通信电子线路课程设计报告——电感三点式正弦波振荡器

合集下载

实验二正弦波振荡器

实验二正弦波振荡器

实验二正弦波振荡器(一)三点式正弦波振荡器一、实验目的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、熟悉振荡器模块各元件及其作用。

2、进行LC振荡器波段工作研究。

3、研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、测试LC振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、双踪示波器1台3、万用表1台四、基本原理图2-1 正弦波振荡器(4.5MHz )将开关S 2的1拨上2拨下, S1全部断开,由晶体管Q 3和C 13、C 20、C 10、CCI 、L 2构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)(211020CCI C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=12.0470562013≈=C C 振荡器输出通过耦合电容C 3(10P )加到由Q 2组成的射极跟随器的输入端,因C 3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号Q 1调谐放大,再经变压器耦合从J1输出。

五、实验步骤1、 根据图2-1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、 研究振荡器静态工作点对振荡幅度的影响。

1) 将开关S2的1拨上(为10),S1全部拨下(为00),构成LC 振荡器。

2) 改变上偏置电位器R A1,记下Q3发射极电流I eo (=10R V e),R 10=1K ,(将万用表红表笔接TP4,黑表笔接地测量V E)填入表2-1中,并用示波测量对应点TP1的振荡幅度V P-P(峰—峰值)填于表中,记下停振时的静态工作点电流值I Q。

表2-1分析输出振荡电压和振荡管静态工作点的关系,分析思路:静态电流I CQ会影响晶体管跨导gm,而放大倍数和gm是有关系的。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。

实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。

关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。

二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。

其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。

同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。

其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。

三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。

4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。

图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。

合工大通信电子线路课程设计报告

合工大通信电子线路课程设计报告

通信电子线路课程设计设计报告学院:计算机与信息学院:学号:班级:通信工程14-2班指导老师:正琼目录键入章标题(第1 级)1键入章标题(第2 级) 2键入章标题(第3 级) 3 键入章标题(第1 级)4键入章标题(第2 级) 5键入章标题(第3 级) 6设计课题一 LC 正弦波振荡器的设计1. 设计容和主要技术指标要求● 设计容:设计一个LC 正弦波振荡器 ● 已知条件:三极管 负载● 主要技术指标要求: ① 谐振频率ƒ0 = 5MHz ② 频率稳定度ocf f ≤510–4/小时 ③ 输出峰峰值2. 设计方案选择 ● 方案选择 ① 电感三点式振荡器优点:由于1L和2L之间有互感存在,所以容易起振。

