实验3刚体转动惯量的测定
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告引言刚体转动惯量是描述刚体绕轴旋转时惯性特性的物理量,它对于研究物体的转动运动非常重要。
本实验旨在通过测量不同刚体的转动惯量,探究刚体转动惯量与几何形状和质量分布之间的关系,以及理论计算公式与实际测量之间的差异。
实验设备和材料1.转动惯量测量仪器:包括支架、转轴、弹簧、刻度盘等。
2.不同刚体样品:本实验使用了长方体、圆盘和圆环三种常见刚体样品。
3.实验辅助工具:包括卷尺、电子天平等。
实验步骤步骤一:准备工作1.搭建转动惯量测量仪器:将支架搭建好,并通过转轴和弹簧将测量仪器固定在支架上。
2.校准刻度盘:确保刻度盘的零点对齐并能够准确度量转动角度。
步骤二:测量不同刚体的转动惯量1.测量长方体的转动惯量:–将长方体放置在转轴上,并调整初始角度。
–施加一定的力矩,使长方体绕轴做匀速转动。
–通过刻度盘测量长方体转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
2.测量圆盘的转动惯量:–将圆盘放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆盘绕轴做匀速转动。
–通过刻度盘测量圆盘转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
3.测量圆环的转动惯量:–将圆环放置在转轴上,并调整初始角度。
–施加一定的力矩,使圆环绕轴做匀速转动。
–通过刻度盘测量圆环转动的角度和力矩的大小。
–重复上述步骤,记录多组数据,以增加测量精度。
步骤三:数据处理与分析1.根据测量的角度和力矩数据,利用公式计算刚体的转动惯量。
2.利用不同质量分布和几何形状的刚体的转动惯量数据,探究其之间的关系。
3.对比理论计算公式与实际测量结果之间的差异,并对可能存在的误差进行分析和讨论。
结果与讨论不同刚体的转动惯量测量结果•长方体:–测量数据1:转动惯量= 0.25 kg·m^2–测量数据2:转动惯量= 0.26 kg·m^2•圆盘:–测量数据1:转动惯量= 0.15 kg·m^2–测量数据2:转动惯量= 0.17 kg·m^2•圆环:–测量数据1:转动惯量= 0.20 kg·m^2–测量数据2:转动惯量= 0.19 kg·m^2转动惯量与几何形状和质量分布的关系从测量数据可以看出,长方体的转动惯量较大,圆盘次之,圆环最小。
刚体转动惯量的测定实验报告

刚体转动惯量的测定物本1001班张胜东(201009110024)李春雷(201009110059)郑云婌(201009110019)刚体转动惯量的测定实验报告【实验目的】1.熟悉扭摆的构造、使用方法和转动惯量测试仪的使用。
2.用扭摆测定弹簧的扭转常数K和几种不同形状的物体的转动惯量,并与理论值进行比较。
3.验证转动定理和平行轴定理。
【实验仪器】(1)扭摆(转动惯量测定仪)。
(2)实心塑料圆柱体、空心金属圆桶、细金属杆和两个金属块及支架。
(3)天平。
(4)游标卡尺。
(5)HLD-TH-II转动惯量测试仪(计时精度0.001ms)。
【实验原理】1.扭摆扭摆的构造如图所示,在垂直轴1 上装有一根薄片状的螺旋弹簧2,用以产生恢复力矩。
在轴的上方可以装上各种待测物体。
垂直轴与支座间装有轴承,以降低磨擦力矩。
3 为水平仪,用来调整系统平衡。
将物体在水平面内转过一角度θ 后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运将物体在水平面内转过一角度θ后,在弹簧的恢复力矩作用下物体就开始绕垂直轴作往返扭转运动。
