多效蒸发器用于高盐废水处理
高盐废水蒸发工艺选择:单效多效MVR

高盐废水蒸发工艺选择:单效/多效/MVR 概述高盐废水是在工业生产、化学合成、冶炼等领域中产生的,其处理难度较大。
常规的废水处理方法如生物降解、化学沉淀等难以处理高浓度盐水废水。
而蒸发技术可以将水分从高浓度废水中挥发掉,达到削减体积、提高浓度的目的。
本文将介绍三种高盐废水蒸发工艺:单效、多效、MVR,并分析其优缺点以及适用场景。
单效蒸发工艺单效蒸发工艺是最简单的一种蒸发技术。
其原理是将高盐废水加热到沸点,使水分蒸发,然后冷凝回收。
这种工艺适用于废水浓度较低的场景,废水的挥发量较小,需要较长的处理时间。
通常单效蒸发器的处理效率在15%~25%之间。
优点•设备简单,操作简单;•能够良好地处理一些浓度较低的废水。
缺点•废水处理时间较长,效率较低;•废水处理成本较高,能耗较大。
适用场景•废水浓度较低,不含有毒害物质;•废水处理量较小,处理的时限不紧。
多效蒸发工艺多效蒸发工艺是将单效蒸发器连接成多级,将蒸发失去的热量通过热量交换器传递给下一级蒸发器,达到节能的目的。
多效蒸发技术通常分为二效、三效、四效等,能够加添废水处理的效率,提高蒸发器的处理水平,将废水浓缩度提高至50%~70%。
优点•处理效率高,能够快速处理高浓度废水,节省处理时间;•设备占地面积小,能耗低。
缺点•设备多而杂,运行成本高,维护、保养难度较大;•对废水浓度变化较为敏感,需要搭配调整。
适用场景•废水浓度较高,需要快速处理;•废水处理量较大,需要较短的处理周期。
MVR蒸发工艺MVR(Mechanical Vapor Recompression )蒸发工艺是基于机械压缩对低级蒸汽进行加热,实现蒸发过程的再循环利用,使蒸汽压力渐渐上升来完成水的蒸发,并以小型离心压缩机为核心设备。
MVR蒸发与其他工艺相比,具有能耗低、设备体积小、处理效率高、操作易于自动化掌控等优点。
MVR 蒸发器处理效率相对于其他工艺高出很多,除了节省电力外也更环保。
同时MVR的出水质量高,最后的浓缩效率也特别高。
高盐废液深度脱盐工艺研究进展

高盐废液深度脱盐工艺研究进展油田特高含水开发和气田开发过程中,采出水富余与清水需求矛盾日益加剧。
在国家严峻的环保形势下,富余污水回注废弃地层已被禁止,污水外排标准也逐渐与油气田生产用清水水质要求趋于一致,污水零排放处理成为油气田富余污水处置的首选方向。
调研中石化油气田高盐废液,高盐废液分布广泛,尤其是气田废液TDS有的高达140000mg/L,因此针对于高盐废液深度脱盐处理技术亟需解决。
目前针对于高盐废液深度脱盐工艺常用的主要包括热法和膜法两种。
1、热法深度脱盐工艺(1)多效蒸发多效蒸发主要是通过串联蒸发器,引入蒸汽对废水进行加热。
通常是将加热蒸汽通入一效蒸发器,则溶液受热而沸腾,而产生的二次蒸汽其压力与温度较原加热蒸汽降低,但仍可继续利用,将其引入二效蒸发器,以此类推,使得蒸汽循环利用,多次重复利用了热能,显著地降低了热能耗用量,这样大大降低了成本,也增加了效率。
(2)多级闪蒸多级闪蒸,是一种常用的海水淡化的方法。
多级闪蒸装置是由多个闪蒸室组成的。
该装置利用了海水的蒸发进行脱盐,先将海水加热,再引入接近真空的闪蒸室,由于室内的气压远远低于热海水的饱和蒸汽压,压力低至连常温的水实际上也会沸腾,所以海水瞬间气化,随后将室内气化的蒸汽冷却,成为淡水并将其引出,而剩余的热海水再进入下一个闪蒸室,继续接受闪蒸,多次提取热海水中的淡水。
(3)机械蒸汽压缩蒸发机械蒸汽压缩蒸发(MVC)工艺在蒸发工艺中,不仅仅能耗最低而且具有去除有机物的功能。