其次是频率易调(调C)。

缺点:与电三点式振荡器相比,其输出波形差。

这是因为反馈支路为感性支路,对高次谐波呈现高阻抗,波形失真较大。

其次是当工作频率较高时,由于1L和2L上的分布电容和晶体管的极间电容均并联于1L与2L两端,这样,反馈系数F随频率变化而变化。

工作频率愈高,分布参数的影响也愈严重,甚至可能使F减小到满足不了起振条件。

因此,优先选择的还是电容反馈振荡器。

电容三点式振荡器优点:高次谐波成分小,输出波形好,其次振荡频率可以做得很高,因而本电路适用于较高的工作频率。

缺点:频率不易调(调L,调节围小),调1C 或2C 来改变震荡频率时,反馈系数也将改变。

但只要在L 两端并上一个可变电容器,并令1C 与2C 为固定电容,则在调整频率时,基本上不会影响反馈系数。

克拉波振荡器优点:频率可调,,其次改变F 不受影响,与无关,故比较稳定。

缺点:频率不能太高,波段围不宽,波段覆盖系数一般约为1.2~1.3,波段输出幅度不平稳,实际中常用于固定频率振荡器。

○4 西勒振荡器优点:振荡频率可以很高,且在波段振幅比较稳定,调谐围比较4C宽,克拉波电路中是改变来调节频率,而的改变会影响接入系数P,从而可能停振。

但西勒电路中,改变来调节频率,而的改变不会影响接入系数P。

整理高频课设报告_通信电子线路课程设计_电容三点式正弦波振荡器

整理高频课设报告_通信电子线路课程设计_电容三点式正弦波振荡器

目录整理表姓名:职业工种:申请级别:受理机构:填报日期:A4打印/ 修订/ 内容可编辑目录实验一常用电子实验仪器的使用及二极管特性测量................... - 7 - 实验二共射极单管放大电路....................................... - 9 - 实验三负反馈放大器............................................ - 14 - 实验四射极跟随器.............................................. - 18 - 实验五差动放大电路............................................ - 22 - 实验六运算放大器及其应用...................................... - 26 - 实验七 RC桥式正弦波振荡器(运放)............................. - 31 - 实验八 OTL低频功率放大器...................................... - 35 - 实验九综合实验................................................ - 39 -概述WLSM-Ⅱ型实验箱以电子技术基础课程及教学基本要求为基础,并综合了同类产品的优点,结合教师多年教学经验开发而成。

系统配有模拟电路实验模块和数字电路实验区及基本信号源。

底板电路板采用单面PCB板,元器件焊接于背面,板面整洁,结构清晰,可靠性高,连线孔备有叠式自锁镀金插座和小孔,即可与功能模块直接连接又能与面包板直接连接;功能模块,实验用元器件焊接于正面,并印有器件连接图及符号、参数,能提高学生对元器件的认识,力求按原理图习惯布置实验器件,减少、减短实验连线,兼顾实验功能和灵活性,能很好给学生提供从原理到实践的衔接;实验中需要连接的部分备有叠式自锁镀金插座,使用专用连线连接,连线方便,接触可靠。

通信电子线路课程设计 EWB MULTISIM 电容三点式振荡器

通信电子线路课程设计 EWB MULTISIM 电容三点式振荡器

《通信电子线路》课程设计总结报告专业班级:通信工程0804班姓名:学号:指导教师:时间:2011年6月目录一、课程设计目的及要求二、工具软件的学习与应用三、设计方案及运行结果3.1仿真电路设计3.1.1电容三点式振荡器工作原理3.1.2 电路的选择3.1.3 电路结构及其参数选择3.2仿真结果与其理论数值比较3.2.1当C6,C8的比例系数均为100%时3.2.2调整可变电感的比例系数以改变输出频率大小3.3实验结果分析3.3.1 输出波形分析3.3.2 直流工作点分析3.3.3 傅里叶分析四、课程设计心得体会五、参考资料一、课程设计目的及要求通过课程设计,使学生加强对高频电子技术电路的理解,学会查寻资料﹑方案比较,以及设计计算等环节。

进一步提高分析解决实际问题的能力,创造一个动脑动手﹑独立开展电路实验的机会,锻炼分析﹑解决高频电子电路问题的实际本领,真正实现由课本知识向实际能力的转化;通过典型电路的设计与制作,加深对基本原理的了解,增强学生的实践能力。

我本次课程设计的选题为:电容三点式振荡器的设计(选题8)(1)设计要求:设计一个电容三点式振荡器(2)主要技术指标:振荡频率为20MHz,输出信号幅度≥5V,可调二、工具软件的学习与应用本次课程设计所使用的是一种电子电路计算机仿真设计软件EWB。

它可任意地在系统中集成数字及模拟元件,完成原理图输入、数摸混合仿真以及波形图显示等工作。

当用户进行仿真时,原理图、波形图同时出现。

当改变电路连线或元件参数时,波形即时显示变化。

用户可以轻松地选择元件;拖动鼠标,可将元件放入原理图中。

调整电路连线、改变元件位置、修改元件属性也非常简单。

此外,EWB还有自动排列连线的功能,使画原理图更加美观、快捷。

EWB的元件库提供了数千种电路元器件,即有无源元件也有有源元件,即有模拟元件也有数字元件,即有分立元件也有集成元件,还可以新建或扩充已有的元器件库。

EWB还提供了齐全的虚拟仪器,如示波器、信号发生器、万用表、频谱仪等。

三点式正弦波振荡器(高频电子线路实验报告)(内容清晰)

三点式正弦波振荡器(高频电子线路实验报告)(内容清晰)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、 熟悉振荡器模块各元件及其作用。

