结合.分析:先根据垂径定理的推论得到过格点A,B,C的圆的圆心P点坐标(2,0),连结PB,过点B作PB的垂线,根据切线的判定定理得l为⊙P的切线,然后利用l经过的格点对四个选项进行判断.解答:解:作AB和BC的垂直平分线,它们相交于P点,如图,则过格点A,B,C的圆的圆心P点坐标为(2,0),连结PB,过点B作PB的垂线,则l为⊙P的切线,从图形可得点(1,3)和点(5,1)在直线l上,故选D.点评:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了垂径定理和坐标与图形性质.8.将抛物线y=3x2先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是()A.y=3(x+2)2+1 B.y=3(x+2)2﹣1 C.y=3(x﹣2)2+1 D.y=3(x﹣2)2﹣1考点:二次函数图象与几何变换.专题:探究型.分析:根据函数图象平移的法则“左加右减,上加下减”的原则进行解答即可.解答:解:由“左加右减”的原则可知,将抛物线y=3x2先向左平移2个单位可得到抛物线y=3(x+2)2;由“上加下减”的原则可知,将抛物线y=3(x+2)2先向下平移1个单位可得到抛物线y=3(x+2)2﹣1.故选B.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.下列各图是在同一直角坐标系内,二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的大致图象,有且只有一个是正确的,正确的是()A.B.C.D.考点:二次函数的图象;一次函数的图象.专题:压轴题.分析:本题可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+(a+c)x+c的图象相比较看是否一致,用排除法即可解答.解答:解:A、一次函数y=ax+c的图象过一、三象限,a>0,与二次函数开口向下,即a <0相矛盾,错误;B、一次函数y=ax+c的图象过二、四象限,a<0,与二次函数开口向上,a>0相矛盾,错误;C、y=ax2+(a+c)x+c=(ax+c)(x+1),故此二次函数与x轴的两个交点为(﹣,0),(﹣1,0),一次函数y=ax+c与x轴的交点为(﹣,0),故两函数在x轴上有交点,错误;排除A、B、C,故选D.点评:本题考查二次函数与一次函数的图象性质,比较简单.10.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sinB 的值是()A.B.C.D.考点:锐角三角函数的定义;圆周角定理;三角形的外接圆与外心.分析:求角的三角函数值,可以转化为求直角三角形边的比,连接DC.根据同弧所对的圆周角相等,就可以转化为:求直角三角形的锐角的三角函数值的问题.解答:解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sinB=sinD==.故选A.点评:综合运用了圆周角定理及其推论.注意求一个角的锐角三角函数时,能够根据条件把角转化到一个直角三角形中.11.如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC ﹣CE运动到点E后停止,动点Q从点E开始沿EF﹣FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:先求出点P在BE上运动是时间为6秒,点Q在EF﹣FG上运动是时间为6秒,然后分:①当0≤x≤4时,根据△APQ的面积为y=S矩形MBEF﹣S△ABP﹣S△PEQ﹣S梯形FMAQ,列式整理即可得解;②当4<x≤6时,根据△APQ的面积为△APQ的面积为y=S梯形MBPQ﹣S△BPA﹣S△AMQ,列式整理即可得解,再根据函数解析式确定出函数图象即可.解答:解:①如图1,延长AD交EF于H,延长FG与BA的延长线交于点M.当0≤x≤4时,y=6×4﹣×2•x﹣(6﹣x)•x﹣×(4﹣x+2)×6=x2﹣x+6=(x﹣1)2+,此时的函数图象是开口向上的抛物线的一部分,且顶点坐标是(1,).故C、D选项错误;②点Q在GF上时,4<x≤6,BP=x,MQ=6+4﹣x=10﹣x,△APQ的面积为y=S梯形MBPQ﹣S△BPA﹣S△AMQ,=(x+10﹣x)×4﹣•2•x﹣(10﹣x)•2,=10,综上所述,y=,故选:A.点评:本题考查了动点问题的函数图象,根据点Q运动时间和位置,分点Q在CE﹣EF、GF上两种情况,利用割补法求得△APQ的面积,从而得到函数关系式是解题的关键,也是本题的难点.12.如图,在△ABC中,AB=AC=5,CB=8,分别以AB、AC为直径作半圆,则图中阴影部分面积是()A.B.25π﹣24 C.25π﹣12 D.考点:扇形面积的计算;等腰三角形的性质.