该工艺的原理是依据物理学的原理,即物质的液体和气态两种相态在转化的过程中,在理想状态下,吸收和释放的热量相同。
MVC工艺主要是通过利用蒸发系统自身产生的二次蒸汽以及能量,将低品位的蒸汽经压缩机的机械做功提升为高品位的蒸汽热源。
目前,MVC工艺已成功运用在化工废水零排放以及高盐废水的浓缩中。
图1是一种常见的MVC工艺流程图。
相比于其他的含盐废水的脱盐工艺,MVC工艺相比较来说,工艺简单、预处理相对简单,另外在运行中废气排放量少、运行管理方便。
含盐废水蒸发工艺流程

含盐废水蒸发工艺流程
《含盐废水蒸发工艺流程》
含盐废水蒸发工艺是一种常见的废水处理方法,主要用于处理含有高浓度盐类物质的废水。
这种蒸发工艺通过将含盐废水在特定条件下进行蒸发,最终将盐类物质浓缩并分离出来,从而达到废水处理和资源回收的目的。
在含盐废水蒸发工艺中,首先需要将废水经过预处理,去除其中的悬浮物、沉淀物和其他杂质,以保证后续蒸发过程顺利进行。
接下来,预处理后的废水被送入蒸发设备中,通常采用的蒸发设备有多效蒸发器、膜蒸发器和闪蒸器等。
在蒸发设备中,含盐废水会在高温和低压下进行蒸发,水分逐渐蒸发出去,而盐类物质则被浓缩。
在多效蒸发器中,含盐废水会在多级蒸发器中循环蒸发,提高蒸发效率;而在膜蒸发器中,废水则通过膜的筛选,使得水分和盐类物质得以分离。
最终,通过蒸发工艺,所得到的浓缩盐类物质可以通过结晶、凝固等方法得到固体盐料,而剩余的蒸发水则可以进行进一步处理,用于循环利用或者排放。
这种蒸发工艺有效地将废水中的盐类物质分离出来,实现了资源的有效回收和废水的处理。
总的来说,含盐废水蒸发工艺流程相对简单且高效,通过控制蒸发条件和采用合适的蒸发设备,可以有效地处理含盐废水,并实现盐类物质的资源化回收。
这种工艺在化工、矿业和食品等行业中具有较广泛的应用前景。
煤化工高盐水处理技术

煤化工高盐水处理技术摘要:煤化工规模大,生产过程中会产生大量的高盐水。
高盐水直接排放到环境中,会造成水体盐度上升,甚至还会造成水体PH值变化,进而影响水生生物的正常生长;排放到土壤中,会影响土壤酸碱度,严重者造成土壤板结。
所以,必须要利用有效的水处理技术,对高盐水进行处理,避免污染环境。
本文首先分析了煤化工高盐水的特点,然后细致分析现阶段高盐水处理技术,包括热蒸发技术、膜处理技术、生物处理技术以及针对高氯盐的预处理技术。
关键词:煤化工;高盐;水处理1 煤化工高盐水的特点1.1无色无味煤化工高盐水的外观是无色无味的,肉眼难以分辨其含盐的种类。
所以,煤化工厂要用化学方法对高盐水中的成分进行分析,从杂质角度来分析水中的细菌等杂质,从离子层面分析水中阴阳离子等等。
了解水中的成分是水处理的基本前提,对无色无味的高盐水,必须要用化学方法进行全面分析。
1.2排放量大煤化工高盐水的排放量比较大,这是煤化工生产规模大造成的。
煤化工生产工艺复杂,在生产过程中用水量非常大,并且化工生产的周期比较长,所以产生了大量的高盐水。
1.3含盐量高煤化工高盐水的含盐量比较高,这是由于在化工生产过程中循环用水造成的盐类累积。
为了节约水资源,在实际的化工生产中,化工厂有自己的水处理环节,这就实现了冷却水的循环使用,水处理部门,则产生了大量的高盐水。
1.4不稳定煤化工高盐水中盐的种类和含量都不是很稳定,不同批次煤炭的成分不同,生产工艺所用的化学试剂会有所调整,所以煤化工高盐水呈现出不稳定的特点。
高盐水的不稳定性增加了水处理工作的困难,比如利用生物处理法时,不同成分所用的微生物是不同的。
1.5氯离子含量高煤化工高盐水中氯离子含量比较高,说明高盐水中盐酸盐的种类偏多。
