高频电感三点式正弦波振荡器

合集下载

高频电感三点式正弦波振荡器

高频电感三点式正弦波振荡器

目录摘要 (I)1绪论 (1)2正弦波振荡器 (2)2.1 反馈振荡器产生振荡的原因及其工作原理 (2)2.2平衡条件 (3)2.3起振条件 (3)2.4稳定条件 (4)3电感三点式振荡器 (5)3.1三点式振荡器的组成原则 (5)3.2电感三点式振荡器 (5)3.3 振荡器设计的模块分析 (6)4 仿真与制作 (10)4.1仿真. (10)4.2分析调试 (12)5 AM广播接收机的制作 (13)6心得体会 (18)参考文献 (19)摘要反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。

本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。

正弦波振荡器在各种电子设备中有着广泛的应用。

例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。

根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。

前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。

本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。

电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化范围)。

关键词:高频、电感、振荡器1绪论在现代社会中,信息传递的作用日益变的重要。

这就要求我们改进信息传递的方式,从而使信息的传递更加迅速,更加准确,更加安全。

无线电通信的发展,信息加密技术的改进……这些为迅速准确的通信带来了便利。

毋庸置疑,无线电技术带来了信息交流方面的一次伟大变革。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。

实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。

关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。

二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。

其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。

同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。

其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。

三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。

4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。

图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。

电感三点式振荡器设计剖析

电感三点式振荡器设计剖析

电感三点式振荡器设计剖析目录引言 (1)1设计要求 (1)2设计构思及理论 (1)2.1设计思路 (1)2.2设计构思的理论依据 (3)3系统电路的设计及原理说明 (4)3.1系统框图及说明 (4)3.2电路设计说明 (5)3.3关键元器件的介绍 (5)4仿真验证叙述及效果分析 (5)4.1仿真电路 (5)4.2仿真运行结果 (6)5工程设计 (6)6制作(特点)叙述 (7)7调试测试分析 (7)8结束语 (7)谢辞 (9)参考文献 (10)附图 (11)引言三点式振荡电路是指电容或电感(反馈部分)的3个段分别接晶体管的三个极,故称为三点式振荡电路。

