必修一数学概念域值域解析式求法例题习题含答案

合集下载

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高一数学函数专题(含答案)

高一数学函数专题(含答案)

函 数 练 习 题一、 求函数的定义域1、求下列函数的定义域:⑴y = ⑵y =2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________;3、若函数(1)f x +的定义域为[]-23,,则(21)f x -的定义域是 ;1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

二、求函数的值域5、求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-⑼ y = ⑽ 4y = ⑾y x =6、已知函数222()1x ax bf x x ++=+的值域为[1,3],求,a b 的值。

三、求函数的解析式1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。

2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。

3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x = ()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ 223y x x =++ ⑵y = ⑶ 261y x x =--7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是8、函数236x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3)5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g =; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高一数学上册第一章函数及其表示知识点及练习题(含答案)

高一数学上册第一章函数及其表示知识点及练习题(含答案)

函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。

(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。

4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。

考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。

高一数学函数解析式定义域值域求法 相关练习题

高一数学函数解析式定义域值域求法  相关练习题

已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。

(1)求)0(f 的值;(2)求)(x f 的解析式。

方程法——例7、已知:)0(,31)(2≠=⎪⎭⎫ ⎝⎛+x x x f x f ,求)(x f 。

换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式. 2.若xx x f -=1)1(,求)(x f ..配凑法3.已知221)1(xx x x f +=-, 求)(x f 的解析式. 4.若x x x f 2)1(+=+,求)(x f .待定系数法5.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,求)(x f 与)(x g .设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.解方程组法 7.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.若x xx f x f +=-+1)1()(,求)(x f . (2)若f(x)+f(1-x)=1+x,求f(x).特殊值代入法9.若)()()(y f x f y x f ⋅=+,且2)1(=f ,求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ .1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f12.对x ∈R, )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表达式.1.函数y=2122--+-+x x xx 的定义域是( ) (A ){x -21-≤≤x } (B ){x -21≤≤x } (C ){x x>2} (D ){R x ∈x 1≠}2.函数6542-+--=x x x y 的定义域是(A ){x|x>4} (B)}32|{<<x x (C){x | x<2 或 x>3} (D) }32|{≠≠∈x x R x 且3.函数y=122+-x x 的值域是( )(A )[0,+∞ (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]4.下列函数中,值域是(0,+∞)的是 (A)132+-=x x y (B) y=2x+1(x>0) (C) y=x 2+x+1 (D)21xy = 5.)12(-x f 的定义域是[)1,0,则)31(x f -的定义域是(A) ]4,2(- (B )⎥⎦⎤ ⎝⎛--21,2 (C )⎥⎦⎤ ⎝⎛61,0 (D )⎥⎦⎤ ⎝⎛32,0 6.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( )(A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4)7.函数y=13+-+x x 的值域是( )(A)(0,2) (B)[-2,0] (C)[-2,2] (D)(-2,2)二.填空题:1.函数y=1122-+-x x 的定义域是___________2.函数y=xx x --224的定义域为 3.函数y= -2x 2-8x-9, x ∈[0,3]的值域是_______.4.设函数y=f(x) 的定义域是[0,2], 则f(x-1)的定义域是_______5.函数2x x y -=的值域是 ;函数)11(2≤≤--=x x x y 的值域是 ;函数21x x y -=的值域是 。

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

最新《高一数学必修1》函数的概念、定义域、值域练习题(含答案)

