正弦波振荡器实验报告(高频) (2)
正弦波振荡器实验报告(高频电路)

高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:正弦波振荡器指导教师:一.实验目的1.掌握电容三点式LC振荡电路和晶体振荡器的基本工作原理,熟悉其各元件的功能;2.掌握LC振荡器幅频特性的测量方法;3.熟悉电源电压变化对振荡器振荡幅度和频率的影响;4.了解静态工作点对晶体振荡器工作的影响,感受晶体振荡器频率稳定度高的特点。
二.实验内容V ,1.用示波器观察LC振荡器和晶体振荡器输出波形,测量振荡器输出电压峰-峰值p p并以频率计测量振荡频率;2.测量LC振荡器的幅频特性;3.测量电源电压变化对振荡器的影响;4.观察并测量静态工作点变化对晶体振荡器工作的影响。
三、实验步骤1、实验准备插装好正弦振荡器与晶体管混频模块,接通实验箱电源,此时模块上电源指示灯和运行指示灯闪亮。
用鼠标点击显示屏,选择“实验项目”中的“高频原理实验”,然后再选择“振荡器实验”中的“LC振荡器实验”,显示屏会显示出LC振荡器原理实验图。
说明:电路图中各可调元件的调整,其方法是:用鼠标点击要调整的原件,模块上对应的指示灯点亮,然后滑动鼠标上的滑轮,即可调整该元件的参数。
利用模块上编码器调整与鼠标调整其效果完全相同。
用编码器调整的方法是:按动编码器,选择要调整的元件,模块上对应的指示灯点亮,然后旋转编码器旋钮,即可调整其参数。
我们建议采用鼠标调整,因为长时间采用编码器调整,可能会造成编码器损坏。
本实验箱中,各模块可调元件的调整,其方法与此完全相同,后面不再说明。
2、LC振荡实验(为防止晶体振荡器对LC振荡器的影响,应使晶振停振,即调2W3使晶振停振。
)(1)西勒振荡电路幅频特性测量用铆孔线将2P2与2P4相连,示波器接2TP5,频率计与2P5相连。
开关2K1拨至“p”(往下拨),此时振荡电路为西勒电路。
调整2W4使输出幅度最大。
(用鼠标点击2W4,且滑动鼠标滑轮来调整。
)调整2W2可调整变容管2D2的直流电压,从而改变变容管的电容,达到改变振荡器的振荡频率,变容官上电压最高时,变容管电容最小,此时输出频率最高。
正弦波振荡器实验报告

正弦波振荡器实验报告4.改变电容 C4的值,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏,并做好记录。
填入表 1.3 中。
5.将 C4 的值恢复为0.033μF,分别调节 Rp 在最大到最小之间变化时,观察振荡波形,并做好记录。
填入表 1.4 中。
四、暑假记录与数据处理1、电路的直流电路图和交流电路图分别如下:(1):直流通路图2)交流通路图2、改变电容 C 6的值时所测得的频率 f 的值如下:3、C40.033μF0.33μF0.01μFC6(pF)270470670270470670270470670F(Hz)494853.5403746.8372023.832756.832688.232814.4486357.7420875.4373357.21)、当 C4=0.033uF 时:C6=270pF 时, f= 1/T=1000000/2.0208=494853.5HZC6=470pF 时, f=1/T=1000000/2.4768=403746.8HZC6=670pF 时, f=1/T=1000000/2.6880=372023.8HZ2)、当 C4=0.33uF 时:C6=270pF 时, f= 1/T=1000000/30.5280=32756.8HC6=470uF时, f= 1/T=1000000/30.5921=32688.2HZC6=670uF 时, f= 1/T=1000000/30.4744=32814.4HZ3)、 C4=0.01时:当 C6=270uF 时,当 C6=270uF 时, f=1/T=1000000/2.0561=486357.7HZ当 C6=470uF 时, f=1/T=1000000/2.3760=420875.4HZ当 C6=670uF 时, f=1/T=1000000/2.6784=373357.2HZ2、将 C4 的值恢复为0.033μ F,分别调节 Rp 在最大到最小之间变化时的频率和波形如下:Rp(KΩ)5040302010F(HZ)403746.8416666.7420875.4425170.1422582.8529553.3(3)、当 Rp=30k 时, f= 1/T=1000000/2.3760=420875.4HZ(4)、当 Rp=20k 时, f= 1/T=1000000/2.3520=425170.1HZ(5)、当 Rp=10k 时, f= 1/T=1000000/2.3664=422582.8HZ(6)、当 Rp=0k 时, f= 1/T=1000000/2.3280=529553.3HZ总结:由表一可知,当 C4 较大(既为 0.33PF)时,不管 C6 如何变化,电路所输出的波形的频率比较稳定,而且没有失真。