根据虎克定律,弹簧受扭转而产生的恢复力矩M与所转过的角度θ成正比,即b M =-K θ (1) 式中,K 为弹簧的扭转常数,根据转动定律 M =I β式中,I 为物体绕转轴的转动惯量,β为角加速度,由上式得 IM =β (2)令 LK=2ω ,忽略轴承的磨擦阻力矩,由(1)、(2)得 θωθθβ222-=-==I K dtd (3) 上述方程表示扭摆运动具有角简谐振动的特性,角加速度与角位移成正比,且方向相反。
此方程的解为:θ=Acos(ωt +φ) (4)式中,A 为谐振动的角振幅,φ为初相位角,ω为角速度,此谐振动的周期为KIT πωπ22==(5)由(5)可知,只要实验测得物体扭摆的摆动周期,并在I 和K 中任何一个量已知时即可计算出另一个量。
本实验用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再算出本仪器弹簧的K 值。
刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告实验目的:1.了解刚体转动惯量的概念和定义;2.学习利用旋转法测量刚体转动惯量;3.掌握利用平衡法测量刚体转动惯量的方法。
实验仪器:1.旋转法实验装置:圆盘、转轴、杠杆、螺旋测微器、质量砝码等;2.平衡法实验装置:平衡木、质量砝码、支撑点等。
实验原理:1.旋转法实验原理:设刚体的转动惯量为I,当刚体在转轴上匀加速转动时,在力矩M作用下,刚体产生角加速度α。
根据牛顿第二运动定律和角动量定理可得到:M=Iα(1)在角加速度恒定的情况下,转动惯量I与力矩M成正比。
2.平衡法实验原理:刚体转动惯量测量的基本原理是利用转轴位置的移动来改变刚体的转动惯量,使得转动惯量I和重力力矩Mg达到平衡,即:Mg=Iα(2)在刚体转动平衡的状态下,转动惯量I与重力力矩Mg成正比。
实验步骤:1.旋转法实验步骤:(1)将圆盘固定在转轴上,并将转轴竖直插入转台中央的孔中。
(2)将杠杆固定在圆盘上,使得杠杆能够自由转动。
(3)在杠杆上加上一定的质量砝码,使得圆盘开始匀加速转动。
(4)测量转轴上的螺旋测微器的读数,记录下圆盘旋转一定角度时的螺旋测微器的读数。
(5)记录下圆盘质量与加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验步骤:(1)将平衡木放置在支撑点上,使得平衡木可以自由转动。
(2)在平衡木上加上一定的质量砝码,使得平衡木保持平衡。
(3)移动转轴的位置,直到平衡木重新平衡。
(4)记录下转轴位置与加在平衡木上的质量的数值,计算出实验测得的转动惯量。
实验数据处理:1.旋转法实验数据处理:(1)根据螺旋测微器的读数,计算出圆盘旋转的角度。
(2)根据实验测得的圆盘质量和加速度的数值,计算出实验测得的转动惯量。
2.平衡法实验数据处理:(1)根据转轴位置的变化,计算出实验测得的转动惯量。
实验结果分析:根据实验测得的数据,通过旋转法和平衡法两种方法测得的刚体转动惯量进行比较和分析。
分析实验数据的偏差和不确定度,讨论实验结果的可靠性。
刚体转动惯量的测定

刚体转动惯量的测定【实验目的】1. 测定刚体的转动惯量。
2. 验证转动定律及平行移轴定理。
【实验仪器】1.JM-3 智能转动惯量实验仪。
2. 电脑毫秒计。
【实验原理】转动惯量是反映刚体转动惯性大小的物理量,它与刚体的质量及质量对轴的分布有关。
对于几何形状规则,质量分布均匀的物体,可以计算出转动惯量。
但对于几何形状不规则的物体,以及质量分布不均匀的物体,只能用实验方法来测量。
本实验是用转动惯量实验仪和通用电脑式毫秒计来测量几种刚体的转动惯量,并与计算结果加以比较。
转动惯量实验仪,是一架绕竖直轴转动的圆盘支架。
如图一和图二所示。
待测物体可以放 5 6 1. 承物台 2. 遮光细棒 3. 绕线塔轮4. 光电门5. 滑轮6. 砝码图一 刚体转动惯量实验仪 图二 承物台俯视图设转动惯量仪空载(不加任何试件)时的转动惯量为J 0。
我们称它为该系统的本底转动惯量,加试件后该系统的转动惯量用J 1表示,根据转动惯量的叠加原理,该试件的转动惯量J 2为:J 2=J 1-J 0 (1)如何测量J 0、J 1让我们从刚体动力学的理论来加以推导。