函数的概念、定义域、值域练习题班级:高一(3)班 姓名: 得分:一、选择题(4分×9=36分)1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )A .f (x )→y =12xB .f (x )→y =13xC .f (x )→y =23x D .f (x )→y =x2.函数y =1-x 2+x 2-1的定义域是( )A .[-1,1]B .(-∞,-1]∪[1,+∞)C .[0,1]D .{-1,1}3.已知f (x )的定义域为[-2,2],则f (x 2-1)的定义域为( )A .[-1,3]B .[0,3]C .[-3,3]D .[-4,4]4.若函数y =f (3x -1)的定义域是[1,3],则y =f (x )的定义域是( )A .[1,3]B .[2,4]C .[2,8]D .[3,9]5.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上6.函数f (x )=1ax 2+4ax +3的定义域为R ,则实数a 的取值范围是( ) A .{a |a ∈R }B .{a |0≤a ≤34}C .{a |a >34}D .{a |0≤a <34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次函数关系(如图),则客车有营运利润的时间不超过( )年.A .4B .5C .6D .78.(安徽铜陵县一中高一期中)已知g (x )=1-2x ,f [g (x )]=1-x 2x 2(x ≠0),那么f ⎝⎛⎭⎫12等于( )A .15B .1C .3D .30 9.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( )A .[0,+∞)B .[1,+∞)C .{1,3,5}D .R二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.(5分)11.函数y =x +1+12-x的定义域是(用区间表示)________. 三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y =x +1x 2-4; (2)y =1|x |-2;(3)y =x 2+x +1+(x -1)0.(10分×2=20分)13.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域;(2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;1.2.1 函数的概念答案一、选择题1.[答案] C[解析] 对于选项C ,当x =4时,y =83>2不合题意.故选C. 2.[答案] D[解析] 使函数y =1-x 2+x 2-1有意义应满足⎩⎪⎨⎪⎧1-x 2≥0x 2-1≥0,∴x 2=1,∴x =±1. 3.[答案] C[解析] ∵-2≤x 2-1≤2,∴-1≤x 2≤3,即x 2≤3,∴-3≤x ≤ 3.4.[答案] C[解析] 由于y =f (3x -1)的定义域为[1,3],∴3x -1∈[2,8],∴y =f (x )的定义域为[2,8]。

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题(带答案)

