锂电池储能技术及其在电力系统中的应用研究
锂电池储能技术及其在电力系统中的应用

电力系统的稳定性
电力系统需要保持稳定运行,而锂 电池储能技术可以提供稳定、可靠 的电力支持,确保电力系统的安全 、经济运行。
提升电力质量
锂电池储能技术可以用于改善电力 质量,如调节电压波动、滤除谐波 等,提高电力系统的供电可靠性。
研究现状与发展趋势
国内外研究现状
介绍国内外在锂电池储能技术方面的研究进展情况,包括电池材 料、电池管理系统、电池回收与再利用等方面的研究现状。
能效性
提高储能系统的能效,降低运行成本。
经济性
控制储能系统的成本,提高性价比。
储能系统的优化目标与策略
提高电池寿命
通过优化充放电策略、控制电池温度 等手段,延长电池使用寿命。
提高能量利用率
通过优化能量调度和管理策略,提高 储能系统的能量利用率。
提高系统可靠性
通过冗余设计和故障预测与处理等手 段,提高储能系统的可靠性。
性。
锂电池储能技术可以解决可再生 能源发电的间歇性问题,提高电
力系统的可再生能源利用率。
锂电池储能技术可以优化电力系 统的调度和运行,提高电力系统
的运行效率。
存在的问题与不足
锂电池储能技术的成本仍然较 高,需要进一步降低成本以扩 大应用范围。
锂电池储能技术的安全性和可 靠性需要进一步提高,以确保 电力系统的稳定运行。
锂电池的充电与放电过程
锂电池充电
在充电过程中,锂离子从正极迁移到负极,储存电能;充电电压和电流需控制在 一定范围内,避免过充或欠充。
锂电池放电
在放电过程中,锂离子从负极迁移到正极,释放电能;放电速率和放电终止电压 应根据实际应用场景进行控制。
03
CATALOGUE
锂电池储能系统设计与优化
储能技术及其在现代电力系统中的应用

储能技术及其在现代电力系统中的应用随着全球经济的不断发展和人民生活水平不断提高,越来越多的国家和地区开始积极开展可再生能源开发和利用,促进能源结构的转型,以缓解各种能源带来的环境问题。
可再生能源具有间接性和不稳定性等缺陷,需要进行有效的储存和利用,从而提高其可持续利用性和经济性。
储能技术的引入和应用,能够在一定程度上缓解电力系统中出现的能源负荷平衡问题,实现电力市场的有效运作,提高能源利用效率,降低能源消耗、污染和碳排放等,保障了人们的生活和经济发展的持续性和可持续性。
储能技术的分类根据能量的储存形式和储能方式的不同,储能技术可以分为多种类型,主要包括以下几种:电化学储能技术电化学储能是指将能量转化为电化学能并储存,当需要使用时,将电化学能转化成其他形式的能量。
电化学储能技术主要包括超级电容器和电池等。
超级电容器是一种电化学储能装置,它具有极高的充放电速度、循环寿命长、无污染异物、体积小、存储容量大等特点,并且适用于大电流、小电压环境下的储能需求。
电池则是将电化学能转化为电能的设备,包括铅酸电池、镍氢电池、锂电池等。
目前,电池广泛用于手机、平板电脑、笔记本电脑等小型电子设备上,并逐渐向汽车、电动车、交通、通讯、储能电网等领域拓展。
机械动能储能技术机械动能储能是指将外部能源转化为机械能并储存,当需要使用时,将机械能转化成电能或其他形式的能量。
机械动能储能技术主要包括飞轮储能、压缩空气储能等。
飞轮储能是指通过能源驱动飞轮进行加速,将能量储存在飞轮的旋转动能中,等到需要使用时,再通过飞轮转动将机械能转化为电能。
飞轮储能具有高效、环保、无噪音等特点,已经广泛应用于轨道交通、飞行器、高速列车等领域。
压缩空气储能则是将外部能源通过压缩空气的方式储存,等到需要使用时,通过膨胀机将空气膨胀,从而释放储存的能量。
热能储能技术热能储能是将外部能源转化为热能并储存,等到需要使用时,将热能转化为其他形式的能量。
热能储能技术主要包括热水储能、熔融盐储能等。
储能技术在电力系统中的应用研究毕业论文

储能技术在电力系统中的应用研究毕业论文标题:储能技术在电力系统中的应用研究摘要:随着电力系统规模的不断扩大和可再生能源的快速发展,电力系统的灵活性和可靠性需求逐渐增加。
