土力学-第四章-土的压缩性和地基沉降计算习题课1 张丙印
土的压缩性与基础的沉降

第四章土的压缩性与基础的沉降【例4-1】有一矩形基础放置在均质粘性土层上,如图所示。
基础长度l=10m,宽度b=5m,埋置深度d=1.5m,其上作用着中心荷载P=10000kN。
地基土的天然湿重度为20kN/m3,土的压缩曲线如图所示。
若地下水位距基底2.5m,试求基础中心点的沉降量。
【解题思路】本例题是典型的利用现有地基沉降量计算规范法计算建筑物地基沉降的算例,在计算中主要把握好规范法计算各个步骤,计算公式应用正确。
具体步骤可以见教材说明。
【解答】(1)基底附加压力由l/b=10/5=2<10可知,属于空间问题,且为中心荷载,所以基底压力为基底净压力为(2)对地基分层因为是均质土,且地下水位在基底以下2.5m处,取分层厚度H i=2.5m。
(3)各分界层面的自重应力计算(注意:从地面算起)根据分界层面上自重应力,绘制自重应力分布曲线,如图所示。
(4)各分界层面的附加应力计算该基础为矩形,属空间问题,故应用“角点法”求解。
为此,通过中心点将基底划分为4块相等的计算面积,每块的长度l1=5m,宽度b1=2.5m。
中心点正好在4块计算面积的公共角点上,该点下任意深度z i处的附加应力为任一分块在该处引起的附加应力的4倍,计算结果如下表所示。
附加应力计算成果表位置z i z i/b l/b Kc00020.25001701 2.5 1.020.19991362 5.0 2.020.12028237.5 3.020.073250410.0 4.020.047432512.5 5.020.032822根据分界层面上附加应力,绘制附加应力分布曲线,如图所示。
(5)确定压缩层厚度从计算结果可知,在第4点处有,所以,取压缩层厚度为10m。
(6)计算各分层的平均自重应力和平均附加应力(7)初始孔隙比和压缩稳定后的孔隙比层次平均自重应力平均附加应加荷后总的应力初始孔隙比压缩稳定后的(kPa)力(kPa)(kPa)孔隙比Ⅰ551532080.9350.870Ⅱ941092030.9150.870Ⅲ122661880.8950.875Ⅳ150411910.8850.873(8)计算地基的沉降量分别计算各分层的沉降量,然后累加即地基最终沉降量【例4-2】柱荷载F=1190kN,基础埋深d=1.5m,基础底面尺寸l×b=4m×2m;地基土层如图所示,试用《地基规范》方法计算该基础的最终沉降量。
土力学1-第四章土的压缩性与地基沉降计算.ppt

常用试验类型
类型
固结 排水
施加 3
固结
固结 不排水
固结
不固结 不排水
不固结
施加 1-3 排水
不排水
不排水
量测
体变
孔隙水 压力 孔隙水 压力
百分表
围压 力3 阀门
仁者乐山 智者乐水
横梁 量力环
量 水 管
孔压
试
量测
样
马达
阀门
常规三轴压缩试验
§4.2 土的压缩性测试方法
仁者乐山 智者乐水
一般化的应力应变曲线
仁者乐山 智者乐水
墨西哥某宫殿
工程实例
§4.1 概述
Kiss
仁者乐山 智者乐水
由于沉降相互影响,两栋相邻的建筑物上部接触
工程实例
§4.1 概述
仁者乐山 智者乐水
基坑开挖,引起阳台裂缝
工程实例
§4.1 概述
建新 筑建 物筑 开引 裂起
原 有
仁者乐山 智者乐水
§4.1 概述
仁者乐山 智者乐水
高层建筑物由于不均匀沉降而被爆破拆除
《土力学1》之第四章
土的压缩性与地基沉降计算
第四章:土的压缩性与地基沉降计算
本章提要