高中数学必修一第三章函数的概念与性质必须掌握的典型题单选题1、若函数f (x )=x α的图象经过点(9,13),则f (19)=( ) A .13B .3C .9D .8答案:B分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可.解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B2、已知函数f (x )的定义域为(3,5),则函数f (2x +1)的定义域为( ) A .(1,2)B .(7,11)C .(4,16)D .(3,5) 答案:A分析:根据3<2x +1<5求解即可∵f (x )的定义域为(3,5),∴3<x <5,由3<2x +1<5,得1<x <2,则函数f (2x +1)的定义域为(1,2) 故选:A.3、函数f (x )=x 2−1的单调递增区间是( ) A .(−∞,−3)B .[0,+∞) C .(−3,3)D .(−3,+∞) 答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞). 故选:B.4、已知函数f (x )是定义在R 上的偶函数,f (x )在[0,+∞)上单调递减,且f (3)=0,则不等式(2x −5)f (x −1)<0的解集为( )A .(−2,52)∪(4,+∞)B .(4,+∞)C .(−∞,−2)∪[52,4]D .(−∞,−2) 答案:A分析:根据偶函数的性质及区间单调性可得(−∞,0)上f(x)单调递增且f(−3)=f(3)=0,进而确定f(x)的区间符号,讨论{2x −5>0f(x −1)<0 、{2x −5<0f(x −1)>0求解集即可.由题设,(−∞,0)上f(x)单调递增且f(−3)=f(3)=0, 所以(−∞,−3)、(3,+∞)上f(x)<0,(−3,3)上f(x)>0, 对于(2x −5)f(x −1)<0,当{2x −5>0f(x −1)<0 ,即{x >52x −1<−3 或{x >52x −1>3 ,可得x >4; 当{2x −5<0f(x −1)>0 ,即{x <52−3<x −1<3,可得−2<x <52; 综上,解集为(−2,52)∪(4,+∞). 故选:A5、已知幂函数f(x)=k ⋅x α的图象经过点(3,√3),则k +α等于( ) A .32B .12C .2D .3答案:A分析:由于函数为幂函数,所以k =1,再将点(3,√3)代入解析式中可求出α的值,从而可求出k +α 解:因为f(x)=k ⋅x α为幂函数,所以k =1,所以f(x)=x α, 因为幂函数的图像过点(3,√3), 所以√3=3α,解得α=12,所以k +α=1+12=32,故选:A6、已知幂函数y =x a 与y =x b 的部分图像如图所示,直线x =m 2,x =m (0<m <1)与y =x a ,y =x b 的图像分别交于A ,B ,C ,D 四点,且|AB |=|CD |,则m a +m b =( )A.1B.1C.√2D.22答案:B分析:表示出|AB|,|CD|,由幂函数的图象可得b>1>a>0,从而得(m2)a>(m2)b,m a>m b,再由|AB|=|CD|,代入化简计算,即可求解出答案.由题意,|AB|=(m2)a−(m2)b,|CD|=m a−m b,根据图象可知b>1>a>0,当0<m<1时,(m2)a> (m2)b,m a>m b,因为|AB|=|CD|,所以m2a−m2b=(m a+m b)(m a−m b)=m a−m b,因为m a−m b>0,可得m a+m b=1.故选:B,则f(x)()7、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.因为函数f(x)=x3−1定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,而y =1x 3=x −3在(0,+∞)上单调递减,在(−∞,0)上单调递减,所以函数f(x)=x 3−1x 3在(0,+∞)上单调递增,在(−∞,0)上单调递增. 故选:A .小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题. 8、下列函数为奇函数的是( ) A .y =x 2B .y =x 3C .y =|x|D .y =√x 答案:B分析:根据奇偶函数的定义判断即可;解:对于A :y =f (x )=x 2定义域为R ,且f (−x )=(−x )2=x 2=f (x ), 所以y =x 2为偶函数,故A 错误;对于B :y =g (x )=x 3定义域为R ,且g (−x )=(−x )3=−x 3=−g (x ), 所以y =x 3为奇函数,故B 正确;对于C :y =ℎ(x )=|x |定义域为R ,且ℎ(−x )=|−x |=|x |=ℎ(x ), 所以y =|x |为偶函数,故C 错误;对于D :y =√x 定义域为[0,+∞),定义域不关于原点对称, 故y =√x 为非奇非偶函数,故D 错误; 故选:B 多选题9、下列各组函数中,两个函数是同一函数的有( ) A .f (x )=x 与g (x )=√x 33B .f (x )=x +1与g (x )=x 2−1x−1C .f (x )=|x |x 与g (x )={1,x >0−1,x <0D .f (t )=|t −1|与g (x )=|x −1| 答案:ACD分析:根据两个函数为同一函数的定义,对四个选项逐个分析可得答案.