分析:设以AB、AC为直径作半圆交BC于D点,连AD,根据直径所对的圆周角为直角得到AD⊥BC,再根据勾股定理计算出AD,然后利用阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积计算即可.解答:解:设以AB、AC为直径作半圆交BC于D点,连AD,如图,∴AD⊥BC,∴BD=DC=BC=4,∵AB=AC=5,∴AD=3,∴阴影部分面积=半圆AC的面积+半圆AB的面积﹣△ABC的面积=π×()2﹣×8×3=π﹣12.故选:D.点评:本题考查了不规则图形面积的计算方法:把不规则的图形面积的计算转化为规则图形的面积和差来计算.也考查了圆周角定理的推论以及勾股定理.二、填空题(本大题共6个小题,每小题4分,共24分.请将答案填入答题卡相应的横线上.)13.函数中自变量x的取值范围是x≥2.考点:函数自变量的取值范围.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.点评:本题主要考查函数自变量的取值范围,考查的知识点为:二次根式的被开方数是非负数.14.分解因式:a3﹣4a2+4a=a(a﹣2)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:观察原式a3﹣4a2+4a,找到公因式a,提出公因式后发现a2﹣4a+4是完全平方公式,利用完全平方公式继续分解可得.解答:解:a3﹣4a2+4a,=a(a2﹣4a+4),=a(a﹣2)2.故答案为:a(a﹣2)2.点评:本题考查了对一个多项式因式分解的能力.一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法(完全平方公式).要求灵活运用各种方法进行因式分解.15.已知⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,且两圆的圆心距O1O2=t+2,若这两个圆相交,则t的取值范围为0<t<6.考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先求得方程的两根,然后根据相交两圆的圆心距的取值范围确定t的取值范围即可.解答:解:∵⊙O1与⊙O2的半径分别是方程x2﹣8x+15=0的两根,∴解方程得两圆的半径分别为3和5,∵相交两圆的圆心距O1O2=t+2,∴5﹣3<t+2<5+3解得:0<t<6,故答案为:0<t<6点评:本题考查了两圆半径、圆心距与两圆位置之间的关系,如果设两圆的半径分别为R 和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R﹣r<P<R+r;内切P=R﹣r;内含P<R﹣r.16.在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A7的坐标为(5,4);若点A n的坐标为(2014,2013),则n=4025.考点:规律型:点的坐标.分析:根据青蛙在点A(1,0)的变化情况,得出其中的规律,奇数次横纵坐标每次加一,偶数则每次减一,从而求出点A7的坐标,再根据点A n的坐标为(2014,2013)在第一象限,以第一次的结果为基础,设为m,求出m的值,即可得出答案.解答:解:∵青蛙在点A(1,0)处,∴第一次在点(2,1),第二次在点(0,﹣1),第三次在点(3,2),第四次在点(﹣1,﹣2),第五次在点(4,3),第六次在点(﹣2,﹣3),从上可以看出除去一二两次,奇数次横纵坐标每次加一,偶数则每次减一,∴A7(5,4),∵点A n的坐标为(2014,2013),在第一象限,若以第一次的结果为基础,设置为m,An(2+m÷2,1+m÷2),2+m÷2=2014,m=4024,n=m+1=4024+1=4025.故答案为:(5,4,),4025.点评:本题考查了点的坐标,用到的知识点是点的移动问题,解题的关键是通过观察,得出其中的规律奇数次横纵坐标每次加一,偶数则两个每次减一.17.如图,PA与⊙O相切于点A,PO的延长线与⊙O交于点C,若⊙O的半径为3,PA=4.弦AC的长为.考点:切线的性质.专题:压轴题.分析:连接OA,过A作AD垂直于C,由PA为圆O的切线,得到PA与AO垂直,在直角三角形AOP中利用勾股定理求出OP的长,利用面积法求出AD的长,在直角三角形APD 中,利用勾股定理求出PD的长,由CP﹣PD求出DC的长,在直角三角形ADC中,利用勾股定理即可求出AC的长.解答:解:连接OA,过A作AD⊥CP,∵PA为圆O的切线,∴PA⊥OA,在Rt△AOP中,OA=3,PA=4,根据勾股定理得:OP=5,∵S△AOP=AP•AO=OP•AD,∴AD===,根据勾股定理得:PD==,∴CD=PC﹣PD=8﹣=,则根据勾股定理得:AC==.