高中数学必修一函数概念定义域值域教学方案
高一数学 函数的定义域和值域教案必修一

诚西郊市崇武区沿街学校高一数学必修1函数的定义域和值域
教学目的
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。
(2)掌握两个函数是同一函数的条件。
(3)会求简单函数的定义域和值域。
过程与方法
(1)通过对函数的概念的学习,初步探究客观世界中各种运动域数量间的互相依赖关系。
(2)使学生掌握求函数是=式的值得方法。
(3)培养批判思维才能、自我调控才能、交流与才能。
情感、态度与价值观
(1)懂得变化、联络、制约的辩证唯物主意观点。
(2)学会全面的观察、分析、研究问题。
重点难点
重点:符号“y=f(x)〞的含义。
难点:符号“y=f(x)〞的含义。
教法学法:讨论研究
教学用具:多媒体教学过程
板书设计
教学反思。
高中数学《函数的概念》教案

教学文档
高中数学(函数的概念)教案
一、教学目标
(知识与技能)
理解函数的概念,能对具体函数指出定义域、对应法则、值域。
(过程与方法)
通过对函数的学习,进一步体会集合与对应的数学思想方法。
(感情、态度与价值观)
在探究中感受到成功的喜悦,提高学习数学的兴趣。
二、教学重难点
(重点)函数的概念。
(难点)从具体实例中抽象出函数概念。
三、教学过程
(一)导入新课
带着学生复习初中阶段函数的概念,并举例说明,从而引出高中阶段对函数的学习。
(二)讲解新知
利用多媒体展示上一节的实例,例如:(1)加油站储油罐的储油量和高度的关系;(2)高速公路总里程与年份的关系。
引导学生分析归纳以上两个实例,变量分别是谁、变量的范围是什么、变量之间存在的关系是什么、这些例子有什么共同特点。
.。
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2

第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高中数学教学备课教案函数的定义域与值域

高中数学教学备课教案函数的定义域与值域高中数学教学备课教案函数的定义域与值域介绍:函数是数学中的重要概念,对于高中数学教学来说,理解函数的定义域与值域是非常关键的。
本教案将围绕函数的定义域与值域展开,旨在帮助学生深入理解函数的特性和应用。
一、函数的基本概念1.1 函数的定义函数是两个集合之间的对应关系,其中一个集合称为定义域,另一个集合称为值域。
在数学中,我们常以字母f表示函数,用x表示定义域中的元素。
1.2 定义域的确定定义域是函数中可以取得实际意义的自变量的取值范围。
它由函数的解析式、图像、实际问题和常识共同确定。
1.3 值域的确定值域是函数在定义域上所有可能的取值的集合。
通过函数的解析式、图像以及实际问题,我们可以较为准确地确定函数的值域。
二、定义域的常见类型有理函数是指可以表示为两个多项式的比值的函数。
有理函数的定义域通常由其分母的零点确定。
2.2 幂函数及其定义域幂函数是指以x为底数的指数函数,形如f(x) = x^a。
对于幂函数,定义域为实数集。
2.3 指数函数及其定义域指数函数是以一个正实数为底的指数函数,形如f(x) = a^x。
对于指数函数,定义域为实数集。
2.4 对数函数及其定义域对数函数是指以一个正实数为底的对数函数,形如f(x) = loga(x)。
对于对数函数,定义域为正实数集。
三、值域的常见类型3.1 有界函数及其值域有界函数是指在定义域上,函数的值上下都有限制的函数。
值域是一个有限的区间。
3.2 无界函数及其值域无界函数是指函数在定义域上,函数的值没有上下限的函数。
值域为整个实数集。
单调递增函数是指在定义域上,随着自变量的增大,函数值也随之增大的函数。
值域为一个区间。
3.4 单调递减函数及其值域单调递减函数是指在定义域上,随着自变量的增大,函数值反而减小的函数。
值域为一个区间。
结论:通过本教案,我们对高中数学中函数的定义域和值域有了更深入的理解。
定义域是函数自变量的取值范围,它由函数的解析式、图像、实际问题和常识共同确定。
函数的定义域与值域教案