对于氯离子含量高的高盐水,相对来说处理方法比较多。
这种高盐水的成分与海水相似,可以通过预处理后按照海水淡化的方式处理。
2 煤化工高盐水处理技术现状2.1 热蒸发技术热蒸发技术是处理煤化工高盐水的一种常见的物理方法。
2种高盐废水处理工艺详细分析

2种高盐废水处理工艺详细分析高含盐废水是指含有有机物和至少总溶解固体TDS的质量分数≥3.5%的废水,包括高盐生活废水和高盐工业废水。
主要来源于直接利用海水的工业生产、生活用水和食品加工厂、化工厂及石油和天然气的采集加工等。
这些废水中除了含有有机污染物外,还含有大量的无机盐,如Cl-,SO42-,Na+,Ca2+等离子。
若未经处理直接排放,势必会对水体生物、生活饮用水和工农业生产用水生产极大的危害。
但常规处理方法中盐水浓度不能过高,亟待开发处理更高浓度的高盐废水的工艺技术。
常用技术一:高盐废水低温多效板式蒸发浓缩脱盐1、低温多效蒸发浓缩结晶技术低温多效蒸发浓缩结晶系统,是由相互串联的多个蒸发器组成,低温(90℃左右)加热蒸汽被引入第一效,加热其中的料液,使料液产生比蒸汽温度低的几乎等量蒸发。
产生的蒸汽被引入第二效作为加热蒸汽,使第二效的料液以比第一效更低的温度蒸发。
这个过程一直重复到最后一效。
第一效凝水返回热源处,其它各效凝水汇集后作为淡化水输出,一份的蒸汽投入,可以蒸发出多倍的水出来。
同时,料液经过由第一效到最末效的依次浓缩,在最末效达到过饱和而结晶析出。
由此实现料液的固液分离。
低温多效蒸发浓缩结晶系统不仅可以应用于化工生产的浓缩过程和结晶过程,还可以应用于工业含盐废水的蒸发浓缩结晶处理过程中。
在工业含盐废水的处理过程中,工业含盐废水进入低温多效浓缩结晶装置,经过5-8效蒸发冷凝的浓缩结晶过程,分离为淡化水(淡化水可能含有微量低沸点有机物)和浓缩晶浆废液;无机盐和部分有机物可结晶分离出来,焚烧处理为无机盐废渣;不能结晶的有机物浓缩废液可采用滚筒蒸发器,形成固态废渣,焚烧处理;淡化水可返回生产系统替代软化水加以利用。
其主要技术参数如下:(1)淡化水含盐量(TDS)。
三效蒸发技术处理高浓度废水

三效蒸发技术处理高浓度废水作者:周庆阔来源:《中国化工贸易·上旬刊》2017年第05期摘要:随着我国经济的不断增长,生活水平的不断提升,也给我们生活的环境造成了严重的影响,各种垃圾的随意堆放,工业废水的处理等都使我们赖以生存的环境遭到了破坏。
因此,针对这些废水的处理,我国提出使用三效蒸发新技术来对浓度较高的废水进行处理。
此篇文章首先阐述了高效多效蒸发处理技术的原理,然后对其处理的工艺流程进行了分析和探讨,并对此项技术的具体应用进行了描述,以便于为相关人士提供参考或借鉴,为废水的处理提供可靠的依据。
关键词:三效蒸发技术;高浓度废水;处理;分析在我国水资源十分紧缺,尤其是在现代化的生活当中,再加上现阶段水资源的污染,无疑是给我国水资源的利用雪上加霜。
仅化工行业每年产生的废水就达上百亿吨,其中染料、医药及中间体等的生产废水。
因其浓度高、毒性大、难以降解而成为世界公认的难题。
如何提高处理效率、降低投资对于高浓度、难降解有机工业废水十分关键。
针对高浓度有机废水治理亟待解决的问题,开发出高效处理技术、设备及组合工艺,建立起高浓度难降解废水处理过程智能化和可控制化的有效方法一直是环保和水处理科技工作者关注的焦点。
目前我国工业生产中产生的高浓度有机废水,主要采用厌氧与好氧相结合的方法进行处理,由于厌氧处理工艺的运行条件要求高,出水水质难以保证,水处理思路从多种工艺的组合逐渐转向单一工艺,以满足多种工艺功能的要求,力图用一种工艺能较好的降低COD\BOD,并去除氮、磷等污染物。