故答案为:点评:此题考查了切线的性质,勾股定理,以及三角形的面积,熟练掌握切线的性质是解本题的关键.18.在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD,连接DE交对角线AC于H,连接BH.下列结论:①△ACD≌△ACE;②△CDE为等边三角形;③;④,其中结论正确的是①②④.考点:直角梯形;全等三角形的判定;等边三角形的判定.专题:压轴题.分析:△AED与△ABC是等腰直角三角形,根据这个条件就可求得:△ACD≌△ACE的条件,就可进行判断.解答:解:①∵∠ABC=90°,AB=BC,∴∠BAC=∠ACB=45°,又∵∠BAD=90°,∴∠BAC=∠DAC,又AD=AE,AC=AC,∴△ACD≌△ACE;故①正确;②同理∠AED=45°,∠BEC=90°﹣∠BCE=90°﹣15°=75°,∴∠DEC=180°﹣45°﹣75°=60°,∵ACD≌△ACE,∴CD=CE,∴△CDE为等边三角形.故②正确.③∵∠EAC=∠DAC,AD=AE,AH=AH,∴△AEH≌△ADH,∴∠CHE=90°,∵△CHE为直角三角形,且∠HEC=60°∴EC=2EH∵∠ECB=15°,∴EC≠4EB,∴=2不成立;④作EC的中垂线交BC于点F,连接EF,则EF=FC,∴∠FEC=∠BCE=15°,∴∠BFE=30°,设BE=a,则EF=FC=2a,在直角△BEF中,BF=a,∴BC=a+2a=(2+)a,∴S△BEC=BE•BC=a2;在直角△BEC中,EC==2a,∵△CDE为等边三角形,∴S△ECD==(2+)=(3+2)a2,EH=a,HC=EC=a,又∵△AED是等腰直角三角形,AH是高,∴AH=EH=a,∴S△EHC=a2,∴====.故④正确;故答案为:①②④.点评:认识到题目中的等腰直角三角形是解决本题的关键.三、解答题(本大题共7个小题,共90分.解答应写出文字说明、证明过程或演算步骤)1)计算:+(﹣1)0﹣2sin60°+3﹣1.(2)先化简,后计算:(÷)•,其中a=﹣3.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:(1)利用零指数幂,负整数指数幂的法则及特殊角的三角函数值求解即可,(2)先化简,再把a=﹣3代入求值即可.解答:解:(1)计算:+(﹣1)0﹣2sin60°+3﹣1=2+1﹣2×+,=+.(2)(÷)•=××,=,当a=﹣3时,原式==.点评:本题主要考查了分式的化简求值,解题的关键是熟记零指数幂,负整数指数幂的法则及特殊角的三角函数值.20.近年来,北京郊区依托丰富的自然和人文资源,大力开发建设以农业观光园为主体的多类型休闲旅游项目,京郊旅游业迅速崛起,农民的收入逐步提高.以下是根据北京市统计局2013年1月发布的“北京市主要经济社会发展指标”的相关数据绘制的统计图表的一部分.北京市2009﹣2012年农业观光园经营年收入增长率统计表年份年增长率(精确到1%)2009年12%2010年2011年22%2012年24%请根据以上信息解答下列问题:(1)北京市2010年农业观光园经营年收入的年增长率是17%;(结果精确到1%)(2)请补全条形统计图并在图中标明相应数据;(结果精确到0.1)(3)如果从2012年以后,北京市农业观光园经营年收入都按30%的年增长率增长,请你估算,若经营年收入要不低于2008年的4倍,至少要到2015年.(填写年份)考点:条形统计图;统计表.分析:(1)先用2010年的年收入减去2009年的年收入,得到2010年比2009年增加的年收入,再除以2009年的年收入即可;(2)设2011年的年收入为x亿元,根据表格中2011年的年增长率是22%,列出方程,解方程即可;(3)设从2012年以后,再过y年,能够使经营年收入不低于2008年的4倍,列出不等式26.9(1+30%)y≥13.6×4,解不等式即可.解答:解:(1)∵2010年的年收入为17.8亿元,2009年的年收入为15.2亿元,∴2010年比2009年增加的年收入为:17.8﹣15.2=2.6亿元,∴2010年农业观光园经营年收入的年增长率是:×100%≈17%.故答案为17%;(2)设2011年的年收入为x亿元,由题意,得=22%,解得x≈21.7.补全统计图如下:(3)设从2012年以后,再过y年,能够使经营年收入不低于2008年的4倍,由题意,得26.9(1+30%)y≥13.6×4,解得y≈3,2012+3=2015.即若经营年收入要不低于2008年的4倍,至少要到2015年.故答案为2015.点评:本题考查的是条形统计图与统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决本题的关键.21.如图,已知等腰直角△ABC中,∠BAC=90°,圆心O在△ABC内部,且⊙O经过B、C 两点,若BC=8,AO=1,求⊙O的半径.考点:垂径定理;勾股定理.