• 土的压缩性 -测试方法和指标 • 地基的最终沉降量-分层总合法 • 地基的沉降过程-饱和土渗流固结理论
本章特点 • 有一些较严格的理论
• 有较多经验性假设和公式
学习难点
• 应力历史及先期固结压力 • 不同条件下的总沉降量计算 • 渗流固结理论及参数
应力情况(包括最大应力 等)称为应力历史
土样在A和B点所处的应力
状态完全相同,但其变形 特性差别很大
土力学-第四章-一维压缩性及其指标 张丙印

6. B点对应于先期固结压力p
智者乐水 仁者乐山
A
mB
1
3
2
D
p
p(lg)
先期固结压力p的确定
16
反映了土的应力历史
0.8 1 Ce
0.7 0.6
指标:
• 压缩指数
Cc
Δe Δ(lgp)
• 回弹指数
(再压缩指数) Ce
100
1000
p (kPa)
Ce << Cc 一般Ce ≈ 0.1-0.2Cc
e – lg p曲线
11
§4.3 一维压缩性及其指标 - e - lg p曲线
智者乐水 仁者乐山
指标 Es mv a Cc Ce
滞回圈
侧限压缩试验
4
§4.3 一维压缩性及其指标 - - p曲线
智者乐水 仁者乐山
应力历史及影响 σz p
土体在历史上所承受过的 应力情况(包括最大应力 等)称为应力历史
初始
加载
p
卸载
A
B 再加载
εz
土样在A和B点所处的应
力状态完全相同,但其 变形特性差别很大
应力历史的影 响非常显著
侧限压缩试验
t
3
§4.3 一维压缩性及其指标 - - p曲线
卸载和再加载曲线
σz p
一次 加载
p
初始 加载
卸载 再加载
εz
智者乐水 仁者乐山
在试验曲线的卸载和再
加载段,土样的变形特 性同初始加载段明显不 同,前者的刚度较大
在再加载段,当应力超
过卸载时的应力p时,
曲线逐渐接近一次加载 曲线
卸载和再加载曲线形成
e
智者乐水 仁者乐山
土力学-第四章-概述 土的压缩性测试方法 张丙印

t
s
s3
s2
s1
t
§4.2 土的压缩性测试方法 – 压缩试验
智者乐水 仁者乐山
压缩曲线及特点
• 侧限变形(压缩)模量:
加载:
Es
Δσ z Δεz
卸载和重加载:
Ee
Δσz Δεz
非线性 弹塑性
土的一般化的压缩曲线
z= p
1 Ee 1 Es
e
z
( e )
侧限压缩试验
18
§4.2 土的压缩性测试方法 – 三轴试验
常规三轴:
• 存在破坏应力
侧限压缩试验:
• 不存在破坏应力 • 存在体积压缩极限
z=p
侧限压 缩试验
常规三 轴试验
e
z
( e )
常规三轴与侧限压缩试验
22
§4.2 土的压缩性测试方法
智者乐水 仁者乐山
变形模量 Et 与侧限变形模量 Es间的关系
虎 εz
σz Et
νt Et
σx σy
克 定 律
墨西哥某宫殿
左部:1709年 右部:1622年 地基:20多米厚粘土
问题: 沉降2.2米,且左右 两部分存在明显的 沉降差。左侧建筑 物于1969年加固
智者乐水 仁者乐山
工程实例
6
§4.1 概述
智者乐水 仁者乐山
墨西哥城的一幢建筑, 可清晰地看见其发生的 沉降及不均匀沉降。该 地的土层为深厚的湖相 沉积层,土的天然含水 量高达 650 %,液限 500% ,塑性指数 350 , 孔隙比为 15 ,具有极 高的压缩性。
《土力学1》之第四章
土的压缩性与地基沉降计算
张丙印
清华大学土木水利学院 岩土工程研究所
土的压缩性及地基沉降量计算习题——答案(供参考)