2、 进行LC 振荡器波段工作研究。

3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、 测试LC 振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。

高频电容三点式正弦波振荡器课程设计报告

高频电容三点式正弦波振荡器课程设计报告

目录摘要 (I)1 绪论 (1)2.1 反馈振荡器的原理 (2)2.1.1 原理分析 (2)2.1.2 平衡条件 (3)2.1.3 起振条件 (3)2.1.4 稳定条件 (4)2.2 电容三点式振荡器 (4)3 设计思路及方案 (6)3.1 总体思路 (6)3.2 设计原理 (6)3.3 单元设计 (7)3.3.1 电容三点式振荡单元 (7)4 电路仿真与实现 (10)4.1 基于NI.Multisim.V10.0.1软件的电路仿真 (10)5 心得体会 (14)《高频电子线路》课程设计说明书摘要在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。

高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。

振荡器的功能是产生标准的信号源,广泛应用于各类电子设备中。

所以,振荡器是电子技术领域中最基本的电子线路,也是从事电子技术工作人员必须要熟练掌握的基本电路。

本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。

并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。

使用实验要求的电源和频率计进行验证,实现了设计目标。

关键字:通信高频信号电容正弦波振荡器1 绪论在社会信息化程度越来越高的背景下,通讯工具在我们的生活中扮演了越来越重要的角色。

振荡器简单地说就是一个频率源,一般用在锁相环中能将直流电转换为具有一定频率交流电信号输出的电子电路或装置。

详细说就是一个不需要外信号激励、自身就可以将直流电能转化为交流电能的装置。

一般分为正反馈和负阻型两种。

所谓“振荡”,其涵义就暗指交流,振荡器包含了一个从不振荡到振荡的过程和功能。

能够完成从直流电能到交流电能的转化,这样的装置就可以称为“振荡器”。

通信电子线路实验报告三点式振荡.

通信电子线路实验报告三点式振荡.

通信电子线路实验报告三点式振荡.一、实验目的本实验的目的是通过建立一个三点式振荡器电路,了解其原理和实际应用,学会使用计算机模拟软件Multisim进行实验电路的仿真和实验数据的分析,同时培养实验操作技能和实验报告撰写能力。

二、实验原理1.三点式振荡电路三点式振荡电路是一种自激振荡电路,由放大器、电容、电阻及正、负反馈电路等组成。

其中,放大器的放大倍数和正反馈电路的增益决定了电路的振荡频率和振幅。

在电容、电阻、正、负反馈电路合理设计的条件下,电路可以自发地产生一定频率和振幅的周期性波形,达到振荡效果。

2.电路设计本实验采用的是三点式振荡电路,电路如下图所示:![image.png](attachment:image.png)其中,放大器采用运放IC1,它的反馈回路由R3和C2组成,C2连接在运放输出端。

在这里R1和R2形成一个分压器,将8V降压至4V,提供给运放IC1的正输入端。

在这个电路中,R3C2组成的反馈回路和R1、R2以及C1形成的振荡回路交替地向运放IC1输出正、负信号,形成了一个周期性振荡。

三、实验步骤1.按照电路图连接电路,并用万用表检查各个元器件的连接情况。

2.用电压表测量IC1正输入端的电压是否为4V,若不是,则需要根据实际情况调整电路元器件的值,直到IC1正输入端的电压为4V。

3.通过Multisim模拟软件,进行电路的仿真操作,观察电路输出的波形是否与理论波形相符。

4.用示波器检测电路输出的波形,并通过调整电位器观察波形的变化情况。

5.将调节好的电路输出连接到音响,通过音响观察电路输出波形的振幅变化情况。

四、实验结果本实验中的三点式振荡电路在实际操作中表现非常稳定,实验数据与仿真数据也非常接近。

当电路输出连接到示波器时,我们可以很清晰地看到正弦波形的变化,而通过调节电位器,我们也可以改变波形的振幅大小。

五、实验分析本实验中的三点式振荡电路可以用于制作各种音乐器材、振动控制装置、数码时钟等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告课题名称 _____通信电子线路课程设计_ 学院电子信息学院专业班级学号姓名指导教师目录摘要 (I)1绪论 (1)2正弦波振荡器 (2)2.1 反馈振荡器产生振荡的原因及其工作原理 (2)2.2平衡条件 (3)2.3起振条件 (3)2.4稳定条件 (4)3电感三点式振荡器 (5)3.1三点式振荡器的组成原则 (5)3.2电感三点式振荡器 (5)3.3 振荡器设计的模块分析 (6)4 仿真与制作 (10)4.1仿真. (10)4.2分析调试 (12)5 心得体会...................................13=参考文献 (14)摘要反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。