实验2 正弦振荡实验

高频电子线路实验指导书实验二正弦振荡实验(一)三点式LC振荡器及压控振荡器一、实验目的1、掌握三点式LC振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式LC振荡器和压控振荡器的设计方法。
二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;3、观察温度变化对振荡器频率稳定度的影响(选做)。
三、实验仪器1、20MHz示波器一台2、数字式万用表一块3、调试工具一套四、实验原理1、三点式LC振荡器三点式LC振荡器的实验原理图如图8-1所示。
图8-1 三点式LC振荡器实验原理图图中,T2为可调电感,Q1组成振荡器,Q2组成隔离器,Q3组成放大器。
C6=100pF,C7=200pF,C8=330pF,C40=1nF。
通过改变K6、K7、K8的拨动方向,可改变振荡器的反馈系数。
设C7、C8、C40的组合电容为C∑,则振荡器的反馈系数F=C6/ C∑。
反馈电路不仅把输出电压的一部分送回输入端产生振荡,而且把晶体管的输入电阻也反映到LC 回路两端。
F 大,使等效负载电阻减小,放大倍数下降,不易起振。
另外,F 的大小还影响波形的好坏,F 过大会使振荡波形的非线性失真变得严重。
通常F 约在0.01~0.5之间。
同时,为减小晶体管输入输出电容对回路振荡频率的影响,C6和C ∑取值要大。
当振荡频率较高时,有时可不加C6和C ∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。
忽略三极管输入输出电容的影响,则三点式LC 振荡器的交流等效电路图如图8-2所示。
C6图8-2 三点式LC 振荡器交流等效电路图图8-2中,C5=33pF ,由于C6和C ∑均比C5大的多,则回路总电容C 0可近似为: 450C C C += (8-1) 则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ (8-2)调节T2则振荡器的振荡频率变化,当T2变大时,f 0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
高频——实验报告

实验一正弦波振荡器一、实验目的1了解三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2通过实验掌握晶体管静态工作点、反馈系数、负载变化对起振和振荡幅度的影响。
3研究外界条件(温度、电源电压、负载变化)对角振荡器频率稳定度的影响。
4测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
二、实验设备TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计繁用表。
三、实验内容1熟悉振荡器模块各元件及其作用;2进行LC振荡器波段工作研究;3研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响;4测试LC振荡器的频率稳定度。
三、基本原理将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容三点式反馈振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡器频率。
f=振荡器频率约为4.5MHZ振荡电路反馈系数:1320560.12 470CFC==≈振荡器输出通过耦合电容C3加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
四、实验步骤1研究振荡器静态工作点对振荡幅度的影响。
2将开关S2的1拨上,构成LC振荡器。
3改变上偏置电位器RA1,并用示波器测量对应点的振荡幅度Vp-p,记下停振时的静态工作点电流值。
五、实验结果1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。
2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振,并测量三极管BG101的发射极电压Ueq;然后调整电阻R101的值,使Ueq=0.5V,并计算出电流Ieq(=0.5V/1K=0.5mA)。
《模拟电子技术》正弦波振荡电实验报告

《模拟电子技术》正弦波振荡电实验报告一、实验目的1、进一步学习RC 正弦波振荡器的组成及其振荡条件。
2、学会测量、调试振荡器。
3、理解RC 参数对振荡频率的影响。
二、实验原理从结构上看,正弦波振荡器是没有输入信号的,带选频网络的正反馈放大器。
若用R 、C 元件组成选频网络,就称为RC 振荡器, 一般用来产生1Hz ~1MHz 的低频信号。