1 高效多效蒸发处理技术原理目前蒸发器的种类比较多,就其蒸发方式而言,有自然循环蒸发器,强制循环蒸发器;从蒸汽利用方式考虑,蒸发又可分为一效至五效。
在第1个以直接蒸汽加热的蒸发器内,由被加热液体沸腾而产生的二次蒸汽进入第2个蒸发器作为热源,即为二效蒸发。
这样依次利用前一效的二次蒸汽作为下一效的蒸发器的热源。
根据能量守恒,每蒸发l t水所消耗的蒸汽量比率为:单效1.1,双效0.57,三效O.4,四效0.3,五效0.27。
多效蒸发系统工艺原因及工艺流程

多效蒸发系统工艺原因及工艺流程一、多效蒸发系统的流程多效蒸发处理器主要用来处理高浓度、高色度、高含盐量的工业废水。
同时,回收废水处理过程中产生的附产品。
蒸汽耗量低、蒸发温度低、浓缩比大、更合理、更节能、更高效。
今天,为大家介绍多效蒸发器在废水处理中的应用!多效蒸发的技术特点多效蒸发是使用最早的海水淡化技术,现今已经发展成为较为成熟的废水蒸发技术,解决了结垢严重的问题,逐步应用于高含盐水处理方向。
平流加料蒸发流程原料液平行加入各效,完成液亦分别自各效排出。
蒸汽流向由一效流至末效,料液则每效单独进出,称为平流加料法。
伴有结晶析出的蒸发过程宜采用此流程。
逆流加料蒸发流程溶液和蒸汽的流动方向相反,称为逆流加料法。
逆流加料流程中,溶液浓度沿流动方向不断增加的同时,温度也逐渐升高,因而各效传热系数相差不大。
溶液的效间输送需借助泵,因此能量消耗较大,且二次蒸汽量也低于并流加料。
此法适于处理黏度随温度和组成变化较大的溶液,不宜处理热敏性溶液。
溶液在效间的流动是由低压流向高压,由低温流向高温,必须用泵输送,故能量消耗大。
此外,各效(末效除外)均在低于沸点下进料,没有自蒸发,与并流法相比,所产生的二次蒸汽量较少。
并流加料蒸发流程。
溶液和蒸汽的流向相同,都由一效顺序流至末效,称为并流加料法。
并流加料流程中,因后效蒸发室压强、沸点低于前效,在效间压强差作用下,即可实现溶液的效间输送,并自蒸发产生二次蒸汽。
但溶液浓度的逐效增加会使蒸发器的传热系数逐效降低,从而影响蒸发效果,因此高粘度溶液适合采用此种方法。
并流加料蒸发流程,溶液在效间的输送可以利用效间的压差,而不需要泵送。
同时,当前一效溶液流入温度和压力较低的一效时,会产生蒸发(闪蒸),因而可以多产生一部分二次蒸汽。
此种操作简便,工艺条件稳定。
二、低温多效蒸发的技术优势系统的动力消耗小。
低温多效系统用于输送液体的动力消耗很低,只有0.9-1.2kWh/m3左右。
如此可以大大的降低淡化水的制水成本,这一点对于电价较高的地区尤为重要。
高盐废水处理方法

高盐废水处理方法高盐废水是指总含盐质量分数至少1%的废水.其主要来自化工厂及石油和天然气的采集加工等.这种废水含有多种物质(包括盐、油、有机重金属和放射性物质)。
含盐废水的产生途径广泛,水量也逐年增加。
去除含盐污水中的有机污染物对环境造成的影响至关重要。
高盐废水如何处理,首先我们对其不同情况做一个简单的分析。
1、在盐度小于2g/L条件下,可能通过驯化处理含盐污水。
但是驯化盐度浓度必须逐渐提高,分阶段的将系统驯化到要求盐度水平。
突然高盐环境会造成驯化的失败和启动的延迟。
2、稀释进水盐度。
既然高盐成为微生物的抑制和毒害剂,那么将进水进行稀释,使盐度低于毒域值,生物处理就不会收到抑制。
这种方法简单,易于操作和管理;其缺点就是增加处理规模,增加基建投资,增加运行费用,浪费水资源。
3、在盐度大于2g/L时,蒸发浓缩除盐是最经济也是最有效的可行办法。
其它的方法如培养含盐菌等的方法都存在工业实践难以运行的问题。