本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。

正弦波振荡器在各种电子设备中有着广泛的应用。

例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。

根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。

前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。

本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。

电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化范围)。

关键词:高频、电感、振荡器1绪论在现代社会中,信息传递的作用日益变的重要。

这就要求我们改进信息传递的方式,从而使信息的传递更加迅速,更加准确,更加安全。

无线电通信的发展,信息加密技术的改进……这些为迅速准确的通信带来了便利。

毋庸置疑,无线电技术带来了信息交流方面的一次伟大变革。

在本课程设计中,着眼于无线电通信的基础电路——LC正弦振荡器的分析和研究。

通过对电感反馈式三端振荡器的分析、讨论。

以求得到一些对实际应用电路有帮助的结论。

在课程设计中,使用的仿真软件为multisim11.0。

该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。

能够让使用者全面的收集电路的相关数据,进而有助于对电路进行改进。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC振荡器和晶体振荡器等类型。

其中LC 振荡器和晶体振荡器用于产生高频正弦波。

正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可以由集成电路组成。

LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。

而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。

本文所要介绍的正是电感三点式振荡器。

2正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。

与放大器的区别:无需外加激励信号,就能产生具有一定频率、波形和振幅的交流信号。

由晶体管等有源器件和具有某种选频能力的无源网络组成。

正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。

反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。

所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。

负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。

2.1 反馈振荡器产生振荡的原因及其工作原理反馈型振荡器是通过正反馈联接方式实现等幅正弦振荡的电路。

这种电路由两部分组成,一是放大电路,二是反馈网络。

图2.1所示为反馈振荡器构成方框图及相应电路。

由U,图可知,当开关S在 1 的位置,放大器的输入端外加一定频率和幅度的正弦波信号iU,若o U 经反馈网络并在反馈网这一信号经放大器放大后,在输出端产生输出信号oU 与i U不仅大小相等,而且相位也相同,即实现了正反馈。

络输出端得到的反馈信号f若此时除去外加信号,将开关由 1 端转接到 2 端,使放大器和反馈网络构成一个闭环系U输出,从而实统,那么,在没有外加信号的情况下,输出端仍可维持一定幅度的电压o现了自激振荡的目的。

图2.1 反馈振荡器的结构网络图为了使振荡器的输出o U 为一个固定频率的正弦波,图 2.1 所示的闭合环路内必须含有选频网络,使得只有选频网络中心频率的信号满足f U 与i U 相同的条件而产生自激振荡,对其他频率的信号不满足f U 与i U 相同的条件而不产生振荡。

选频网络可与放大器相结合构成选频放大器,也可与选频网络相结合构成选频反馈网络。

2.2平衡条件振荡器的平衡条件即为 也可以表示为即为振幅平衡条件和相位平衡条件。

平衡状态下,电源供给的能量正好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。

2.3起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。

振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。

由 可知, 称为自激振荡的起振条件,也可写为分别称为起振的振幅条件和相位条件,其中起振的相位条件即为正反馈条件。

[2]1)()()(==ωωωj F j K j T ⋅⋅⋅==+===2,1,021)(n n KF j T F K T πϕϕϕω()()()ωωωj U j U j T i i >'>,11)(>ωj T ⋅⋅⋅==++=>'=',2,1,021)(n n F R Y j T F L f T L f πϕϕϕϕω2.4稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。