RC 串并联网络(文氏桥)振荡器电路型式如图3-1所示。
振荡频率:RC21f O π起振条件:|A|>3 电路特点:可方便地连续改变振荡频率,便于加负反馈稳幅,容易得到良好的振荡波形。
图3-1 RC串并联网络振荡器原理图图3-2是由集成运放构成的文氏桥正弦波振荡电路,RC选频网络如图3-3所示。
图3-2 文氏桥正弦波振荡器电路图3-3 RC 串并联选频网络令01=2f RC π,则该选频网络的频率特性表达式为:001F =3+()f f j f f-其幅频特性为:F =相频特性为:001=arctan ()3f f f f ϕ⎡⎤-⎢⎥⎣⎦﹣ 三、实验设备与器件1、+12V 直流电源。
2、函数信号发生器。
3、双踪示波器。
4、频率计。
5、直流电压表。
6、电阻、电容、电位器等。
四、实验内容1、按图3-2组接线路。
使R P1=R 2=10k Ω。
2、用示波器观测输出电压u O 波形。
1、u O 波形幅度2.测量振荡频率Rp1(kΩ) R2(kΩ) 测量值(Hz)计算值(Hz)10 10 158.983 159.15530 30 52.896 53.120 3放大器电压放大倍数输入:2.121V 输出:6.682V可知,电压的放大倍数为3.15。
4、RC串并联网络幅频特性f/Hz 100 120 150 155 159 180 200 220 250U1/V 5.987 5.981 5.957 5.921 5.906 5.996 5.889 5.975 5.928U2/V 1.806 1.672 1.517 1.487 1.453 1.369 1.270 1.189 1.088五、实验结果总结决定频率的各个参数它的标称值与实际值肯定是有误差的。
三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。
二、实验内容1、 熟悉振荡器模块各元件及其作用。
2、 进行LC 振荡器波段工作研究。
3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。
4、 测试LC 振荡器的频率稳定度。
三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。
将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。
)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。
图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。
2、研究振荡器静态工作点对振荡幅度的影响。
(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。
(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。
电子电路综合实验-LC正弦波振荡器报告

LC 正弦波振荡(虚拟实验)1、 电容三点式(1)121100,400,10C nF C nF L mH ===示波器频谱仪(2)121100,400,5C nF C nF L mH ===示波器频谱仪(3)121100,1,5C nF C F L mH μ===示波器频谱仪数据表格: (C1, C2, L1) (C 1,C 2,L 1) O U •i U •增益A 相位差 谐振频率f 0 测量值 理论值 测量值 理论值 (100nF,400nF,10mH )5.972V1.486V44.0191806.025kHz5.627(100nF,400nF,5mH ) 4.698V 1.161V 4 4.047 180 7.995 kHz 7.958 (100nF,1uF,5mH )7.116V711.458mV1010.0021807.897 kHz7.465实验数据与理论值间的差异分析:增益差别不大但谐振频率差别较大, 主要是由于读数是的精度有限造成的。
由于游标以格为单位, 因此读数时选取的幅值最大的点可能与实际有差, 因而谐振频率的测量也有误差。
2、 电感三点式(1)1225,100,200L mH L H C nF μ===示波器频谱仪(2)1225,100,100L mH L H C nF μ===示波器频谱仪(3)1222,100,100L mH L H C nF μ===示波器频谱仪数据表格:(L1, L2, C2)(L1,L2,C2)OU•(V)iU•(mV)增益A 相位差谐振频率f0测量值理论值测量值(kHz)理论值(kHz)(5mH,100uH,200nF) 4.497V 89.938mV 50.001 50 180 5.039kHz 4.983 (5mH,100uH,100nF) 4.504V 90.070 mV 50.005 50 180 7.010kHz7.047(2mH,100uH,100nF) 4.483V 224.150mV 20.000 20 180 10.951kHz10.983实验数据与理论值间的差异分析:误差均较小, 主要由于电路不够稳定以及读数精度造成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高频电子线路实验