储能技术作为一种可调度的能量资源,可以有效地提高电力系统的运行性能和能源利用效率。
本文以储能技术在电力系统中的应用为主题,综述了储能技术的种类和原理,并重点讨论了储能技术在电力系统调度、微电网以及电力市场中的应用。
关键词:储能技术;电力系统;可再生能源;调度;微电网;电力市场引言:随着全球能源需求的不断增长和环境问题的日益严重,可再生能源(如太阳能和风能)逐渐成为解决能源和环境问题的重要途径。
然而,由于可再生能源的不稳定性和间断性,在将可再生能源大规模接入电力系统时,会给电力系统的稳定性和可靠性带来挑战。
为了应对这一挑战,储能技术被广泛应用于电力系统中。
一、储能技术的种类和原理1.电池储能技术2.超级电容器储能技术3.压缩空气储能技术4.储热技术二、储能技术在电力系统调度中的应用1.平滑负荷曲线2.削峰填谷3.频率调节4.电压支持三、储能技术在微电网中的应用1.微电网的概念和特点2.储能技术在微电网能量管理中的应用四、储能技术在电力市场中的应用1.参与市场交易2.提供备用容量3.降低用户电费结论:储能技术在电力系统中的应用具有重要的研究和实践价值。
通过储能技术的灵活调度,可以提高电力系统的运行性能和能源利用效率。
在未来,储能技术还将进一步推动电力系统的可持续发展和智能化改造。
然而,储能技术的应用还面临着一些技术和经济上的挑战,需要进一步研究和探索,以实现储能技术的充分发挥。
电力系统中的储能技术研究与应用

电力系统中的储能技术研究与应用储能技术是在电力系统中具有重要作用的关键技术之一。
随着可再生能源的普及和能源存储需求的增加,对于高效、可靠、可持续的电力系统运营变得越来越重要。
储能技术能够在电网供需平衡、调度灵活性和电能质量提升等方面提供有效支持。
本文将重点讨论当前电力系统中的储能技术研究和应用,并探讨其未来发展前景。
一、储能技术类型1.储水式储能技术储水式储能技术是一种将电能转化为水位能的技术,通过将电能转化为潜在能量来储存电力。
目前主要应用的是抽水蓄能技术和蓄能水电站。
抽水蓄能技术主要通过利用水库和水泵,将电网低谷时的多余电能转化为潜在能量,高峰时再通过水泵将水流转化为电力,以平衡电力供需。
蓄能水电站则是将富余电力用于瞬时泵水,高峰时通过发电机将水能转化为电力。
2.化学储能技术化学储能技术主要包括电池储能技术和氢能储存技术。
电池储能技术是目前应用最为广泛的储能技术之一,主要包括锂离子电池、钠离子电池和铅酸电池等。
这些电池能够将电能直接储存,并在需要时释放。
氢能储存技术则是将电能利用电解水的方式将水分解成氢和氧,并将氢气储存起来以供需要时使用。
3.压缩空气储能技术压缩空气储能技术是一种将电能转化为压缩空气储存的技术。
该技术主要通过将电能用于压缩空气,并将压缩空气储存起来。
在需要时,通过再次释放压缩空气来驱动发电机以产生电能。
这种技术具有较高的效率和储存容量,适用于大规模的储能需求。
4.超级电容器技术超级电容器技术是一种将电能以静电方式储存的技术。
这种技术主要依靠电子的吸附和电离将电能储存起来,并在需要时释放。
超级电容器具有高功率密度、长寿命和快速充放电特性等优点,适用于频繁的储能和释能需求。
二、储能技术应用1.平滑电网负荷储能技术能够将电能储存起来,在需要时快速释放以平滑电网负荷。
这对于电力系统的稳定运行至关重要,特别是在可再生能源发电波动较大的情况下。
通过储能技术,可以将低谷时的多余电能储存起来,并在高峰时释放,以满足电网负荷需求。
锂电池储能系统在电力微网中的应用

锂电池储能系统在电力微网中的应用
领先的电能存储解决方案提供商
目录
技术背景 系统架构
关键技术 关于力高 角色与案例 交流与合作
2012 ©Ligoo
Anhui Ligoo New Energy Technology Co., Ltd.