对于A ,f(x)=x ,g(x)=√x 33=x ,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故A 正确;对于B,f(x)=x+1,g(x)=x+1(x≠1),两个函数的定义域不同,所以两个函数不为同一函数,故B不正确;对于C,f(x)={1,x>0−1,x<0,g(x)={1,x>0−1,x<0,两个函数的对应关系和定义域都相同,所以两个函数为同一函数,故C正确;对于D,f(t)=|t−1|与g(x)=|x−1|的对应关系和定义域都相同,所以两个函数为同一函数,故D正确. 故选:ACD10、已知函数f(x)={x+2,x≤−1x2,−1<x<2,关于函数f(x)的结论正确的是()A.f(x)的定义域为R B.f(x)的值域为(−∞,4)C.f(1)=3D.若f(x)=3,则x的值是√3E.f(x)<1的解集为(−1,1)答案:BD解析:根据解析式判断定义域,结合单调性求出值域,分段代值即可求解方程,分段解不等式,得出不等式解集.由题意知函数f(x)的定义域为(−∞,2),故A错误;当x≤−1时,f(x)的取值范围是(−∞,1],当−1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(−∞,4),故B正确;当x=1时,f(1)=12=1,故C错误;当x≤−1时,x+2=3,解得x=1(舍去),当−1<x<2时,x2=3,解得x=√3或x=−√3(舍去),故D正确;当x≤−1时,x+2<1,解得x<−1,当−1<x<2时,x2<1,解得−1<x<1,因此f(x)<1的解集为(−∞,−1)∪(−1,1);故E错误.故选:BD.小提示:此题考查分段函数,涉及定义域,值域,根据函数值求自变量取值,解不等式,关键在于分段依次求解.11、已知幂函数f(x)图像经过点(4,2),则下列命题正确的有()A .函数为增函数B .函数为偶函数C .若x ≥9,则f (x )≥3D .若x 2>x 1>0,则f (x 1)+f (x 2)2>f (x 1+x 22)答案:AC解析:先代点求出幂函数的解析式f(x)=x 12,根据幂函数的性质直接可得单调性和奇偶性,由x ≥9时,可得√x ≥3可判断C ,利用(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2展开和0比即可判断D.设幂函数f(x)=x α将点(4,2)代入函数f(x)=x α得:2=4α,则α=12.所以f(x)=x 12,显然f(x)在定义域[0,+∞)上为增函数,所以A 正确.f(x)的定义域为[0,+∞),所以f(x)不具有奇偶性,所以B 不正确. 当x ≥9时,√x ≥3,即f(x)≥3,所以C 正确. 当若0<x 1<x 2时, (f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2=x 1+x 2+2√x 1x 24−x 1+x 22=2√x 1x 2−x 1−x 24=−(√x 1−√x 2)24<0.即f (x 1)+f (x 2)2<f (x 1+x 22)成立,所以D 不正确.故选:AC小提示:关键点睛:本题主要考查了幂函数的性质,解答本题的关键是由(f (x 1)+f (x 2)2)2−f 2(x 1+x 22)=(√x 1+√x 22)2−(√x 1+x 22)2,化简得到−(√x 1−√x 2)24,从而判断出选项D 的正误,属于中档题.填空题12、已知函数f(x),g(x)分别是定义在R 上的偶函数和奇函数,f(x)+g(x)=2⋅3x ,则函数f(x)=_____. 答案:3x +3−x分析:由已知可得f(−x)+g(−x)=2⋅3−x ,结合两函数的奇偶性可得f (x )−g (x )=2⋅3−x ,利用方程组的思想即可求出f (x ).解:因为f(x)+g(x)=2⋅3x ,所以f(−x)+g(−x)=2⋅3−x ,又f(x),g(x)分别是定义在R 上的偶函数和奇函数,所以f (−x )=f (x ),g (−x )=−g (x ); 所以f(−x)+g(−x)=f (x )−g (x )=2⋅3−x,则{f (x )+g (x )=2⋅3x f (x )−g (x )=2⋅3−x,两式相加得,2f (x )=2⋅3x +2⋅3−x ,所以f (x )=3x +3−x . 故答案为:3x +3−x . 小提示:关键点睛:本题的关键是由函数的奇偶性得到f (x )−g (x )=2⋅3−x ,从而可求出函数的解析式. 13、函数y =log 0.4(−x 2+3x +4)的值域是________. 答案:[−2,+∞)解析:先求出函数的定义域为(−1,4),设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),根据二次函数的性质求出单调性和值域,结合对数函数的单调性,以及利用复合函数的单调性即可求出y =log 0.4(−x 2+3x +4)的单调性,从而可求出值域.解:由题可知,函数y =log 0.4(−x 2+3x +4), 则−x 2+3x +4>0,解得:−1<x <4, 所以函数的定义域为(−1,4), 设f (x )=−x 2+3x +4=−(x −32)2+254,x ∈(−1,4),则x ∈(−1,32)时,f (x )为增函数,x ∈(32,4)时,f (x )为减函数,可知当x =32时,f (x )有最大值为254,而f (−1)=f (4)=0,所以0<f (x )≤254,而对数函数y =log 0.4x 在定义域内为减函数, 由复合函数的单调性可知,函数y =log 0.4(−x 2+3x +4)在区间(−1,32)上为减函数,在(32,4)上为增函数,∴y ≥log 0.4254=−2,∴函数y =log 0.4(−x 2+3x +4)的值域为[−2,+∞). 