重难点:室内压缩试验、判断土的压缩性指标(应力应变曲线、e-p曲线、e-lgp 曲线)、单一土层的沉降量计算、分层总和法计算地基最终沉降量、黏性土地基沉降发展的三个阶段、饱和土的渗流固结理论的物理模型、基本假设及推导、地基沉降与时间的关系(掌握固结系数、时间因素及固结度近似解的公式)名词解释:压缩性、固结、压缩系数、压缩指数、压缩模量、变形模量、最终沉降量、瞬时沉降、固结沉降、次固结沉降、平均固结度一、填空题1. 在相同的压力作用下,饱和粘性土压缩稳定所需时间t1与饱和砂土压缩稳定所需时间t2的关系是t1>t2。
2. 侧限压缩试验时,先用环刀切取保持天然结构的原状土样,然后置于刚性护环内进行实验。
3. 压缩曲线可按两种方式绘制,一种是采用普通直角坐标绘制的e-p曲线,另一种是采用半对数直角坐标绘制的e-lgp曲线。
4. 实际工程中,土的压缩系数根据土原有的平均自重应力增加到平均自重应力与平均附加应力之和这一压力变化区间来确定。
5. 工程评判土的压缩性类别时,采用的指标是压缩系数a1-2。
6. 若土的初始孔隙比为0.8,某应力增量下的压缩系数为0.3Mpa-1,则土在该应力增量下的压缩模量等于6Mpa 。
7. 某薄压缩层天然地基,其压缩层土厚度2m,土的天然孔隙比为0.9,在建筑物荷载作用下压缩稳定后的孔隙比为0.8,则该建筑物最终沉降量等于10.5cm 。
8. 在其他条件相同的情况下,固结系数增大,则土体完成固结所需时间的变化是变短。
9. 饱和土地基在局部荷载作用下的总沉降包括瞬时沉降、固结沉降和次固结沉降三个分量。
10. 从应力转化的观点出发,可以认为饱和土的渗透固结无非是:在有效应力原理控制下,土中超静孔隙压力的消散和有效应力相应增长的过程。
11. 太沙基一维固结理论采用的土的应力~应变关系是侧限条件下的应力~应变关系。
12. 研究指出,土的压缩性愈小时,变形模量愈_ 大___,压缩曲线愈_ 缓_。
土力学课件第四章土的压缩性和地基沉降计算

《土工试验方法标准》 土的类别 a1-2 (MPa-1)
e
'
100 200 300 400
高压缩性土 中压缩性土 低压缩性土
0.5
[0.1,0.5) <0.1
p (kPa)
土的压缩性及压缩性指标
(2)压缩指数 土的固结试验的结果也可以绘在半对数坐标上,即坐标横 轴p用对数 坐标,而纵轴e用普通坐标,由此得到的压缩 曲线称为e~lgp曲线。 在较高的压力范围内,e~lgp曲线 近似地为一直线,可用直线的斜率 ——压缩指数Cc来表 示土的压缩性高低,即
量互为倒数。
e1 1
e
孔隙
1 a mv Es 1 e1
p 1 e1 Es e /(1 e1 ) a
固体颗粒
土的压缩性及压缩性指标
§4.2.3 土的荷载试验及变形模量
1、现场荷载试验
教材117
土的压缩性及压缩性指标
土的压缩性及压缩性指标
2、土的侧压力系数及变形模量 土的侧压力系数,K0,是指侧限条件下土中侧向应力与竖向应 力之比。 x y K0 x K0 z z z K0与泊松比有如下关系:
土的压缩性及压缩性指标
侧限压缩试验 变形测量 侧限压缩仪(固结仪) 固结容器
固结容器:
环刀、护环、导环、透水 石、加压上盖和量表架等 加压设备:杠杆比例1:10 变形测量设备 加 压 设 备
支架
土的压缩性及压缩性指标
•只在竖直方向上进行压缩
•变形是由孔隙体积的减小引起的
A H0 A (H0 S ) 1 e0 1 e1 ei av S e0 e1 H0 1 e0