Confidential
电池组模块间通信特点:
信息采集点多,通信节点及拓扑结构复杂
采集信息量大,总线吞吐率高 储能电站运行环境电磁干扰环境恶劣 拟解决方案: 充分利用参与单 位优势,使 用底层 CAN2.0 、上层光纤的混合架构,构 建多层结构BMS网站,取得性能、可 靠性和成本的优化平衡,建立标准化 灵活可扩展的电池管理系统价格。
目录
技术背景 储能系统架构
关键技术 关于力高 角色与案例 交流与合作
2012 ©Ligoo
Anhui Ligoo New Energy Technology Co., Ltd.
Confidential
15
领先的电能存储解决方案提供商
关键技术——微网建模
2012 ©Ligoo
Anhui Ligoo New Energy Technology Co., Ltd.
Confidential
16
领先的电能存储解决方案提供商
关键技术——策略控制系统
2012 ©Ligoo
Anhui Ligoo New Energy Technology Co., Ltd.
Confidential
11
领先的电能存储解决方案提供商
储能系统架构——典型功率/容量的储能单元
BCU
BCU
2012 ©Ligoo
储能技术介绍及其在电力系统的应用

储能技术介绍及其在电力系统的应用摘要:储能技术是充分利用可再生能源、提高电力系统稳定性的有效手段。
据统计,2020 年3月全球已投运储能项目(含物理储能、电化学储能以及熔融盐储热)累计装机规模达184.7 GW,同比增长1.9%,中国的累计装机规模达到32.5GW,同比增长3.8%。
储能技术按照能量储存方式可主要划分为物理储能、化学储能和其他储能,各有不同的适合应用领域。
近年来新能源行业发展迅猛,特高压电网建设加快,清洁能源的建设规模越来越大,但新能源发电的间断性会对电力系统运行稳定性造成冲击,所以在新能源发电快速发展的同时,储能市场将会迎来快速增长。
本文主要介绍了目前储能技术的现状及其发展趋势,以及在电力系统发、输、配、用等方面的应用情况,可为储能技术研究和工程实践提供一定的参考。
关键词:储能技术;可再生能源;电力系统.0引言随着智能电网和新能源发电时代的到来,因新能源发电需要储能技术的配合来减少对电力系统运行稳定性的冲击,储能技术的影响日益增大,电力系统的发、输、配、用各个环节均有储能技术的应用[1]。
电力储能具有配置方式灵活、环境适应性强且建设周期短、快速响应和双向调节等特点。
我国能源革命将在2050年取得阶段性成果,能源清洁化率和终端电气化率将达到50%,储能市场空间巨大。
近3年来,在政策支持、储能技术进步、需求增长等因素共同作用下,我国电力储能技术应用快速发展并且具备了一定规模。
在电源侧,由于国家政策的补充完善,以及储能市场的快速发展,全国多家知名发电企业已率先开展电力储能技术具体应用研究。
在电网侧,为应对新能源大发展和特高压电网建设,加快智能电网建设进度,发挥储能技术调峰调频、系统备用、黑启动、改善电能质量等作用。
在用户侧,主要通过峰谷价差下的“谷充峰放”模式,改善电力负荷结构,发挥储能技术削峰填谷、需量管理、需求响应以及虚拟电厂等作用。
随着储能技术日趋成熟,储能产业化会逐步增大,储能技术在各个领域的应用将更加清晰,但一些缺点也在实际工程中暴露出来,如储能项目建设、消防安全等缺少相关标准执行,储能电池选型、电站规划配置、系统集成的理论不完善,缺乏相关工程参考,储能系统调控和运行维护缺少经验,储能电池SOC 标定误差较大,系统调控还未达到最优解等。
储能技术在电力系统中的应用研究(毕业论文)

毕业论文(设计)储能技术在电力系统中的应用研究系别:电气工程系专业:电气工程及其自动化摘要储能技术是一项可能对未来电力系统发展及运行带来革命性变化的技术,必须立足长远从整个电力系统的角度来考虑,明确储能技术的发展定位,要全面分析储能技术应用对整个电力系统和社会带来的综合效益和价值。
目前各类技术正处于快速发展阶段,应当采取鼓励多元发展的路线,加快各类技术的小规模试点和示范应用,通过实践检验、筛选出有前景的技术,在电力系统目前应重点加快在新能源发电和用户侧的试点应用。
而且针对性的政策法规对储能技术的发展至关重要,应当积极研究储能相关的法规,清晰界定相关方面的责任义务,出台包括峰谷电价、投资补贴在内的激励机制。
本文介绍了国内外各种储能技术的发展现状,并从电力系统安全高效运行的角度论述了电能储存技术的重要性。
本文对抽水储能、蓄电池储能、飞轮储能、超导磁储能、压缩空气储能、超级电容器储能等几种储能技术的原理和实现方法作了介绍,并对其在电力系统中的应用情况以及可实施性作了说明。