所以答案是:[−2,+∞).小提示:关键点点睛:本题考查对数型复合函数的值域问题,考查对数函数的单调性和二次函数的单调性,利用“同增异减”求出复合函数的单调性是解题的关键,考查了数学运算能力.14、已知函数f (x )=x 2−4x +3,g (x )=mx +3−2m ,若对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立,则实数m 的取值范围为______. 答案:(−∞,−2]∪[2,+∞)分析:求出函数f (x )在[0,4]上的值域A ,再分情况求出g (x )在[0,4]上的值域,利用它们值域的包含关系即可列式求解.“对任意x 1∈[0,4],总存在x 2∈[0,4],使f (x 1)=g (x 2)成立”等价于“函数f (x )在[0,4]上 的值域包含于g (x )在[0,4]上的值域”,函数f (x )=(x −2)2−1,当x ∈[0,4]时,f(x)min =f(2)=−1,f(x)max =f(0)=f(4) =3,即f (x )在[0,4]的值域A =[−1,3],当m =0时,g(x)=3,不符合题意,当m >0时,g (x )在[0,4]上单调递增,其值域B 1=[3−2m,3+2m],于是有A ⊆B 1,即有{3−2m ≤−13+2m ≥3,解得m ≥2,则m ≥2,当m <0时,g (x )在[0,4]上单调递减,其值域B 2=[3+2m,3−2m],于是有A ⊆B 2,即有{3+2m ≤−13−2m ≥3,解得m ≤−2,则m ≤−2, 综上得:m ≤−2或m ≥2,所以实数m 的取值范围为(−∞,−2]∪[2,+∞). 所以答案是:(−∞,−2]∪[2,+∞) 解答题15、已知二次函数f (x )=ax 2−2x (a >0) (1)若f (x )在[0,2]的最大值为4,求a 的值;(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2.求a的取值范围.答案:(1)2;(2)[8,+∞).分析:由解析式可知f(x)为开口方向向上,对称轴为x=1a的二次函数;(1)分别在1a ≥2和0<1a<2两种情况下,根据函数单调性可确定最大值点,由最大值构造方程求得结果;(2)将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,分别在1a ≤t、1a≥t+1、t<1a≤t+12和t+12<1a<t+1,根据f(x)单调性可得f(x)max−f(x)min,将f(x)max−f(x)min看做关于t的函数,利用恒成立的思想可求得结果.由f(x)解析式知:f(x)为开口方向向上,对称轴为x=1a的二次函数,(1)当1a ≥2,即0<a≤12时,f(x)在[0,2]上单调递减,∴f(x)max=f(0)=0,不合题意;当0<1a <2,即a>12时,f(x)在[0,1a]上单调递减,在[1a,2]上单调递增,∴f(x)max=max{f(0),f(2)},又f(0)=0,f(2)=4a−4,f(x)在[0,2]的最大值为4,∴f(x)max=f(2)=4a−4=4,解得:a=2;综上所述:a=2.(2)若对任意实数t,总存在x1,x2∈[t,t+1],使得|f(x1)−f(x2)|≥2,则f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,①当1a≤t时,f(x)在[t,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(t)=2at+a−2≥2,当t≥1a时,y=2at+a−2单调递增,∴(2at+a−2)min=2a⋅1a+a−2=a,∴a≥2;②当1a ≥t+1,即t≤1a−1时,f(x)在[t,t+1]上单调递减,∴f(x)max−f(x)min=f(t)−f(t+1)=−2at−a+2≥2,当t≤1a−1时,y=−2at−a+2单调递减,∴(−2at−a+2)min=−2a(1a−1)−a+2=a,∴a≥2;③当t<1a ≤t+12,即1a−12≤t<1a时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t+1)−f(1a )=a(t+1)2−2(t+1)+1a≥2,当1a −12≤t<1a时,又a>0,12<1a+12≤t+1<1a+1,令m=t+1,则y=am2−2m+1a 在[1a+12,1a+1)上单调递增,∴a(1a +12)2−2(1a+12)+1a≥2,解得:a≥8;④当t+12<1a<t+1,即1a−1<t<1a−12时,f(x)在[t,1a]上单调递减,在[1a,t+1]上单调递增,∴f(x)max−f(x)min=f(t)−f(1a )=at2−2t+1a≥2,当1a −1<t<1a−12时,y=at2−2t+1a在(1a−1,1a−12)上单调递减,∴a(1a −12)2−2(1a−12)+1a≥2,解得:a≥8;综上所述:a的取值范围为[8,+∞).小提示:关键点点睛:本题考查根据二次函数最值求解参数值、恒成立问题的求解,本题解题关键是能够将问题转化为f(x)max−f(x)min≥2对x∈[t,t+1]恒成立,从而通过对于函数单调性的讨论得到最值.。