目前三点式振荡电路主要分为电感三点式和电容三点式振荡电路。

电感三点式振荡电路是指原边线圈的3个段分别接在晶体管的3个极。

又称为电感反馈式振荡电路或哈特莱振荡电路。

本次试验采用共基放大电路与电感三点式震荡回路结合成基本振荡器,再在后级加个共基放大电路来带动负载,并利用电容和电感的特性来改善输出波形。

其特点是:1.易起振。

2.调节频率方便。

采用可变电容可获得较宽的频率调节范围,一般用于产生几十兆赫兹以下的正弦波。

3.输出波形较差。

1 设计要求(1)要实现的功能:设计一个电感三点式振荡器,产生10MHz 的震荡频率,并能带动620欧的负载。

(2)要求达到的技术指标:振荡频率f0=10MHz,输出频率电压U≥0.5Vpp/620欧;输出波形为正弦波(无明显失真);供电电压Vcc=12V。

(3)完成要求:设计与制作可供实际检测的实物样品,并且按要求完成课程设计报告。

2 设计构思及理论2.1 设计思路要设计一个电感三点式振荡电路,可以有几个电容和电感还有一个三极管和一个后级放大电路来达到要求。

用改变电容的方法来调整震荡频率,方便调试而不会影响反馈系数,可以是波形输出更加稳定而没有明显的失真现象。

但是为了达到输出频率电压技术指标,加一个共基放大电路,提高输出电压幅度。

电感三点式振荡电路工作原理

电感三点式振荡电路工作原理

电感三点式振荡电路是一种利用电感和电容元件构建
的电子振荡电路,它能够产生一定频率和稳定度的正弦波信号,在各种电子设备中有着广泛的应用。

本文将详细阐述电感三点式振荡电路的工作原理,并举例说明其在实际中的应用。

电感三点式振荡电路由电感、电容和晶体管组成,其中电感和电容构成谐振回路,晶体管控制振荡频率。

具体地说,电感三点式振荡电路由一个电感L、三个电容C1、C2和C3和一个晶体管组成。

其中,电感L和电容C1、C2构成谐振回路,电容C3为反馈电容,晶体管控制振荡频率。

在电感三点式振荡电路中,电感L和电容C1、C2构成谐振回路,它们之间产生一定的频率和相位差。

当晶体管处于放大状态时,输入信号通过电感L和电容C1、C2相乘产生振荡电压,该电压通过电容C3反馈到晶体管的基极。

由于反馈电压与输入电压同相,因此电路产生自激振荡。

当电路达到稳定时,晶体管处于饱和状态,电路产生的正弦波信号通过晶体管的集电极输出。

此时,电感三点式振荡电路产生的正弦波信号频率为谐振回路的固有频率。

由于电路的稳定性较好,因此其产生的正弦波信号稳定度和频率精度较高。

例如,在电视机的行扫描电路中,电感三点式振荡电路被广泛应用于产生一定频率和稳定度的锯齿波信号。

该信号
用于控制电视机的电子枪在屏幕上的水平扫描位置,确保图像的正确显示。

总之,电感三点式振荡电路是一种重要的电子振荡电路,它能够产生一定频率和稳定度的正弦波信号。

在实际应用中,电感三点式振荡电路广泛应用于各种电子设备中的时钟信号、锯齿波信号等场合,具有重要的实用价值。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器一、实验目的1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。

3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

二、实验内容1、 熟悉振荡器模块各元件及其作用。

2、 进行LC 振荡器波段工作研究。

3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。

4、 测试LC 振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪示波器 1台4、万用表 1块四、基本原理实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。

)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。

射随器输出信号经N3调谐放大,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。

2、研究振荡器静态工作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万用表红表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。

高频电容三点式正弦波振荡器

高频电容三点式正弦波振荡器

题目:高频电容三点式正弦波振荡器目录摘要 (I)Abstract (Ⅱ)1 绪论 (1)2 设计原理说明 (2)2.1 反馈振荡器的原理 (2)2.1.1 原理分析 (2)2.1.2 平衡条件 (3)2.1.3 起振条件 (3)2.2 电容三点式振荡器 (4)2.3 设计原理 (5)3 电路设计与调试 (6)3.1单元电路设计 (6)3.1.1 电容三点式振荡单元 (6)3.1.2 输出缓冲级单元 (8)3.2 电路调试 (9)4 心得体会 (10)参考文献 (11)附录一:元件清单 (12)附录二:总电路图 (13)附录三:实物图 (14)摘要近些年信息通信领域中,发展最快、应用最广的就是无线通信技术。

无线通信的终极目标是实现任何人在任何时间、任何地点接受和发送任何信息。

掌握无线通信系统的各个模块工作原理是每一个通信技术学习及研究人员的基本要求。

在一个完整的无线通信系统中,主要有放大、滤波、调制、发射、接受、混频、解调等功能模块,我们要做的,就是充分理解和掌握这些功能模块的工作过程, 并能够进行相应的电路设计。

本次课设要求制作高频电容三点式正选拨振荡器,采用晶体三极管或集成电路,场效应管构成正弦波振荡器,达到任务书所要求的目标。

并介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。

使用实验要求的电源和频率计进行验证,实现了设计目标。

关键字:无线通信高频信号正弦波振荡器AbstractIn recent years in the field of information and communication, the fastest growing, most widely used wireless communication technology. The ultimate goal of wireless communication to anyone at any time, any place to accept and send any information. Grasp the working principle of the various modules of the wireless communication system is a basic requirement for each communication technology learning and researchers. In a wireless communication system, amplification, filtering, modulation, transmitter, accept, mixer, demodulation function modules, we need to do is to fully understand and master the process of the work of these functional modules, and the ability to carry out circuit design.The class-based production of high-frequency capacitance three-point positive selection of new oscillator using transistors or integrated circuits, FET constitute a sine wave oscillator, to achieve the required goals of the mission statement. And describes the design step, comparing the advantages and disadvantages of various design methods, summarizes the different performance characteristics of the oscillator. Using the power of the experimental requirements and frequency meter to verify design goals.Keywords: wireless communication High-frequency signal sine wave oscillator1 绪论振荡器是一种能量转换装置——将直流电能转换为具有一定频率的交流电能。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器(⾼频电⼦线路实验报告)三点式正弦波振荡器⼀、实验⽬的1、掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。

2、通过实验掌握晶体管静态⼯作点、反馈系数⼤⼩、负载变化对起振和振荡幅度的影响。

3、研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。

⼆、实验内容1、熟悉振荡器模块各元件及其作⽤。

2、进⾏LC 振荡器波段⼯作研究。

3、研究LC 振荡器中静态⼯作点、反馈系数以及负载对振荡器的影响。

4、测试LC 振荡器的频率稳定度。

三、实验仪器1、模块 3 1块2、频率计模块 1块3、双踪⽰波器 1台4、万⽤表 1块四、基本原理实验原理图见下页图1。

将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可⽤来改变振荡频率。

)14(1210CC C L f +=π振荡器的频率约为4.5MHz (计算振荡频率可调范围)振荡电路反馈系数F=32.04702202203311≈+=+C C C振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输⼊端,因C 5容量很⼩,再加上射随器的输⼊阻抗很⾼,可以减⼩负载对振荡器的影响。