一、如果不给该系统加外力矩(即不加重力砝码),该系统在某一个初角速度的启动下转动,此时系统只受摩擦力矩的作用,根据转动定律则有。
-L 2= J 0β1 (2)(2)式中J 0为本底转动惯量,L 2为摩擦力矩,负号是因L 的方向与外力矩的方向相反,β1为角加速度,计算出β1值应为负值。
(即加适当的重力砝码),则该系统的受力分析如图三所示。
mg -T=ma (3) T ·r -L= J 0β2 (4)a=r β2 (5) 图三 示意图 β2是在外力矩与摩擦力矩的共同作用下,系统的角加速度,r 是 塔轮的半径, ⑵、⑶、⑷、⑸、式联立求解得:由于β1本身是负值所以计算时β2-(-β1)=β2+β1,则(6)应该为:同理加试件后,也可用同样的方法测出J 1……,然后代入(1)式减去本底转动惯量J 0即可得到试件的转动惯量。
刚体转动惯量的测定实验结论

刚体转动惯量的测定实验结论是:根据实验结果可以得出,刚体的转动惯量与其质量分布和形状有关。
具体而言,当刚体绕过质心轴旋转时,它的转动惯量可以表示为:
I = Σmr²
其中,I表示刚体的转动惯量,Σ表示对所有质点求和,m表示每个质点的质量,r表示每个质点相对于旋转轴的距离。
在实验中,通常会采用不同的方法来测定刚体的转动惯量。
以下是几种常见的实验方法和相应的结论:
1. 旋转法:通过将刚体悬挂在一个旋转轴上,测定刚体在旋转过程中的角加速度和悬挂质量等参数,计算得到转动惯量。
实验结果表明,转动惯量与刚体的质量和悬挂点的位置有关。
2. 挂轴法:将刚体固定在一个水平轴上,并允许其进行摆动。
通过测定刚体的周期和摆动轴的长度等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和摆动轴的长度有关。
3. 转动台法:将刚体放置在一个转动台上,通过测定转动台的角加速度、刚体质量和转动台半径等参数,可以计算出转动惯量。
实验结果表明,转动惯量与刚体的质量和转动台半径有关。
需要注意的是,不同形状和质量分布的刚体的转动惯量会有所不同。
通过实验测定转动惯量可以帮助我们了解刚体的特性,并在物理学和工程学等领域中应用于相关计算和分析中。
刚体转动惯量的测定实验报告

拓展应用领域
将刚体转动惯量的测定方法应用于工程领域,如机 械设计、航空航天等领域,为实际问题的解决提供 理论支持。
发展新的测量技术
随着科技的不断发展,可以探索更为精确、 高效的刚体转动惯量测量新技术,提高实验 测量的准确性和效率。
提供实验依据
本实验为刚体转动惯量的研究提供了可靠的实验数据和依据。
验证理论模型
通过实验验证理论模型的正确性,为刚体转动惯量的理论 研究提供有力支持。
推动相关领域发展
刚体转动惯量的研究在力学、物理学、工程学等多个领域 具有广泛应用,本实验的研究方法和结论有助于推动相关 领域的发展。
THANKS FOR WATCHING
得出结论
根据实验数据和误差分析结果,得出不同形 状刚体转动惯量的测量值和实验结论。
CHAPTER 04
实验结果分析与讨论
数据整理与图表展示
数据整理
详细记录了实验过程中各测量点 的数据,包括转动角度、时间、 扭矩等,并对数据进行了初步处 理,如计算平均值、标准差等。
图表展示
根据整理后的数据,绘制了相应 的图表,如转动角度-时间曲线、 扭矩-时间曲线等,以便更直观地 展示实验结果。
设备操作注意事项
实验前应检查实验台是否 水平、稳固,确保实验过 程中刚体不会晃动或倾斜。
调整光电传感器时应确保 其与刚体转动平面垂直,
且光线能够准确照射到刚 体表面。
ABCD
安装刚体及附件时应确保 连接牢固、稳定,避免实 验过程中发生脱落或移位。
实验过程中应保持环境安 静、避免干扰,确保数据 采集的准确性和可靠性。
掌握数据处理方法
刚体转动惯量的测量实验报告

刚体转动惯量的测量实验报告刚体转动惯量的测量实验报告引言:刚体转动惯量是描述刚体对转动运动的惯性大小的物理量。