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析

高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的概念域(1)函数的概念域就是使得这个函数关系式成心义的实数的全部组成的集合 (2)求函数概念域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零; ☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子组成,求其概念域时要知足每一个式子都要成心义(取“交集”)。

(3)抽象复合函数概念域的求法☉已知y=f (x )的概念域是A ,求y=f (g (x ))的概念域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的概念域是A ,求y=f (x )的概念域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()f x =的概念域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式成心义需知足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的概念域为(-∞,1)∪(1,4] 故选:D例2.函数y =的概念域为( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y =: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的概念域为{-1,1}.故选D.例3.已知函数()21y f x =-的概念域为()2,2-,函数()f x 概念域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的概念域为(−2,2),得: 2113x -≤-≤,故函数f (x )的概念域是[]1,3-.例4.若函数()y f x =的概念域为[]0,2,则函数()()21f xg x x =-的概念域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A 函数()y f x =的概念域是[]0,2, 022{ 10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的概念域是[]2,3-,则()2y f x =的概念域是( )A. []1,4-B. []0,16C. []2,2-D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的概念域是[]2,3-,则1x 14-≤+≤, 所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1概念域是[]-23,,则y f x =-()21的概念域是( ) A .[]052, B. []-14, C. []-55, D. []-37, 【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =___________.【答案】[]3,4-【解析】要使函数成心义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的概念域为[]3,4-,故答案为[]3,4-.函数值域概念:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

(2)求函数值域的常常利用方式☉观察法:通过解析式的简单变形和观察(数形结合),利用熟知的大体初等函数的值域,求出函数的值域。

☉配方式:若函数是二次函数形式,即可化为y=ax 2+bx+c(a=0)型的函数,则可通过配方再结合二次函数的性质求值域,但要注意给定区间的二次函数最值得求法(可结合图像)。

☉换元法:通过对函数的解析式进行适当换元,可将复杂的函数划归为几个简单的函数,从而利用大体函数的取值范围求函数的值域。

☉分离常数法:此方式主如果针对有理分式,即将有理分数转化为“反比例函数”的形式,便于求值域。

y=ax+b cx+d 型 y=a c +k cx+d 值域:{y |y ≠ac }☉判别式法:它主要适用于分式型二次函数,或可通过换元法转化为二次函数的一些函数求值域问题。

但在用判别式法求值域时因轻忽一些“着重点”而容易犯错。

☉充分利用函数的单调性,对单调性未知的,应该先判断其单调性。

在通过概念域进行判断其函数取值范围。

注意:值域对基础函数、不等式、开方,绝对值等的要求较高,学生需要注意这些方面的掌握。

例1.函数()24f x x =-的值域为( )A. (),4-∞-B. (],4-∞-C. ()4,-+∞D. [)4,-+∞ 【答案】D ()244f x x =-≥-,故函数的值域为[)4,-+∞,故选D.例2.若函数234y x x =--的概念域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( )A .(]0,4B .25,44⎡⎤--⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】C 【解析】试题分析:函数234y x x =--对称轴为32x =,当32x =时254y =-,当0x =时0y =,所以结合二次函数图像可知m 的取值范围是3,32⎡⎤⎢⎥⎣⎦例3.函数y = )A.{|3}x x ≤B.{|03}x x ≤≤C.{|3}x x ≥D.{|3}x x ≤-【答案】B 【解析】试题分析:由于2099x ≤-+≤,所以03≤≤,故选B.例4.函数212y x =+的值域是_________. 【答案】10,2⎛⎤ ⎥⎝⎦【解析】由212y x =+ ,得2112,,20x x R y y =-∈∴-≥ ,解之得102y <≤ 。

例5.已知xx x f -+=53)(,则f (x )的值域为________________ 【答案】{y|y ≠-1 }【解析】主要考查函数值域的求法。

由x x x f -+=53)(=(5)85x x ----=-1-85x -,因为85x -≠0,所以x x x f -+=53)(≠-1,故f (x )的值域为{y|y ≠-1 }。

例6.求函数的值域。

【解析】思路分析:1)题意分析:这是求分式型函数的值域,而且分子、分母是同次幂。

2)解题思路:分离出常数,使问题简化。

解:分离常数,得。

由,得,即有. 所以函数的值域是。

解题后的思考:该方式适用于分式型函数,且分子、分母是同次幂,这时可以通过量项式的除法,分离出常数,使问题简化。

例7 求函数322122+-+-=x x x x y 的值域。

解 原式变形为0)13()12()12(2=-+-+-y x y x y (*)(1)当21=y 时,方程(*)无解; (2)当21≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=∆y y y ,解得21103<≤y 。