随堂实验报告
学院计算机与电子信息学院
专业电子信息工程班级电信11-2 姓名梁景友学号 *********** 指导教师谢胜
实验报告评分:_______
正弦波振荡器仿真实验
实验目的:
1、进一步熟悉正弦波振荡器的组成原理;
2、观察输出波形,分析影响振荡器起振、稳定的条件;
3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。
实验内容:
实验电路1:西勒振荡器
(1)设置各元件参数,打开仿真开关,从示波器上观察振荡波形,读出振荡频率f0,并作好记录。
(2)改变电容C7的容量,分别为最大或最小(100%或0%)时,观察振荡频率变化,并作好记录。
(3)改变电容C4的容量,分别为0.33μF和0.001μF,从示波器上观察起振情况和振荡波形的好坏(与C4为0.033μF时进行比较),并分析原因。
(4)将C4恢复为0.033μF,分别调节R P为最大和最小时,观察输出波形振幅的变化,并说明原因。
实验分析:
1、电路的直流电路图和交流电路图分别如下:
(1):直流通路图
(2)交流通路图
2、改变电容C 7的值时所测得的频率f的值如下:
C4 0.033μF 0.33μF 0.01μF
C7(pF)270 470 670 270 470 670 270 470 670
F(Hz)494853
.5 403746.
8
372023
.8
32756.
8
32688.
2
32814.4 486357.7 420875.4 373357.
2
(1)、当C4=0.033uF时:
C6=270pF时,f=1/T=1000000/2.0208=494853.5HZ C6=470pF 时,f=1/T=1000000/2.4768=403746.8HZ C6=670pF 时,f=1/T=1000000/2.6880=372023.8HZ
(2)、当C4=0.33uF时:
C6=270pF时,f=1/T=1000000/30.5280=32756.8H
C6=470uF时,f=1/T=1000000/30.5921=32688.2HZ
C6=670uF时,f=1/T=1000000/30.4744=32814.4HZ
(3)、C4=0.01时:
当C6=270uF时,f=1/T=1000000/2.0561=486357.7HZ
当C6=470uF时,f=1/T=1000000/2.3760=420875.4HZ
当C6=670uF时,f=1/T=1000000/2.6784=373357.2HZ
3、将C4的值恢复为0.033μF,分别调节Rp 在最大到最小之间变化时的频率和波形如下:
Rp(KΩ)50 40 30 20 10 0
F(HZ)403746.8 416666.7 420875.4 425170.1 422582.8 529553.3
(1)、当Rp=50k时,f=1/T=1000000/2.4768=403746.8HZ
(2)、当Rp=40k时,f=1/T=1000000/2.4000=416666.7HZ
(3)、当Rp=30k时,f=1/T=1000000/2.3760=420875.4HZ
(4)、当Rp=20k时,f=1/T=1000000/2.3520=425170.1HZ
(5)、当Rp=10k时,f=1/T=1000000/2.3664=422582.8HZ
(6)、当Rp=0k时,f=1/T=1000000/2.3280=529553.3HZ
总结:由表一可知,当C4较大(既为0.33PF)时,不管C6如何变化,电路所输出的波形的频率比较稳定,而且没有失真。
当C4较小时,随着C6的增大,频率逐渐减小。
由表二可知,除了当Rp=10k外,f几乎随着Rp的减小而增大,而且在50k至10k之间变化不是很快,而当Rp从10k到0变化是f变化很快,在Rp=0时达到最大值。
实验电路2:改进型皮尔斯振荡器
输出电压波形
连接电路,开启仿真器实验电源开关,选择“AC Frequency”并设置仿真参数,观察记录振荡器输出波形。
实验心得:
本次正弦波振荡器实验,由于时间原因,以西勒振荡器为主,所以我重点分析西勒振荡器;改进型皮尔斯振荡器只是画好了电路图实现了简单功能。
通过了这次实验,我更进一步的掌握了正弦波振荡器的工作方式原理,将之前一直不明白的问题,通过认真的实验分析也搞明白了,实验可以让我们更好的掌握我们所学的知识。
2013-12-10。