关键词:储能技术,电力系统,安全,高效,稳定性AbstractEnergy storage technology is a possible future development and operation of power systems brought about revolutionary changes in technology, you must take a long-term perspective from the point of view of the entire power system,clear energy storage technology development,comprehensive analysis of energy storage technology for the entire power system and comprehensive benefit and value to the community.At present, all kinds of technology is in a stage of rapid development, should be taken to encourage pluralistic development of route, speed up all kinds of technical application of small scale pilot and demonstration, by practice,filtering out the promising technologies,in the power system should now be focused on speeding up the pilot application of new energy power generation and customer side. And targetedpolicies and regulations is essential to development of energy storage technologies, should actively study on energy—related regulations, clearly define the responsibilities,introduced,including peak-Valley electricity price subsidies,investment incentives。
储能发电实验报告(3篇)

第1篇一、实验目的1. 了解储能发电的基本原理和组成;2. 掌握储能发电设备的操作方法和注意事项;3. 分析储能发电系统的性能,为实际应用提供参考。
二、实验原理储能发电是将能量从一种形式转换为另一种形式,以实现能量的储存和释放。
常见的储能发电方式有:电池储能、飞轮储能、氢储能等。
本实验采用电池储能方式,通过电池将电能储存起来,在需要时释放电能,实现发电。
三、实验设备1. 储能电池组:由多个电池单元串联而成,用于储存电能;2. 充放电控制器:用于控制电池组的充放电过程;3. 可调电压电源:用于模拟实际发电过程中的电压变化;4. 电流表、电压表:用于测量电池组的充放电电流和电压;5. 示波器:用于观察电池组的充放电波形;6. 实验平台:用于搭建储能发电实验系统。
四、实验步骤1. 搭建实验系统:将电池组、充放电控制器、可调电压电源、电流表、电压表、示波器等设备连接到实验平台上。
2. 初始化电池组:将电池组充满电,确保电池组处于良好状态。
3. 测试电池组性能:通过充放电控制器对电池组进行充放电,测量电池组的充放电电流、电压、容量等参数,分析电池组的性能。
4. 改变电压:调整可调电压电源的输出电压,观察电池组的充放电性能变化,分析电池组在不同电压下的性能。
5. 测试电池组寿命:进行多次充放电循环,观察电池组的容量衰减情况,评估电池组的寿命。
6. 分析实验数据:将实验数据整理成表格,分析电池组的充放电性能、寿命等指标。
五、实验结果与分析1. 电池组性能测试结果:通过充放电控制器对电池组进行充放电,测量电池组的充放电电流、电压、容量等参数。
实验结果显示,电池组充放电性能良好,充放电电流、电压稳定,容量符合设计要求。
2. 电压变化对电池组性能的影响:在改变电压的实验中,电池组的充放电性能基本稳定,未出现明显下降。
说明电池组在不同电压下具有较好的适应性。
3. 电池组寿命测试结果:经过多次充放电循环,电池组的容量衰减在可接受范围内,符合设计要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锂电池储能技术及其在电力系统中的应用研究陈蓓李劲齐亮上海电气集团股份有限公司中央研究院(200070)陈蓓(1985年11月~),女,华东理工大学控制科学与工程专业毕业,博士。
从事储能技术、电力电子方面的探索研究工作。
联系邮箱:chenbei@摘要:本文首先介绍了储能产业的国内外发展情况,然后对锂离子电池储能技术的研究现状进行了重点阐述,并对储能技术在电力系统中的应用情况进行统计,分析了锂离子电池储能技术的优势应用领域,列举了国内外较具代表性的锂离子电池储能示范工程。