由(1)、(2)得,此函数的值域为)21,103[例8 求函数1++=x x y 的值域。

解 令1-=x t ,则t ≥0,得12+=t x ,∴4321122+⎪⎭⎫⎝⎛+=++=t t t y ,又 t ≥0,∴143210122=+⎪⎭⎫ ⎝⎛+≥++=t t y , 故原函数的值域为[)+∞∈,1y函数解析式的表达方式☉待定系数法:若已知函数模型(如一次函数、二次函数等),可用待定系数法求解。

☉换元法:已知复合函数f(g(x))的解析式,可用换元法,但此时要注意换元法以后自变量的组织范围。

22211x y x -=+222213211x y x x -==-++211x +≥23031x <+≤12y -<≤[)12-,☉解方程组法:已知函数f (x )知足某个等式,这个等式除f (x )是未知量外,外出现其他未知量,如f (-x ),f (1x )等,必需按照已知等式(如用-x 或1x 替换x )再构造其他等式组成方程组,通过解方程组求f (x )的解析式。

例1.已知()f x 是一次函数,且3(1)2(2)5f f -=-,2(0)(1)1f f --=,则()f x 的解析式为( ) A .()32f x x =- B .()32f x x =+ C .()23f x x =+ D .()23f x x =-【答案】A 试题分析:设一次函数()f x kx b =+,依题意有()()3225k b k b +-+=-,()21b k b --+=,联立方程组,解得3,2k b ==-,所以()32f x x =-. 考点:待定系数法求解析式. 例2.已知)(x f 是一次函数,且知足,172)1(3+=+x x f 则=)(x fA.532+x B. 132+x C. 32-x D. 52+x 【答案】A 【解析】因为)(x f 是一次函数,且知足f (x)ax b,3f (x 1)3a(x 1)b 2x 17,=++=++=+则=)(x f 532+x ,选A 例3.已知()11fx x +=+,则函数()f x 的解析式为( )A.2()f x x = B.()2()11f x x x =+≥ C.()2()221f x x x x =-+≥ D.()2()21f x x x x =-≥【答案】C 【解析】试题分析:设1x t +=则()21,(1)x t t =-≥代入已知可得()()222(1)112f t t t t t =+-=-+≥函数()f x 的解析式为()2()221f x x x x =-+≥考点:函数的解析式例4.若[()]63,()21,()f g x x g x x f x =+=+且则的解析式为 ( )A .3B .3xC .3(21)x +D .61x +【答案】B 试题:令12)(+==x x g t ,则21-=t x ,所以3216)(+-=t t f =t 3,故x x f 3)(=,选B. 1.函数f(x)=√2+x−x 2|x|−x的概念域是 ( )A. {x|-1≤x≤2}B. {x|-1≤x<0或0<x≤2}C. {x|-1≤x<0}D. {x|0<x≤2}【答案】C 【解析】由题设可得{x 2−x −2≤0x <0⇒{x|−1≤x <0},应选答案C 。