计算基底应力计算基底处附加应力kpa75kpa251675计算地基中的附加应力地基受压层厚度zn确定地基沉降计算分层计算各层土的压缩量计算地基中的附加应力地基受压层厚度zn确定地基沉降计算分层计算各层土的压缩量43地基沉降量计算柱基础中点最终沉降量16971442916596465mm自基底深度z土层厚度自重应力kpa附加应力kpa孔隙比附加应力平均值kpa分层土压缩变形量165100250097251212363100602229866009591931697251357751012501461577609572101442411671351020500811315109544649166019875103000044717390952445596表46分层总和法计算地基沉降量表46分层总和法计算地基沉降量43地基沉降量计算例题42墙下条形基础宽度为20m传至地面的荷载为100knm基础理置深度为12m地下水位在基底以下06m如下图所示地基土的室内压缩试验试验ep数据下表所示用分层总和法求基础中点的沉降量
第四章 土的压缩性和地基沉降计算题解

第四章 土的压缩性和地基沉降计算一、名 词 释 义1.角点沉降系数:单位均布矩形荷载在其角点处引起的沉降。
2.地基沉降计算深度:计算地基沉降时,超过基底下一定深度,土的变形可略去不计,该深度称为地基沉降计算深度。
3.压缩性:土在压力作用下体积缩小的特性。
4.固结:土的压缩随时间而增长的过程。
5.压缩曲线:室内土的侧限压缩试验结果,是土的孔隙比与所受压力的关系曲线。
6.压缩系数:反映土在一定压力作用下或在一定压力变化区间其压缩性大小的参数,其值等于e-p曲线上对应一定压力的切线斜率或对应一定压力变化区间的割线斜率。
7.压缩指数:采用半对数直角坐标绘制的p e log −压缩曲线,其后段接近直线,直线的斜率称为土的压缩指数。
8.压缩模量:土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值。
9.变形模量:根据土体在无侧限条件下的应力应变关系得到的参数,定义同弹性模量,但由于变形模量随应力水平而异,加载和卸载时的值不同,故未称作弹性模量,而称为变形模量。
10.地基最终沉降量:地基土层在荷载作用下,达到压缩稳定时地基表面的沉降量。
11.应力比法:地基沉降计算深度取地基附加应力等于自重应力的20%处,在该深度以下如有高压缩性土,则继续向下取至10%处,这种确定沉降计算深度的方法称为应力比法。
12.平均附加应力系数:基底下一定深度范围内附加应力系数的平均值。
13.变形比法:由基底下一定深度处向上取规范规定的计算厚度,若计算厚度土层的压缩量不大于该深度土层总压缩沉降量的2.5%,即可确定该深度为地基沉降计算深度,这种确定地基沉降计算深度的规范方法称为变形比法。
14.前期固结压力:天然土层在历史上所经受过的最大固结压力。
15.正常固结土:历史上所经受过的最大固结压力等于现有覆盖土自重应力的土体。
16.超固结土:土体历史上曾经受过大于现有覆盖土自重应力的前期固结压力的土体。
17.欠固结土:指在目前自重应力下还未达到完全固结的土体,土体实际固结压力小于现有覆盖土自重应力。
土力学完整课件---4第4章-土的压缩性和地基沉降计算可编辑全文

σc(kPa) 16 35.2 54.4 65.9 77.4 89.0
3.计算基底压力
4.计算基底附加压力
G G Ad 20 4 4 320 kN
p F G 1440 320 110kPa p0 p d 110 16 1 94kPa
A
44
5.计算基础中点下地基中附加应力
系数s(与土质和土层的模量等因素有关, 可从规范中的相关表中查得).