(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。

具体来说,就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。

(2)相位稳定条件振荡器的相位平衡条件是φT (ω0)=2nπ。

在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。

如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量Δφ。

由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。

为了保证相位稳定, 要求振荡器的相频特性φT (ω)在振荡频率点应具有阻止相位变化的能力。

具体来说, 在平衡点ω=ω0附近, 当不稳定因素使瞬时角频率ω增大时, 相频特性φT (ω0)应产生一个-Δφ, 从而产生一个-Δω, 使瞬时角频率ω减小。

[3]<∂∂=iAi U U iU K3电感三点式振荡器3.1三点式振荡器的组成原则基本电路就是通常所说的三端式(又称三点式)的振荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图3.1所示。

X1、X2、X3三个电抗元件构成了决定振荡频率的并联谐振回路,同时也构成了正反馈所需的反馈网络。

根据谐振回路的性质,谐振时回路应呈纯电阻性,因而有三个电抗元件不能同时为感抗或容抗,必须 由两种不同性质的电抗元件组成。

三端式振荡器能否振荡的原则:(1)X1和 X2的电抗性质相同; (2)X 3与X 1、 X2的电抗性质相反。

即射同余异,源同余异。

3.2电感三点式振荡器X1和X2为感性,X3为容性,满足三端式振荡器的组成原则,反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。

图 3.2是两种基本的三端式振荡器 (a) 电容反馈振荡器;(b) 电感反馈振荡器I.30321=++X XX (a )C (b )33上图是电感反馈振荡器电路的(a) 实际电路;(b) 交流等效电路;(c) 高频等效电路 电感反馈振荡器中,电感通常是绕在同一带磁芯的骨架上,它们之间存在互感,用M 表示。

同电容反馈振荡器的分析一样,振荡器的振荡频率可以用回路的谐振频率近似表示,即式中的L 为回路的总电感, 由相位平衡条件分析,振荡器的振荡频率表达式为式中的g’L 与电容反馈振荡器相同,表示除晶体管以外的电路中所有电导折算到CE 两端后的总电导。

振荡频率近似用回路的谐振频率表示时其偏差较小,而且线圈耦合越紧,偏差越小。

[4]电感反馈式三端振荡器优点(1)容易起振 (2)调整频率方便,变电容而不影响反馈系数。

缺点(1) 振荡波形不够好,高次谐波反馈较强,波形失真较大。

(2) 不适于很高频率工作。

3.3 振荡器设计的模块分析如图所示即为设计的第一个模块,也是此次设计的主要模块——振荡电路模块。

E c(a )C(b )+-U b .+-′(c ).+-LC101=≈ωωM L L L 221++=))((12211M L L g g g LC L oe ie -'++=ω图振荡电路模块原理图与前面的对振荡器电路的分析一样,图3.2中的R1、R2和R3均为电路的偏置电阻,C1、C2分别为旁路电容和隔直流电容,而C1、L1和L2的连接方式也符合电感三点式振荡器的原则,因此整个电路就构成了设计所需要的振荡电路。

由振荡器的原理可以看出,振荡器实际上是一个具有反馈的非线性系统,精确计算是很困难的,而且也是不必要的。

因此,振荡器的设计通常是进行一些设计考虑和近似估算,选择合理的线路和工作点,确定元件的参数值,而工作状态和元件的准确数值需要在调试中最后确定。

设计时一般都要考虑一下一些问题:晶体管的选择 从稳频的角度出发,应选择T f 较高的晶体管,这样的晶体管内部相移较小。

通常选择T f >(3~10)1maxf 。

同时希望电流放大系数β大些,这既容易振荡,也便于减小晶体管和回路之间的耦合。

算然不要求振荡器中的晶体管输出多大的功率,但考虑到稳频等因素,晶体管的额定功率也应有足够的余量。

因此,在本次设计中将会 选取2N2222作为振荡电路的三极管。

该三极管的集电极电流最大值为800mA ,在25℃时其功率可达到0.5 W ,最大集电极电压可达30V ,足够满足此次设计的各方面要求。

2.直流馈电线路的选择为保证振荡器起振的振幅条件,起振工作点应设置在线性放大区;从稳频出发,稳定状态应该在截至区,而不应在饱和区,否则回路的有载品质因数L Q 将降低。

相关文档
最新文档