2.函数的概念域是 ( ) A .B .C .D .【答案】C 【解析】试题分析:⎩⎨⎧≠≥+001x x ,解得:{1-≥x x 且}0≠x ,故选C.考点:函数的概念域3.若是函数()y f x =的值域为[],a b ,则()1f x +的值域为( ) A. []1,1a b ++B. []1,1a b --C. [],a b D. (),a b 【答案】C 【解析】函数()y f x =的值域为[],a b ,而函数()y 1f x =+是把函数()y f x =向左平移1个单位取得的,纵坐标不变,()1f x +的值域为[],a b .所以C 选项是正确的.4.函数y =x 2-2x 的概念域为{0,1,2,3},那么其值域为 ( )A .{-1,0,3} B.{0,1,2,3} C .{y |-1≤y ≤3} D.{y |0≤y ≤3} 【答案】A 【解析】把x =0,1,2,3别离代入y =x2-2x ,即y =0,-1,3.5.概念在上的函数的值域为,则函数的值域为( )A .;B .;C .;D .无法肯定【答案】 B 【解析】函数的图象可以视为函数的图象向右平移一个单位而取得,所以,它们的值域是一样的6 )A. B. C. D. 【答案】C【解析】 7.已知()2145f x x x -=+-,则()f x 的表达式是( )A. 26x x +B. 287x x ++C. 223x x +-D. 2610x x +-【答案】A 【解析】令1x t -=,1x t ∴=+. ()()()2214156f t t t t t ∴=+++-=+.()26f x x x ∴=+.故A 正确.R ()y f x =[,]a b (1)y f x =-[1,1]a b --[,]a b [1,1]a b ++(1)y f x =-()y f x =[2,2]-[1,2][0,2]点睛:在求解析式时,必然要注意自变量的范围,也就是概念域.如已知f=x +1,求函数f (x )的解析式,通过换元的方式可得f (x )=x 2+1,函数f (x )的概念域是[0,+∞),而不是(-∞,+∞).8.已知函数(1)1xf x x -=+,则函数()f x 的解析式为( ) A.1()2x f x x +=+ B.()1x f x x =+ C.1()x f x x -= D.1()2f x x =+【答案】A 【解析】试题分析:令1x t -=,则1x t =+,所以()1(1)12x t f x f t x t +-=⇒=++,即1()2x f x x +=+.故选A.考点:函数的解析式.9.已知2(1)1f x x -=+,则()f x 的表达式为( ) A .2()1f x x =+ B .2()(1)1f x x =++C .2()(1)1f x x =-+ D .2()f x x =【答案】B 【解析】试题分析:由题意得,设1t x =-,则1x t =+,所以()22(1)122f t t t t =++=++,所以函数的解析式为2()(1)1f x x =++,故选B . 考点:函数的解析式.10.已知1()1xf x x-=+,则f(x)的表达式为 A .11x x -+ B .11x x +- C .11x x -+ D .21x x -【答案】A 【解析】试题分析:设1111x t t x x t --=∴=++()()1111t xf t f x t x--∴=∴=++ 考点:换元法求函数解析式11.设函数,则下列关系中正确的是 ( ). A. B. C. D. 【答案】B 【解析】试题分析:函数是开口向上的抛物线,对称轴是2-=x ,离对称轴越远,函数值越大,所以()()()201->>f f f ,故选B.考点:二次函数的单调性12.若一次函数()x f 知足()8923+=+x x f ,则()x f 的解析式是 A.()89+=x x f B.()23+=x x fC.()43--=x x fD.()23+=x x f 或()43--=x x f【答案】B 分析:()()()3298962332232f x x x x f x x +=+=++=++∴=+c x x x f ++=4)(2)2()0()1(-<<f f f )2()0()1(->>f f f )2()1()0(->>f f f )1()2()0(f f f <-<考点:函数求解析式13.函数()(0)f x kx b k =+>,若[0,1],x ∈ [1,1]y ∈-,则函数()y f x =的解析式是( ) A.21y x =- B.1(1)2y x =- C.21y x =-或21y x =-+ D.21y x =--【答案】A 【解析】试题分析:由函数解析式可知函数为增函数,所以122111b k y x k b b =-=⎧⎧∴∴=-⎨⎨+==-⎩⎩考点:函数求解析式14.函数),12()(,32)(-=+=x g x f x x g 则=+)1(x f ( )A.12+xB.54+xC.54-xD.14+x【答案】B 【解析】试题分析:()()()14312212+=+-=-=x x x g x f ,()()541141+=++=+x x x f ,故选B.考点:复合函数 15.已知)11fx =+,则函数()f x 的解析式为( )A.2()f x x = B.()2()11f x x x =+≥ C.()2()221f x x x x =-+≥ D.()2()21f x x x x =-≥【答案】C 【解析】试题分析:设1t =则()21,(1)x t t =-≥代入已知可得()()222(1)112f t t t t t =+-=-+≥函数()f x 的解析式为()2()221f x x x x =-+≥16.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(x)=( )A .x -1B .x +1C .2x +1D .3x +3 【答案】B 【解析】∵2f(x)-f(-x)=3x +1,① 将①中x 换为-x ,则有 2f(-x)-f(x)=-3x +1,② ①×2+②得3f(x)=3x +3, ∴f(x)=x +1. 考点:复合函数解析式求法17.已知«Skip Record If...»,«Skip Record If...»则«Skip Record If...»等于 ( )A. «Skip Record If...»B. «Skip Record If...»«Skip Record If...»C. «Skip Record If...»D. «Skip Record If...» 【答案】D 【解析】试题分析:令R t t x t x ∈+==,22,1-21则,所以()()743222+=++=t t t f ,因为所以=+m m 即,674 考点:函数解析式的求法。

相关文档
最新文档