射随器输出信号经N3调谐放⼤,再经变压器耦合从P1输出。

图1 正弦波振荡器(4.5MHz )五、实验步骤1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作⽤。

2、研究振荡器静态⼯作点对振荡幅度的影响。

(1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。

(2)改变上偏置电位器W1,记下N1发射极电流I eo (=11R V e ,R11=1K)(将万⽤表红表笔接TP2,⿊表笔接地测量V e ),并⽤⽰波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态⼯作点的关系,测量值记于表2中。

高频电感三点式正弦波振荡器

高频电感三点式正弦波振荡器

课程设计任务书学生姓名:青蛙哥专业班级:电子0803班指导教师:吴皓莹工作单位:信息工程学院题目:高频电感三点式正弦波振荡器初始条件:具较扎实的电子电路的理论知识及较强的实践能力;对电路器件的选型及电路形式的选择有一定的了解;具备高频电子电路的基本设计能力及基本调试能力;能够正确使用实验仪器进行电路的调试与检测。

要求完成的主要任务:1.采用晶体三极管或集成电路,场效应管构成高频电感三点式正弦波振荡器;2.额定电源电压5.0V ,电流1~3mA; 输出频率 8 MHz (频率具较大的变化范围);3.通过跳线可构成发射极接地、基极接地及集电极接地振荡器4.有缓冲级,在100欧姆负载下,振荡器输出电压≥ 1 V (D-P);5.完成课程设计报告(应包含电路图,清单、调试及设计总结)。

时间安排:1.2011年6月3日分班集中,布置课程设计任务、选题;讲解课设具体实施计划与课程设计报告格式的要求;课设答疑事项。

2.2011年6月4日至2011年6月9日完成资料查阅、设计、制作与调试;完成课程设计报告撰写。

3. 2011年6月10日提交课程设计报告,进行课程设计验收和答辩。

指导教师签名:年月日系主任(或责任教师)签名:年月日目录摘要 (I)Abstract (II)1绪论 (1)2正弦波振荡器 (2)2.1 反馈振荡器产生振荡的原因及其工作原理 (2)2.2平衡条件 (3)2.3起振条件 (3)2.4稳定条件 (4)3 电感三点式振荡器 (5)3.1三点式振荡器的组成原则 (5)3.2电感三点式振荡器 (5)3.3 振荡器设计的模块分析 (6)3.4 射极跟随器模块分析 (9)4 仿真软件Multisim11.0 简介 (10)4.1 Multisim 基本概念 (10)4.2 Multisim 软件启动界面 (10)4.3 Multisim 仿真软件的特点 (11)5 仿真与制作 (15)5.1仿真 (15)5.2分析调试 (16)6 心得体会 (18)参考文献 (19)附录:元件清单 (20)摘要反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录摘要 (I)1绪论 (1)2正弦波振荡器 (2)2.1 反馈振荡器产生振荡的原因及其工作原理 (2)2.2平衡条件 (3)2.3起振条件 (3)2.4稳定条件 (4)3电感三点式振荡器 (5)3.1三点式振荡器的组成原则 (5)3.2电感三点式振荡器 (5)3.3 振荡器设计的模块分析 (6)4 仿真与制作 (9)4.1仿真. (9)4.2分析调试 (10)5心得体会 (18)参考文献 (19)摘要反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。