综合考虑规模等级、设备形态、技术水平和经济成本,锂离子电池储能技术具备大力推广的潜力,但还需克服技术难点,朝着高安全、长寿命、低成本的目标努力发展。
关键词:锂离子电池;储能技术;电力系统中图分类号:TM911.14Onlithium battery energy storage technology and itsapplication in power systemAbstract: In this paper, the development of the energy storage industry and the research of the lithium battery energy storage technology are discussed.By analyzing theapplications of the energy storage technologies in power system, the domain application of lithium battery energy storage technologyareinvestigated, and some representative lithium battery energy storage demonstration projects are given. Considering the scale level, the device forms, technology and economic cost, lithium battery energy storage technology has the potential to promote, but also need to overcome technical difficulties toward high safety, long life, and low-cost development goal.Key Words: lithium battery; energy storage technology; power system引言日益突出的环境问题和资源问题促进了新能源的迅猛发展,目前,这些可再生能源的发展面临电力品质差和并网难的瓶颈问题。
同时,现阶段用户对电能质量和电力品质要求越来越高,传统的电力系统已经不能很好地满足用户的需求,智能电网和微电网等电网新技术应运而生。
储能技术是解决新能源发电并网、建设智能电网和微电网的关键技术,将迎来巨大的市场机遇。
作为新兴产业,储能在2008年之后一直保持较快增长,据中关村储能产业技术联盟(China Energy Storage Alliance,CNESA)项目库不完全统计,全球储能项目在电力系统的装机总量已经从2008年的不足100MW发展到2013年10月的726.7MW(不包含抽水蓄能、压缩空气储能及储热),年复合增长率达到193%。
从地域分布上看,无论是项目数量还是装机规模,美国与日本仍然是最主要的储能示范应用国家,分别占41%和39%的全球装机容量份额。
根据市场调查公司Pike Research的报告数据,全球储能市场将在未来十年实现100倍的增长,此间将吸引投资额1220亿美元。
欧洲储能协会(EASE)副会长杰里斯•瑞德斯戈尔德(Jillis Raadschelders)表示,到2030年,储能市场的规模累计将达5000亿欧元。
本文首先对储能产业的国内外发展情况进行阐述,然后重点对锂离子电池储能技术及其在电力系统中的应用研究展开分析。
1.国内外发展概况美国是储能发展较早的国家,目前拥有全球近半的示范项目,并且出现了若干实现商业应用的储能项目。
美国同时还是多种储能技术的发源地,同时也代表着这些技术发展的最高水平。
美国储能技术的发展和应用与政府政策的支持密不可分。
美国储能相关政策具备全面性和可持续发展的特征,同时辅助于大规模的政府资金支持。
2009年上半年,美国政府拨款20亿美元用于支持包括大规模储能在内的电池技术研发。
同年11月,美国能源部又拨款近2亿美元支持规模化储能技术研发。
2013年6月,加州将储能纳入输配采购及规划体系中,推动输电、配电等环节配置储能,解决电网管理问题。
目前该项计划已经吸引了大批风险投资的涌入。
受限于国内资源匮乏,日本是最早、最积极发展新能源和储能的国家之一。
经过2011年福岛核电站事故后,日本将推动户用储能作为产业扶持的重点。
2012年4月出台家庭储能系统补助金政策。
用户在购买获得SII认证机构认可企业的新能源产品、严格按要求安装并通过SII机构的审核后,便能获得所购买新能源产品总价值1/3的补助,最高可获得100万日元补助金。
在这项政策的支持下,2013年,越来越多的储能系统获得补助并投放市场。
另外,日本在推动智能电网/智能城市建设方面处于国际先列。
日本经济产业省确定的横滨市、丰田市、关西文化学术研究都市、北九州市4个地区目前正进行实证实验,从能源管理系统、需求侧响应、电动汽车(EV)与家庭的互动设计、蓄电系统的优化设计及智能交通等方面实现区域内能源的整体优化使用。