地基最终沉降 量修正公式
s s s s
n i 1
p0 Esi
(
zi
i
zi1 ) i1
i、i-1——基础底面至第i层土、第i-1层土底面范围内平均附加应
力系数,可通过积分求出,规范中已制成表供查用。可查表。
zi、zi-1——基础底面至第i层土、第i-1层土底面的距离(m)
用角点法计算,过基底中点将荷载面四等分,计算边长l=b=2m, σz=4αap0,αa由表查得
z(m) z/b αa σz(kPa) σc(kPa) σz /σc
0
0 0.2500 94.0 16
zn (m)
1.2 0.6 0.2229 83.8 35.2
2.4 1.2 0.1516 57.0 54.4
在一定厚度的均质土层上施加无限均布荷载,土层 产生竖向压缩,没有侧向变形。
△p
∞
s
∞ 土层竖向应力由p1增加到p2, 引起孔隙比从e1减小到e2,
竖向应力增量为△p
可压缩土层
H2
H1
S
由于
H1
H2
e1 e2 1 e1
H1
a e= e1 e2
所以
p p2 p1
3.单向压缩分层总和法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•经验公式:Zn=B(2.5-0.4lnB)
•计算到压缩性较大土层底面
3
一、习题评述
4-3
要 点:规范法的应用
常见问题: 1、基底附加压力的计算;计算深度的选取;
2、均一土层,Es各处相等,使计算简化:
S
si
n i 1
p0 Es
( zi i
zi1 i1)
p0 Es
znn
z0=0
4
一、习题评述
8
一、习题评述
下层粘土:
计算10天后沉降量时,应是三层土沉降之和,第二层(中 砂)不考虑固结问题。
9
需考虑每一分层的压缩性不同,由所给的e-p曲线求取。 基 底附加应力 p0=p-σSD
6
一、习题评述
4、第(6)问 考虑两层粘土的排水性质(单面?双面?)
上层粘土: 上面基础,下面中砂 ----单面排水 下层粘土:上面中砂,下面砾石 ----双面排水
求取固结过程中孔压分布可做如下假设: 1)对每一土层,求取孔压分布时认为基底附加压力在地基中产生的附
第三次习题讨论课
—— 第四章作业中的问题 张丙印 于玉贞
1
一、习题评述
作业 4-2,4-3,4-6 4-7 (1), (2), (3), (4), (6)
4-2
用Es1-2计算 不计沉降计算经验系数s 粗砂可以按一层计算
4-3
考虑沉降计算经验修正系数, p0=fk
4-6
按一层计算
2
一、习题评述
4-2
要 点:求基础的最终沉降,单一土层的沉降计算 常见问题: 1、基底附加压力的计算:
考虑回填土及混凝土基础的自重,回填混合容重20基底附加压力
p
N A
回填D
D
2、合理分层
3、计算深度的确定:
• 经验法:
一般土层:z=0.2sz 软土层:z=0.1sz
•规范法:S0.025S
4-6
要 点:时间、固结度以及沉降量之间的关系 常见问题: 量纲单位,固结系数Cv单位:cm2/s;m2/year ; 由图表查Tv或者Ut时出错;
求某一时刻t的固结度与沉降量 求达到某一固结度或沉降所需要的时间
Cv
k (1 e1 ) a w
Tv
Cv H2
t
U t ,( Tv )
1
8 2
e
2 4
Tv
加应力随深度平均分布,即p取附加应力平均值; 2)每土层固结系数不变。 3)地基处于侧限应力状态,从而基底压力在施加瞬时全部转化为超静
孔压。
固结过程中的超静孔隙水压力按下面公式来计算:
uz,t
4p
1 sin m1 m
m ze
m2
2 4
Tv1
2H
4 p sin
z 2H
e
2 4
Tv1
7
一、习题评述
5
一、习题评述
4-7 要 点:试验曲线及原位曲线;固结度及超静孔压消散 常见问题:
1、土层固结性质的判别: 先期固结压力σp与当前自重应力σs相差不大时,可认为属
于正常固结土。 2、原位压缩曲线:过0.42e0
与正常固结土不同的是:推求超固结土的原位压缩曲线时, 需要先得到原位再压缩曲线。
3、地基总沉降量的计算