本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。

正弦波振荡器在各种电子设备中有着广泛的应用。

例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。

根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。

前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。

本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。

电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化范围)。

关键词:高频、电感、振荡器1绪论在现代社会中,信息传递的作用日益变的重要。

这就要求我们改进信息传递的方式,从而使信息的传递更加迅速,更加准确,更加安全。

无线电通信的发展,信息加密技术的改进……这些为迅速准确的通信带来了便利。

毋庸置疑,无线电技术带来了信息交流方面的一次伟大变革。

在本课程设计中,着眼于无线电通信的基础电路——LC正弦振荡器的分析和研究。

通过对电感反馈式三端振荡器的分析、讨论。

以求得到一些对实际应用电路有帮助的结论。

在课程设计中,使用的仿真软件为multisim11.0。

该软件提供了功能强大的电子仿真设计界面和方便的电路图和文件管理功能。

能够让使用者全面的收集电路的相关数据,进而有助于对电路进行改进。

常用正弦波振荡器主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成,这就是反馈振荡器。

按照选频网络所采用元件的不同,正弦波振荡器可分为LC 振荡器、RC振荡器和晶体振荡器等类型。

其中LC 振荡器和晶体振荡器用于产生高频正弦波。

正反馈放大器既可以由晶体管、场效应管等分立器件组成,也可以由集成电路组成。

LC振荡器中除了有互感耦合反馈型振荡器之外,其最基本的就是三端式(又称三点式)的振荡器。

而三点式的振荡器中又有电容三点式振荡器和电感三点式振荡器这两种基本类型。

本文所要介绍的正是电感三点式振荡器。

2正弦波振荡器振荡器是一种能自动地将直流电源能量转换为一定波形的交变振荡信号能量的转换电路。

与放大器的区别:无需外加激励信号,就能产生具有一定频率、波形和振幅的交流信号。

由晶体管等有源器件和具有某种选频能力的无源网络组成。

正弦波振荡器按工作原理可分为反馈式振荡器与负阻式振荡器两大类。

反馈式振荡器是在放大器电路中加入正反馈,当正反馈足够大时,放大器产生振荡,变成振荡器。

所谓产生振荡是指这时放大器不需要外加激励信号,而是由本身的正反馈信号来代替外加激励信号的作用。

负阻式振荡器则是将一个呈现负阻特性的有源器件直接与谐振电路相接,产生振荡。

2.1 反馈振荡器产生振荡的原因及其工作原理反馈型振荡器是通过正反馈联接方式实现等幅正弦振荡的电路。

这种电路由两部分组成,一是放大电路,二是反馈网络。

图2.1所示为反馈振荡器构成方框图及相应电路。

由U,图可知,当开关S在 1 的位置,放大器的输入端外加一定频率和幅度的正弦波信号iU,若o U 经反馈网络并在反馈网这一信号经放大器放大后,在输出端产生输出信号oU 与i U不仅大小相等,而且相位也相同,即实现了正反馈。

络输出端得到的反馈信号f若此时除去外加信号,将开关由 1 端转接到 2 端,使放大器和反馈网络构成一个闭环系U输出,从而实统,那么,在没有外加信号的情况下,输出端仍可维持一定幅度的电压o现了自激振荡的目的。

图2.1 反馈振荡器的结构网络图为了使振荡器的输出o U 为一个固定频率的正弦波,图 2.1 所示的闭合环路内必须含有选频网络,使得只有选频网络中心频率的信号满足f U 与i U 相同的条件而产生自激振荡,对其他频率的信号不满足f U 与i U 相同的条件而不产生振荡。

选频网络可与放大器相结合构成选频放大器,也可与选频网络相结合构成选频反馈网络。

2.2平衡条件振荡器的平衡条件即为 也可以表示为即为振幅平衡条件和相位平衡条件。

平衡状态下,电源供给的能量正好抵消整个环路损耗的能量,平衡时输出幅度将不在变化:振幅平衡条件决定了振荡器输出信号振幅的大小;环路只有在某一特定的频率上才能满足相位平衡条件:相位平衡条件决定了振荡器输出信号频率的大小。

2.3起振条件振荡器在实际应用时不应有外加信号,而应是一加上电后即产生输出;振荡的最初来源是振荡器在接通电源时不可避免地存在的电冲击及各种热噪声。

振荡开始时激励信号很弱,为使振荡过程中输出幅度不断增加,应使反馈回来的信号比输入到放大器的信号大,即振荡开始时应为增幅振荡。

由 可知, 称为自激振荡的起振条件,也可写为分别称为起振的振幅条件和相位条件,其中起振的相位条件即为正反馈条件。

[2]1)()()(==ωωωj F j K j T ⋅⋅⋅==+===2,1,021)(n n KF j T F K T πϕϕϕω()()()ωωωj U j U j T i i >'>,11)(>ωj T ⋅⋅⋅==++=>'=',2,1,021)(n n F R Y j T F L f T L f πϕϕϕϕω2.4稳定条件振荡器的稳定条件分为振幅稳定条件和相位稳定条件。