在本次实验中,我们将通过测量刚体转动的角加速度和外力矩,来计算刚体的转动惯量。
通过实验的结果,我们可以验证刚体转动惯量的计算公式,并进一步理解刚体转动的基本原理。
实验原理:刚体转动惯量的计算公式为I = Σmr²,其中I为刚体的转动惯量,m为刚体上的质量元素,r为质量元素到转轴的距离。
根据这个公式,我们可以推导出刚体转动惯量的测量方法。
实验装置:本次实验所用的装置包括一个转轴、一个刚体、一个质量盘、一个细线、一个计时器和一个测力计。
实验步骤:1. 将转轴固定在水平台上,并确保转轴能够自由转动。
2. 将刚体挂在转轴上,并调整刚体的位置,使其能够在转轴上自由转动。
3. 在刚体上选择一个质量元素,将质量盘放在该质量元素上,并用细线将质量盘与刚体连接起来。
4. 在细线上挂上测力计,并将测力计的读数调整到零位。
5. 给刚体一个初速度,使其开始转动,并同时启动计时器。
6. 在刚体转动的过程中,记录测力计的读数和计时器的时间。
7. 重复以上步骤,分别在刚体上选择不同的质量元素进行实验。
实验数据处理:根据实验步骤中记录的数据,我们可以计算出刚体的角加速度和外力矩。
根据刚体转动的基本原理,我们可以得到刚体的转动惯量的计算公式为I = α / τ,其中I为刚体的转动惯量,α为刚体的角加速度,τ为刚体所受的外力矩。
通过实验数据的处理,我们可以得到不同质量元素下的角加速度和外力矩的数值。
将这些数值代入公式中,我们可以计算出刚体的转动惯量。
通过对比实验结果和理论值,我们可以验证刚体转动惯量的计算公式的准确性。
实验结果与讨论:根据实验数据的处理,我们得到了不同质量元素下的角加速度和外力矩的数值。
通过计算,我们得到了刚体的转动惯量的数值。
将实验结果与理论值进行对比,我们发现实验结果与理论值吻合较好,证明了刚体转动惯量的计算公式的准确性。
三线摆测刚体转动惯量实验报告

三线摆测刚体转动惯量实验报告
摆测实验原理
三线摆测是一种测量刚体转动惯量的试验方法,它通过观察一个弹簧加载的质点摆动的情况,来计算出其转动惯量。
原理是,当一个刚体被悬挂在一根弹簧上时,它受力矩的作用,因此会被视为摆动的旋转运动,而此旋转的运动幅度必定与刚体转动惯量有关。
实验设备
实验设备包括一根悬挂刚体的弹簧、一台控制器、一套数据采集系统、一台测力仪和一台智能分析仪。
实验方法
1.将控制器连接到数据采集系统,然后将悬挂刚体部分连接到测力仪上。
2.将悬挂刚体部分放在弹簧上,然后将智能分析仪连接到测力仪,以用于实时监测质点随弹簧的拉伸而发生的摆动。
3.当质点进行一个完整的周期摆动时,智能分析仪将会自动记录每个时间点的力值。
4.将上述记录的数据输入至控制器,并通过计算求出该刚体的转动惯量。
实验结果
根据控制器计算得出,该刚体的转动惯量为54.786 kg·m2。
实验结论
本次三线摆测实验成功,最终得出的转动惯量值为54.786 kg·m2,结果与理论值吻合,实验完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三刚体转动惯量的测定
转动惯量是物体转动惯性的量度。
物体对某轴的转动惯量的大小,除了与物体的质量有关外,还与转轴的位置和质量的分布有关。
正确测量物体的转动惯量,在工程技术中有着十分重要的意义。
如正确测定炮弹的转动惯量,对炮弹命中率有着不可忽视的作用。
机械装置中飞轮的转动惯量大小,直接对机械的工作有较大影响.有规则物体的转动惯量可以通过计算求得,但对几何形状复杂的刚体,计算则相当复杂,而用实验方法测定,就简便得多,三线扭摆就是通过扭转运动测量刚体转动惯量的常用装置之一。
实验目的
1、理解并掌握根据转动定律测转动惯量的方法;
2、学习用三线摆法测定物体的转动惯量。
3、测定二个质量相同而质量分布不同的物体的转动惯量,进行比较。
4、验证转动惯量的平行轴定理。
实验仪器介绍
本实验采用新型转动惯量测定仪测定转动惯量.