函数的定义域与值域教学设计课题:函数的定义域和值域学科:数学授课教师: 数理19.4胡家华教材:高中必修1第一章第2节一、教学目标:1、知识目标:了解函数定义域和值域的定义,熟悉掌握简单函数定文域和值域的求法,会求抽象函数的定义域2、能力目标提高学生对函数工定义域、值域及相关问题的解题能力和运算能力,使学生准确而快速地求出函数定义域和值域3、情感目标通过由易到难的知识点层层递进和对各类题解题思路解法的不断运用掌握来提高学生的信心,二、教学重难点:求函数的定义域和值域,求抽象函数的定义域三、教学方法1.通过知识回顾引出新课,用学生熟悉的知识快速将学生的思绪从课间带回到课堂上来,同时也便于同学们更快的接受新知识,理解新概念。
2.通过提问和互动,使学生集中注意力,跟上老师的思路在思考和回答的过程中更好的理解和掌握新知识。
3.通过竞赛式随堂练习题,促进学生积极思考问题在解题的过程中不断巩固新知,并且让学生主动回答问题,加深同学的印象,同时提升学生的自信心。
四、教学过程1.知识回顾函数的概念:设A、B为非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A B为从集合A到集合B的一个函数记作:y=f(x),x∈A(其中X叫做函数的:自变量y叫做函数的函数值)2.新课引入定义域的概念:使函数有意义的自变量的取值范围,叫做函数的定义域。
值域的概念:函数值的集合,就叫做值域(明确“域”即集合,求函数的定义域值域时要表示成集合的形式)思考:上述函数y=f(x)的定义域是多少?f 那么值域呢?是否为B ?讨论得出,定义域为A ,值域不一定为B例: A B A C通过这个例子得出;f :A →B ,也可以表示成 : f :A →C即:函数:定义域 值域进而得出结论:(同时更好的理解定义域与值域的概率)函数的三要素:定义域、对应关系、值域俩个函数相等即:俩个函数的定义域相同,并且对应关系完全一致。
高中数学必修一《函数的概念及其表示》优质教案

高中数学必修一《函数的概念及其表示》优质教案教材分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.教学目标与素养课程目标1、明确函数的三种表示方法;2、在实际情境中,会根据不同的需要选择恰当的方法表示函数;3、通过具体实例,了解简单的分段函数,并能简单应用.数学学科素养1.数学抽象:函数解析法及能由条件求出解析式;2.逻辑推理:由条件求函数解析式;3.数学运算:由函数解析式求值及函数解析式的计算;4.数据分析:利用图像表示函数;5.数学建模:由实际问题构建合理的函数模型。
重难点重点:函数的三种表示方法,分段函数的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程一、情景导入初中已经学过函数的三种表示法:列表法、图像法、解析法,那么这三种表示法定义是?优缺点是?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本67-68页,思考并完成以下问题1.表示两个变量之间函数关系的方法有几种?分别是什么?2.函数的各种表示法各有什么特点?3.什么是分段函数?分段函数是一个还是几个函数?4.怎样求分段函数的值?如何画分段函数的图象?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
高中数学教案《函数的概念及其表示》

教学计划:《函数的概念及其表示》一、教学目标1.知识与技能:o学生能够理解并掌握函数的基本概念,包括自变量、因变量、函数定义域和值域。
o学生能够识别函数关系,并用不同的方式(如解析式、表格、图像)表示函数。
o学生能够区分函数与非函数关系,理解函数关系的唯一对应性。
2.过程与方法:o通过实例分析,引导学生从具体到抽象地理解函数概念。
o运用对比、归纳等方法,帮助学生掌握函数的不同表示方法。
o通过小组合作探究,培养学生的合作学习能力和问题解决能力。
3.情感态度与价值观:o激发学生对数学学习的兴趣,培养探究数学规律的精神。
o引导学生认识到函数在现实生活中的应用价值,增强数学应用的意识。
o通过解决问题,培养学生的耐心、细致和严谨的科学态度。
二、教学重点和难点●重点:函数的基本概念及其三种表示方法(解析式、表格、图像)。
●难点:理解函数关系的唯一对应性,区分函数与非函数关系;灵活运用不同方式表示函数。
三、教学过程1. 导入新课(5分钟)●生活实例引入:通过日常生活中的实例(如气温随时间变化、汽车速度与行驶时间的关系等),引导学生思考这些关系中是否存在一个变量随另一个变量变化而变化的规律。
●提出问题:这些关系中的两个变量之间是如何相互影响的?能否用数学语言来描述这种关系?●明确目标:引出函数的概念,并说明本节课将要学习的内容。
2. 概念讲解(15分钟)●函数定义:详细讲解函数的基本概念,包括自变量、因变量、函数关系以及定义域和值域的概念。
●实例分析:结合生活实例,分析哪些关系可以构成函数,哪些不能,强调函数关系的唯一对应性。
●表示方法:介绍函数的三种表示方法(解析式、表格、图像),并举例说明每种方法的应用场景。
3. 案例分析(10分钟)●典型例题:选取几道具有代表性的例题,通过分析题目中的变量关系,引导学生判断是否为函数关系,并尝试用不同方式表示该函数。
●师生互动:在例题讲解过程中,适时提问引导学生思考,鼓励学生尝试自己解答或提出疑问。
统编人教A版数学高中必修第一册《3.1 函数的概念及其表示》优秀教案教学设计