(1)振幅稳定条件要使振幅稳定,振荡器在其平衡点必须具有阻止振幅变化的能力。

具体来说,就是在平衡点附近,当不稳定因素使振幅增大时,环路增益将减小,从而使振幅减小。

(2)相位稳定条件振荡器的相位平衡条件是φT (ω0)=2nπ。

在振荡器工作时, 某些不稳定因素可能破坏这一平衡条件。

如电源电压的波动或工作点的变化可能使晶体管内部电容参数发生变化, 从而造成相位的变化, 产生一个偏移量Δφ。

由于瞬时角频率是瞬时相位的导数, 所以瞬时角频率也将随着发生变化。

为了保证相位稳定, 要求振荡器的相频特性φT (ω)在振荡频率点应具有阻止相位变化的能力。

具体来说, 在平衡点ω=ω0附近, 当不稳定因素使瞬时角频率ω增大时, 相频特性φT (ω0)应产生一个-Δφ, 从而产生一个-Δω, 使瞬时角频率ω减小。

[3]<∂∂=iAi U U iU K3电感三点式振荡器3.1三点式振荡器的组成原则基本电路就是通常所说的三端式(又称三点式)的振荡器,即LC 回路的三个端点与晶体管的三个电极分别连接而成的电路,如图3.1所示。

X1、X2、X3三个电抗元件构成了决定振荡频率的并联谐振回路,同时也构成了正反馈所需的反馈网络。

根据谐振回路的性质,谐振时回路应呈纯电阻性,因而有三个电抗元件不能同时为感抗或容抗,必须 由两种不同性质的电抗元件组成。

三端式振荡器能否振荡的原则:(1)X1和 X2的电抗性质相同; (2)X 3与X 1、 X2的电抗性质相反。

即射同余异,源同余异。

3.2电感三点式振荡器X1和X2为感性,X3为容性,满足三端式振荡器的组成原则,反馈网络是由电感元件完成的,称为电感反馈振荡器,也称为哈特莱(Hartley)振荡器。

图 3.2是两种基本的三端式振荡器 (a) 电容反馈振荡器;(b) 电感反馈振荡器I.30321=++X XX (a )C (b )33上图是电感反馈振荡器电路的(a) 实际电路;(b) 交流等效电路;(c) 高频等效电路 电感反馈振荡器中,电感通常是绕在同一带磁芯的骨架上,它们之间存在互感,用M 表示。

同电容反馈振荡器的分析一样,振荡器的振荡频率可以用回路的谐振频率近似表示,即式中的L 为回路的总电感, 由相位平衡条件分析,振荡器的振荡频率表达式为式中的g’L 与电容反馈振荡器相同,表示除晶体管以外的电路中所有电导折算到CE 两端后的总电导。

振荡频率近似用回路的谐振频率表示时其偏差较小,而且线圈耦合越紧,偏差越小。

[4]电感反馈式三端振荡器优点(1)容易起振 (2)调整频率方便,变电容而不影响反馈系数。

缺点(1) 振荡波形不够好,高次谐波反馈较强,波形失真较大。

(2) 不适于很高频率工作。

3.3 振荡器设计的模块分析如图所示即为此次设计的主要模块——振荡电路模块。

E c(a )C(b )+-U b .+-′(c ).+-LC101=≈ωωM L L L 221++=))((12211M L L g g g LC L oe ie -'++=ω图 振荡电路模块原理图与前面的对振荡器电路的分析一样,图3.2中的R1、R2和R3均为电路的偏置电阻,C1、C2分别为旁路电容和隔直流电容,而C1、L1和L2的连接方式也符合电感三点式振荡器的原则,因此整个电路就构成了设计所需要的振荡电路。

由振荡器的原理可以看出,振荡器实际上是一个具有反馈的非线性系统,精确计算是很困难的,而且也是不必要的。

因此,振荡器的设计通常是进行一些设计考虑和近似估算,选择合理的线路和工作点,确定元件的参数值,而工作状态和元件的准确数值需要在调试中最后确定。

设计时一般都要考虑一下一些问题:晶体管的选择从稳频的角度出发,应选择Tf 较高的晶体管,这样的晶体管内部相移较小。

通常选择Tf >(3~10)1maxf 。

同时希望电流放大系数 大些,这既容易振荡,也便于减小晶体管和回路之间的耦合。

算然不要求振荡器中的晶体管输出多大的功率,但考虑到稳频等因素,晶体管的额定功率也应有足够的余量。

因此,在本次设计中将会 选取2N2222作为振荡电路的三极管。

该三极管的集电极电流最大值为800mA ,在25℃时其功率可达到0.5 W ,最大集电极电压可达30V ,足够满足此次设计的各方面要求。

2.直流馈电线路的选择为保证振荡器起振的振幅条件,起振工作点应设置在线性放大区;从稳频出发,稳定状态应该在截至区,而不应在饱和区,否则回路的有载品质因数LQ 将降低。

所以,通常应将晶体管的静态偏置点设置在小电流区,电路应采用自偏压。

相关文档
最新文档