分析:连结BO、CO,延长AO交BC于点D,由于△ABC是等腰直角三角形,故∠BAC=90°,AB=AC,再根据OB=OC,可知直线OA是线段BC的垂直平分线,故AD⊥BC,且D是BC的中点,在Rt△ABC中根据AD=BD=BC,可得出BD=AD,再根据AO=1可求出OD的长,再根据勾股定理可得出OB的长.解答:解:连结BO、CO,延长AO交BC于D.∵△ABC是等腰直角三角形,∠BAC=90°,∴AB=AC∵O是圆心,∴OB=OC,∴直线OA是线段BC的垂直平分线,∴AD⊥BC,且D是BC的中点,在Rt△ABC中,AD=BD=BC,∵BC=8,∴BD=AD=4,∵AO=1,∴OD=BD﹣AO=3,∵AD⊥BC,∴∠BDO=90°,∴OB===5.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.22.某科技开发公司研制出一种新型产品,每件产品的成本为2300元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2500元.(1)商家一次购买这种产品多少件时,销售单价恰好为2500元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.考点:二次函数的应用.分析:(1)设件数为x,则销售单价为3000﹣10(x﹣10)元,根据销售单价恰好为2500元,列方程求解;(2)由利润y=(销售单价﹣成本单价)×件数,及销售单价均不低于2600元,按0≤x≤10,10<x≤60,x>60三种情况列出函数关系式.解答:解:(1)设商家一次购买该种产品x件时,销售单价恰好为2500元,依题意得3000﹣10(x﹣10)=2500,解得x=60.答:商家一次购买该种产品60件时,销售单价恰好为2500元;(2)当0≤x≤10时,y=(3000﹣2300)x=700x;当10<x≤60时,y=x[3000﹣10(x﹣10)﹣2300]=﹣10x2+700x;当x>60时,y=(2500﹣2300)x=200x;所以y=.点评:本题考查了二次函数的运用.关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润.23.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作FE⊥AB 于点E,交AC的延长线于点F.(1)求证:EF与⊙O相切;(2)若AE=6,sin∠CFD=,求EB的长.考点:切线的判定;相似三角形的判定与性质.分析:(1)如图,欲证明EF与⊙O相切,只需证得OD⊥EF.(2)通过解直角△AEF可以求得AF=10.设⊙O的半径为r,由平行线分线段成比例得到=,即=,则易求AB=AC=2r=,所以EB=AB﹣AE=﹣6=.解答:(1)证明:如图,连接OD.∵OC=OD,∴∠OCD=∠ODC.∵AB=AC,∴∠ACB=∠B∴∠ODC=∠B∴OD∥AB∴∠ODF=∠AEF∵EF⊥AB∴∠ODF=∠AEF=90°∴OD⊥EF∵OD是⊙O的半径,∴EF与⊙O相切;(2)解:由(1)知,OD∥AB,OD⊥EF.在Rt△AEF中,sin∠CFD==,AE=6,则AF=10.∵OD∥AB,∴=.设⊙O的半径为r,∴=,解得,r=.∴AB=AC=2r=,∴EB=AB﹣AE=﹣6=.点评:本题考查了切线的判定与性质.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.如图,AB为⊙O的直径,AB=4,P为AB上一点,过点P作⊙O的弦CD,设∠BCD=m ∠ACD.(1)已知,求m的值,及∠BCD、∠ACD的度数各是多少?(2)在(1)的条件下,且,求弦CD的长;(3)当时,是否存在正实数m,使弦CD最短?如果存在,求出m的值,如果不存在,说明理由.考点:圆的综合题.分析:(1)首先求出m的值,进而由∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD求出即可;(2)根据已知得出AD,BD的长,再利用△APC∽△DPB得出AC•DP=AP•DB=×2=①,PC•DP=AP•BP=×=②,同理△CPB∽△APD,得出BC•DP=BP•AD=×2=③,进而得出AC,BC与DP的关系,进而利用勾股定理得出DP的长,即可得出PC,DC的长;(3)由,AB=4,则,得出,要使CD最短,则CD⊥AB于P于是,即可得出∠POD的度数,进而得出∠BCD,∠ACD的度数,即可得出m的值.解答:解:(1)如图1,由,得m=2,连结AD、BD∵AB是⊙O的直径∴∠ACB=90°,∠ADB=90°又∵∠BCD=2∠ACD,∠ACB=∠BCD+∠ACD∴∠ACD=30°,∠BCD=60°;(2)如图1,连结AD、BD,则∠ABD=∠ACD=30°,AB=4∴AD=2,,∵,。

相关文档
最新文档