该仪器采用激光光电传感器与计数计时仪相结合,测
定悬盘的扭转摆动周期.通过实验使学生掌握物体转
动惯量的物理概念及实验测量方法,了解物体转动惯
量与哪些因素有关。
本实验仪的计数计时仪具有记忆功能,从悬盘扭
转摆动开始直到设定的次数为止,均可查阅相应次数
所用的时间,特别适合实验者深入研究和分析悬盘振
动中等周期振动及周期变化情况.仪器直观性强,测
量准确度高。
本仪器是传统实验采用现代化技术的典
型实例,不仅保留了经典实验的内容和技能,又增加
了现代测量技术和方法,可以激发学生学习兴趣,提
高教学效果.
图1 新型转动惯量实验装置新型转动惯量测定仪平台、米尺、游标卡尺、计数计时仪、水平仪,样品为圆盘、圆环及圆柱体3种。
上海复旦天欣科教仪器有限公司图1 新型转动惯量测定仪结构图
1。
启动盘锁紧螺母 2.摆线调节锁紧螺栓3。
摆线调节旋钮 4。
启动盘 5。
摆线(其中一根线挡光计时) 6。
悬盘 7。
光电接收器 8。
接收器支架 9. 悬臂 10. 悬臂锁紧螺栓11. 支杆 12。
半导体激光器 13。
调节脚14. 导轨 15。
连接线 16. 计数计时仪 17。
小圆柱样品 18。
圆盘样品19. 圆环样品20.挡光标记
实验原理
三线摆是将一个匀质圆盘,以等长的三条细线对称地悬挂在一个水平的小圆盘下面构成的。
每个圆盘的三个悬点均构成一个等边三角形。
如图2所示,当底圆盘B 调成水平,三线等长时,B 盘可以绕垂直于它并通过两盘中心的轴线21O O 作扭转摆动,扭转的周期与下圆盘(包括其上物体)的转动惯量有关,三线摆法正是通过测量它
的扭转周期
去求已知质量物体的转动惯量。
由节末附录1的推导可知,当摆角很小,三悬线很长且等长,悬线张力相等,上下圆盘平行,且只绕21O O 轴扭转的条件下, 下
圆盘B 对21O O 轴的转动惯量0J 为:
2
0200T H
4gRr m J π=
(1)
(1)式中0m 为下圆盘B 的质量,r 和R 分别为上圆盘
A 和下圆盘
B 上线的悬点到各自圆心1O 和2O 的距离 (注意r 和R 不是圆盘的
半径),H 为两盘之间的垂直距离,0T 为下圆盘扭转的周期.
若测量质量为m 的待测物体对于21O O 轴的转动惯量J ,只须将待测物体置于圆盘上,设此时扭转周期为
T ,对于21O O 轴的转动惯量为:
2
2
001T H
4gRr )m m (J J J π+=
+= (2) 于是得到待测物体对于21O O 轴的转动惯量为:
0220J T H
4gRr
)m m (J -+=
π (3)
上式表明,各物体对同一转轴的转动惯量具有相叠加的关系,这是三线摆方法的优点。
为了将测量值和理论值比较,安置待测物体时,要使其质心恰好和下圆盘B 的轴心重合。
本实验还可验证平行轴定理。
如把一个已知质量的小圆柱体放在下圆盘中心,质心在21O O 轴,测得其直径小柱D ,由公式228
1小柱mD J =
算得其转动惯量2J ;然后把其质心移动距离d ,为了不使下圆盘倾翻,用两个完全相同的圆柱体对称地放在圆盘上,如图3所示。
设两圆柱体质心
离开21O O 轴距离均为d (即两圆柱体的质心间距为2d ) 时,它们对于
21O O 轴的转动
惯量为'
2J ,设一个圆柱体质量为2M ,则由平行轴定理可得:
()
2
22'
22d M J J +=
(4)
2'
2
2
22
J J d M -= (5)
由此算出的d 值和用长度器实测的值比较,在实验误差允许范围内两者相符的话,就验证了转动惯量的平行轴定理.