1+x
所以所求函数的值域为(-1,1].
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
1.定义
3.1.1 函数的概念
例1 例2
例3 例4
例5
2.区间
七、作业
课本 67 页练习、72 页 1-5
本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的
题型三
区间
例 3 已知集合 A={x|5-x≥0},集合 B={x||x|-3≠0},则 A∩B 用区间可表示为
.
【答案】(-∞,-3)∪(-3,3)∪(3,5]
【解析】∵A={x|5-x≥0},∴A={x|x≤5}.
∵B={x||x|-3≠0},∴B={x|x≠±3}.
∴A∩B={x|x<-3 或-3<x<3 或 3<x≤5},
.
x+1
x+1
x+1
6
∵
4
≠0,∴y≠3,
x+1
3x-1
∴y=
的值域为{y|y∈R 且 y≠3}.
x+1
12 15
2
2
④(换元法)设 t= x-1,则 t≥0 且 x=t +1,所以 y=2(t +1)-t=2 t- + ,由 t≥0,再结合函
4 8
15
数的图象(如图),可得函数的值域为 ,+∞.
1.试判断以下各组函数是否表示同一函数: ①f(x)=
√x
x
x
,g(x)=x-1;
x
②f(x)= ,g(x)= ;
√x
2
③f(x)=√(x + 3) ,g(x)=x+3;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一函数概念定义域值域教学方案(总16页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除函数的概念函数的定义:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.对函数概念的理解需注意以下几点:①函数首先是两个数集之间建立的对应,A 、B 都是非空数集,因此定义域(或值域)为空集的函数不存在。
②对于x 的每一个值,按照某种确定的对应关系f ,都有唯一的y 值与它对应,这种对应应为数与数之间的一一对应或多一对应③认真理解()x f y =的含义:()x f y =是一个整体,()x f y =并不表示f 与x 的乘积,它是一种符号,它可以是解析式,也可以是图像,也可以是表格④函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . 【例1】判断下列对应能否表示y 是x 的函数:(1)x y =;(2)x y =;(3)2x y =;(4)x y =2;(5)122=+x y ;(6)122=-x y 。
【练1】判断下列图象能表示函数图象的是( )(A)区间的概念和记号设a,b∈R ,且a<b.我们规定:①满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);③满足不等式a≤x<b 或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[a,b) ,(a,b].这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点:定义名称符号数轴表示{x|a≤x≤b }闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}左闭右开区间[a,b]{x|a<x≤b}左开右闭区间(a,b)这样实数集R也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为[a,+∞),(a,+∞),(- ∞,b],(- ∞,b).注意:书写区间记号时:①有完整的区间外围记号(上述四者之一);②有两个区间端点,且左端点小于右端点;③两个端点之间用“,”隔开.④无穷大是一个符号,不是一个数⑤以“-∞”或“+∞”为区间一端时,这一端必须是小括号。
【练】试用区间表示下列实数集:(1){x|5≤x<6};(2){x|x≥9} ;(3){x|x≤-1}∩{x|-5 ≤x<2};(4){x|x<-9}∪{x|9<x<20}。
函数的三要素:定义域、对应关系和值域 函数的定义域:函数的定义域是自变量x 的取值范围,它是构成函数的重要组成部分,如果没有标明定义域,则认为定义域是使函数解析式有意义的或使实际问题有意义的x 的取值范围 函数y=f(x)的定义域的求法:①若f(x)是整式,则函数的定义域是实数集R ;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.如为半径r 与圆面积S 的函数关系为S=πr 2的定义域为{r ︱r>0}⑥)(x f =x 0的定义域是{x ∈R ︱x ≠0}注意:列不等式(组)求函数的定义域时,考虑问题要全面,要把所有制约自变量取值的条件都找出来。
【例1】求下列函数的定义域: ① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)(.【练1】求下列函数的定义域:(1)()422--=x x x f (2)()2f x x =+ (3) y (4)xx x y -+=||)1(0表达式中参数求法:根据定义域或其他的条件找到参数应满足的条件或表达式,从而求出相应参数的取值范围。
【例1】若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围【练1】已知函数()f x =的定义域为R ,求实数k 的范围复合函数1.复合函数定义 定义:设函数)(u f y=,)(x g u =,则我们称))((x g f y =是由外函数)(u f y =和内函数)(x g u =复合而成的复合函数。