不仅在日本,全球智能城市或社区的规划与建设也成为热点,储能在这一领域的市场前景也十分广阔。
为应对“弃核”政策,德国正在持续发展风能、光伏等可再生能源。
2013年,相比其它国家,德国在推动储能产业方面的动作较大,2013年和2014年2年共计划投资5000万欧元,对新购买储能系统的用户直接进行补贴,有效地促进了户用储能市场的发展。
目前已有30MW的项目获得补贴,国内外公司也纷纷抢占市场,如博士公司推出一款针对德国住宅光伏市场的产品,可以满足一个典型的四口之家80%及以上的电力需求;LG化学公司联合德国SMA公司开发符合德国补贴标准的家用能源管理系统等。
这一补贴政策的实施是推动储能产业市场化的重要里程碑,用户已经开始意识到安装光伏储能系统实现自发自用所带来的价值,市场对储能系统的投资有望大幅增加。
据预测,由于这一储能补贴计划的出台,德国在未来5年的储能装机容量有望达到2GW·h。
印度、马来西亚、印尼等东南亚国家是微电网的新兴市场。
这些地区海岛众多,无电人口比例大,有些岛屿的无电人口覆盖率甚至高达70%。
鉴于这些岛屿的地理因素和经济状况,微电网成为唯一的解决方式。
目前这些国家的政府已经发布解决无电人口的目标与计划,马来西亚沙巴洲、Mersing群岛等已经成功引进微网系统解决当地供电问题,更多的岛屿对包括储能在内的微网技术的需求在增加。
欧盟电网计划(EEGI)近期发布了《欧洲储能创新图谱》报告,对欧洲14个国家储能研究、开发与示范项目进行了统计分析。
在过去5年,这些国家公共投资和受到欧盟委员会直接资助的项目总数达到391个,总投资额9.86亿欧元。
大部分经费投资于电化学储能(主要是电池)、“电力转换气体”(power-to-gas)以及蓄热技术。
从分析结果来看,储能领域大部分工作还处于研究阶段,部分达到了首次中试阶段,仅有非常少的项目推进到了示范或预商业化阶段。
在中国,截至2013年10月底,累计运行、在建及规划的储能项目总量近60个,装机规模超过75MW,其中分布式发电及微网型储能项目是最多的,如东福山岛风光储柴项目、南麂岛微网项目、西藏阿里光伏储能项目、青海玉树分布式光水蓄互补系统等。
储能在该领域的迅速发展,既是偏远地区无电人口用电问题亟需解决的迫切市场需求,也是中国政府产业政策推动的结果。
2011年3月份,我国《十二五规划纲要》中,首次提到依托储能等技术推进智能电网建设;2011年7月,科技部发布的《国家“十二五”科学和技术发展规划”》中把储能作为智能电网建设的关键技术,将储能列为战略必争领域;2011年10月20日,国家发改委颁布的《当前优先发展的高技术产业化重点领域指南(2011年度)》中将储能技术作为先进能源的第一项提出,重点支持的储能技术包括锂离子电池、钠硫电池、钒电池、燃料电池等四种。
国家能源局2011年12月发布的《国家能源科技“十二五”规划(2011‐2015)》中指出,“十二五”期间,我国可再生能源还将继续大规模发展,《规划》指出,到2015年可再生能源发电量要争取达到总发电量的20%以上。
《规划》中最能体现储能机遇的是,到2015年,我国将建成30个新能源微电网示范工程,这些示范工程以智能电网、物联网和储能技术为支撑,“自发自用、余量上网、电网调剂”是其目标。
国家电网2013年3月发布的《关于做好分布式电源并网服务工作的意见》中指出,推进分布式发电发展,加快新能源开发利用,提高能源效率,减少化石能源消费,促进节能减排和非化石能源发展目标的完成,强调了储能技术在分布式发电中的重要应用。
储能系统能否以设备形态应用于电力系统是决定其能否得到大规模推广应用的重要因素,也就是说,投入应用的储能系统应易于批量化和标准化生产,便于控制与维护,可以作为电力系统中的一类设备,而不是以工程形态出现。
在众多储能方式中,电池储能是契合设备形态需求较好的一种储能技术[1]。
2.锂离子电池储能技术研究现状锂离子电池储能系统的关键设备主要包括储能电池、电池管理系统(Battery Management System, BMS)、能量转换系统(Power Conversion System,PCS)和监控系统四部分,系统拓扑结构如图1所示。
图1锂离子电池储能系统拓扑结构图2.1 储能电池近年来,锂离子电池技术发展迅速,在材料制备、制造工艺和电池性能上和国际水平差距不大。
目前,国内作为动力电池使用的单体锂离子电池技术已较为成熟,包括比亚迪、微宏在内的多个电池厂家能提供现成产品,对于储能用的电池,关键技术为大规模电池成组技术以及成组后的科学管理。
成组示意图如下所示:图2电池成组示意图电池的成组设计需要考虑:1)根据母线电压、功率等确定电池容量;2)串并联联接方式,确保电池之间可靠、安全联接;3)散热结构设计;4)冗余设计,考虑电池更换问题。
2.2电池管理系统电池在生产和使用过程中,会造成电池的自放电率、内阻、电压、容量等参数的不一致,这种差异表现为电池组充满或放完时串联电池之间的电压、容量的不相同。