高盐废水如何处理能达到更好的效果,我们需要对其处理的生物流程有一个详细的认识和理解:(1)调节池。
含盐废水调节池考虑的主要因素是废水盐浓度的变化,除生产波动周期、冲击因素外,应重点考虑水中盐浓度的变化和如何进行调整,如低含盐水量的减少或过高含盐来水的冲击。
(2)曝气池。
根据废水中含盐类型不同,曝气池选择也应有所不同。
生物处理含CaCL2较高的废水,应采用传统曝气方式。
钙离子能增加活性污泥的絮体强度,高CaCL2可使污泥中灰分达到40%~50%,污泥密度增加,曝气池中的污泥浓度可在5000mg/L以上。
因此,应采用提升力较大的传统曝气、深井曝气、流化床曝气等曝气方法。
曝气也应选用气泡较大、提升力较强的散流曝气器等曝气方式。
不可采用气泡较小的微孔曝气器和可变孔曝气器,防止曝气孔被无机盐堵塞,不利于曝气池的搅动。
在水量小于1000m3条件下也可以采用射流曝气,射流曝气氧的传递效率高,而且不易堵塞曝气设备。
曝气强度也应大于普通生物处理,在10m3/(m2?h)左右,或用中心管来增加提升和搅拌能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多效蒸发器用于高盐废水处理
多效蒸发处理器主要用来处理高浓度、高色度、高含盐量的工业废水。
同时,回收废水处理过程中产生的附产品。
蒸汽耗量低、蒸发温度低、浓缩比大、更合理、更节能、更高效。
多效蒸发处理原理
在第一个以直接蒸汽加热的蒸发器内,由被加热液体沸腾而产生的二次蒸汽进入第二个蒸发器作为热源,即为二效蒸发。
这样依次利用前一效的二次蒸汽作为下一效的蒸发器的热源。
根据能量守恒定理,处理器每蒸发1t水所消耗的蒸汽量为:单效1.1,双效0.57,三效0.4,四效0.3,五效0.27。
物料经分配器被均匀地分配到各蒸发器管内,物料在重力和自蒸发形式的二次蒸发的作用下形成膜状,同时物料薄膜与列管外壁蒸汽发生热量交换,使物料中的水份受热蒸发,稳定的温差和传热,形成稳定蒸发,被蒸发的水份所形成的二次蒸汽被多次利用,根据物料特点最大限度的多次利用来降低蒸汽消耗,形成多效蒸发和高效节能的目的。
多效蒸发器设备用途
多效蒸发器,是发酵行业、淀粉/淀粉糖行业、果汁行业、饮料行业、制药行业、环保行业中的洒槽滤液、味精液、发酵料液、玉米桨、淀粉废水、淀粉糖浆、木糖液、果汁、蔬菜汁、大豆乳清水、奶液、高浓度有机和化工等废水综合治理用的蒸发浓缩设备
工艺流程
废水进入三效加热器,与二效二次蒸汽进行热交换。
废水经第三效加热器加热,废水中的水份汽化成二次蒸汽,蒸发器内废水浓度被提高,当达到一定浓度后,由中间循环泵送入第一效蒸发器;进入一效蒸发器的废水,与一次蒸汽进行热交换,废水中的水份大量被蒸发,所产生二次蒸汽进入第二效加热器作为热源,当第一效废水浓度继续被提高后,在真空压差状态下,废水自行进入第二效蒸发器;第二效产生的二次蒸汽进入第三效作为热源。
当第二效结晶器内物料达到所需的过饱和浓度后,开启出料泵出料进行离心干燥处理。
整套蒸发工艺为错流蒸发,连续进料、
连续出料。
经三效蒸发处理后废水中的盐份去除率可达到98%--99%。
主要设备
蒸发器、分离器、出料泵、真空泵、工艺配件、仪表仪器、中间循环泵、结晶器、强制循环泵。
设备特点
三效蒸发器加热管采用耐腐蚀材料制作,内镜面抛光不易结污。
夹套材质:1Cr18Ni9Ti,外包带保温层和包扎不锈钢镜面钢板。
分离器采用不锈钢制造,凡接触物料部位全部为镜面抛光处理。
设有人孔、视孔、灯孔、温度计、真空表等装置。
工艺管道、阀门均采用不锈钢材质,内镜面抛光处理,易高浓度物料流动。
结晶器采用独特设计,能满足连续进料、连续排料的工艺要求。