其中x 被称为直接变量,u 被称为中间变量。
复合函数中直接变量x 的取值范围叫做复合函数的定义域,中间变量u 的取值范围,即是)(x g 的值域,是外函数)(u f y =的定义域。
设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数,这样把两个函数,或者几个函数套在一起,就称为复合函数.做复合函数的题目,一定要分清几个函数叠套的关系,知道什么是真正的自变量.2.定义域问题复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。
题型一、已知)x (f 的定义域,求)]x (g [f 的定义域。
[例1]已知函数f (x )的定义域为(0,1),求f (x 2)的定义域.题型二、已知)]x (g [f 的定义域,求f(x)的定义域。
[例2]f(2x+1) 定义域为[2,5],求f(x)的定义域。
题型三、已知一个复合函数求另一个复合函数的定义域[例3]已知函数f (x +1)的定义域为[-2,3],求f (2x 2-2)的定义域.【配套练习】1.若()x f 的定义域为2>x ,则()3+x f 的定义域为_____________2 设函数f x ()的定义域为[]01,,则函数f x ()-2的定义域为__________3.已知函数y =f (x )的定义域为[0,1],求f (x -1)的定义域.4.已知函数y =f (x -1)的定义域为[0,1],求f (x )的定义域.5.已知函数y =f (x -2)的定义域为[1,2],求y =f (x +3)的定义域函数的对应法则:①对应关系f 是函数关系的本质特征,)(x f y =的意义是:y 就是x 在关系f 下的对应值,而f 是“对应”得以实现的方法和途径。
如)(x f =3x+4,f 表示3倍的自变量加上4,f (8)=3x8+4=28 ②)(x f 与)(a f 的区别)(a f 表示)(x f 在x=a 时的函数值,是常量;而)(x f 是x 的函数,通常是变量.)(a f 是)(x f 的一个特殊值。
如一次函数)(x f =3x+4,当x=8时,f (8)=3x8+4=28是一个常量。
【例1】已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).函数的值域:对于)(x f y =, x ∈A ,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数y=f(x)的值域。
题型2 函数的值域 1.一次函数【例1】求()[)1,3,23-∈+-=x x x f 的值域 2.二次函数(配方法)特征:2()f x ax bx c =++对策:① 先找二次函数的对称轴,② A 、若对称轴在定义域内,y 的两个最值点分别出现在顶点处及距对称轴较远处 B 、若对称轴不在定义域内,则将定义域两端点代入函数,即得y 的两个最值点 【例1】求函数y=2x -2x+5的值域。
【例2】()[)0,3,1422-∈-+=x x x x f 的值域【例3】()(]5,2,1422∈-+-=x x x x f 的值域。
【练1】函数{}()1,1,1,2f x x x =+∈-的值域是 ( )A.0,2,3 B.30≤≤y C.}3,2,0{ D.]3,0[ 【练2】函数x y -=3的值域是【练3】12)(2++=x x x f ,]2,2[-∈x 的最大值是【练4】函数2y =的值域是( )A.[2,2]-B. [1,2]C.[0,2]D.[【练5】若函数234y x x =--的定义域为[0,]m ,值域为25[4]4--,,则m 的取值范围是( ) A (]4,0 B 3[]2,4 C 3[3]2, D 3[2+∞,)【练6】若函数23212+-=x x y 的定义域和值域都是[]b ,1,则实数b 的值为 ___________【练7】已知函数()()ab a x b ax x f ---+=82,当()2,3-∈x 时,()0>x f ,当()()+∞∞-∈,23, x 时,()0<x f(1)求()[]1,0∈x x f 在上的值域。
(2)当c 取何值时,02≤++c bx ax 恒成立。
带参数的二次函数:函数中带有参数或定义域里有参数,均已讨论对称轴在区间的位置为方向 【例1】(1)求函数2()1,[2,2]f x x ax x =+-∈-的值域;【例2】对于二次函数243y x x =++,当2m x m ≤≤+时,求出函数的最小值。
【练1】已知函数3)(2++=ax x x f ,当]2,2[-∈x 时,a x f ≥)(恒成立,求a 的最小值.【练2】设函数[]2()41,,1f x x x x t t =-+∈+,求()f x 的最小值()g t 的解析式.3.反比例函数【例1】⎥⎦⎤⎢⎣⎡-∈+-=1,32432x x y 在求上的值域【练1】⎥⎦⎤⎢⎣⎡-∈+=4,31123x x y 在求上的值域。
4.分离常数法 【练1】(1)1+=x xy (2)213x y x +=-5.打勾函数法【例1】(1)xx y += (2)1232y x x =++++【练1】已知,2>x 求21-+=x x y 的最小值为_________【练2】求12(3)2y x x x =+≥- 的值域。
【练3】当1x >-时,求231()1x x f x x -+=+的最小值是___________6.一次根式函数换元法:()f x ax =解题方法:换元法,取t =2t cx b-=,将原函数改写为二次函数求值域,记得写新定义域【例1】求函数1-+=x x y 的值域。