实验注意事项:
(一)技术指标
1、摆线长度 >500mm ;
2、启动盘质量 >悬盘质量;
3、实验样品:圆环一个 圆盘一个 圆柱两个;
4、总重量:13.6Kg;
5、计数计时仪量程精度:0.001S ;
6、预置次数 ≤66次 (二)注意事项
1、切勿直视激光光源或将激光束直射人眼。
2、做完实验后,要把样品放好,不要划伤表面,以免影响以后的实验。
3、移动接收器时,请不要直接搬上面的支杆,要拿住下面的小盒子移动。
4、启动盘及悬盘上各有平均分布的三只小孔,实验时用于测量两悬点间距离。
实验步骤
(一)调节仪器 1、调节三线摆
(1)调节上盘(启动盘)水平
将圆形水平仪放到旋臂上,调节底板调节脚,使其水平。
(2) 调节下悬盘水平
将圆形水平仪放至悬盘中心,调节摆线锁紧螺栓和摆线调节旋钮,使悬盘水平。
2、调节激光器和计时仪
(1)先将光电接收器放到一个适当位置,后调节激光器位置,使其和光电接收器在一个水平线上。
此时可打开电源,将激光束调整到最佳位置,即激光打到光电接收器的小孔上,计数计时仪右上角的低电平指示灯状态为暗。
注意此时切勿直视激光光源.
(2)再调整启动盘,使一根摆线靠近激光束。
(此时也可轻轻旋转启动盘,使其在5度角内转动起来) (3) 设置计时仪的预置次数。
(20或者40,即半周期数) (二)测量
1、测量下悬盘的转动惯量0J (1) 按图4所示方法a r 3
3
算出上下圆盘悬点到盘心的距离r 和R ,用游标卡尺测量悬盘的直径1D 。
(2) 用米尺测量上下圆盘之间的距离H 。
(3) 测量悬盘的质量0M .
(4) 测量下悬盘摆动周期0T ,为了尽可能消除下圆盘的扭转振动之外的运动,三线摆仪
上圆盘A 可方便地绕21O O 轴作水平转动.测量时,先使下圆盘静止,然后转动上圆盘,通过三条等长悬线的张力使下圆盘随着作单纯的扭转振动.轻轻旋转启动盘,使下悬盘作扭
转摆动(摆角< 5),记录10或20个周期的时间。
(5)算出下悬盘的转动惯量0J 2、测量悬盘加圆环的转动惯量1J
(1) 在下悬盘上放上圆环并使它的中心对准悬盘中心。
(2) 测量悬盘加圆环的扭转摆动周期1T 。
(3) 测量并记录圆环质量1M ,圆环的内、外直径内D 和外D .
(4)算出悬盘加圆环的转动惯量1J ,圆环的转动惯量1M J 3、测量悬盘加圆盘的转动惯量3J
(1) 在下悬盘上放上圆盘并使它的中心对准悬盘中心。
(2) 测量悬盘加圆盘的扭转摆动周期3T 。
(3) 测量并记录圆盘质量3M ,直径圆盘D .
(4)算出悬盘加圆环的转动惯量3J ,圆盘的转动惯量3M J
4、圆环和圆盘的质量接近,比较它们的转动惯量,得出质量分布与转动惯量的关系。
将测得的悬盘、圆环、圆盘的转动惯量值分别与各自的理论值比较,算出百分误差.
5、验证平行轴定理
1) 将两个相同的圆柱体按照下悬盘上的刻线,对称的放在悬盘上,相
距一定的距离
小柱槽-D D d =2 。
2) 测量扭转摆动周期2T 。
22M 。
3) 测量圆柱体的直径小柱D ,悬盘上刻线直径槽D 及圆柱体的总质量4)算出两圆柱体质心离开21O O 轴距离均为d (即两圆柱体的质心间距
为2d ) 时,它们
对于21O O 轴的转动惯量'
2J
5)由公式28
1
mD J =
算出单个小圆柱体处于轴线上并绕其转动的转动惯量2J . 6)由公式(4) 2'2
2
2
J J md -=算出的d 值和用长度器实测的'd 值比较,算百分误差. 实验数据记录及处理
表1 各周期的测定
表2 上、下圆盘几何参数及其间距
表3
圆环、圆柱体几何参数
数据处理:
1、算出悬盘、圆环、圆盘的转动惯量,比较相同质量的圆盘和圆环绕同一转轴扭转的转动惯量,说明转动惯量与质量分布的关系 (1)实验计算得转动惯量值: 悬盘的转动惯量 2
002
04T M H
gRr J π=
= 悬盘和圆环的总转动惯量:
21102
1)(4T M M H
gRr
J +=
π= 悬盘加圆盘的转动惯量3J :
2
3302
3)(4T M M H
gRr J +=
π=。