碳化物陶瓷

全氟化合物零碎知识

1. 全氟有机化合物(PFCs)是一类主要由碳原子与氟原子组成的有机化合物。这类物质的化学性质极为稳定,能够经受高温加热、光照、化学作用、微生物作用和高等脊椎动物的代谢作用。全氟化合物(PFCs)的生产历史已经有50年,广泛应用于化工、纺织、涂料、皮革、合成洗涤剂、炊具制造(如不粘锅)、纸制食品包装材料等领域。 早在上世纪60年代就有关于人体血清中发现有机氟化物的报道。自那以后,环境和生物基质中PFCs的含量越来越受到学术界的关注。由于PFCs具有远距离传输能力,因此污染范围十分广泛。全世界范围内被调查的环境和生物样品中都存在典型PFCs——全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的污染踪迹,甚至在人迹罕至的北极地区和我国青藏高原的野生动物体内,都发现了全氟有机化合物。 考虑到此类物质可能引发的生态环境问题和人体健康危害,在2009年5月召开的《关于持久性有机污染物的斯德哥尔摩公约》第四次缔约方大会上,将PFOS及其盐和全氟辛基磺酰氟列入《斯德哥尔摩公约》附录A或B。这意味着这些物质将在全球范围内被限制使用。而此前已经有部分国家和地区将一些全氟有机化合物列入禁止使用名单。经济合作与发展组织(OECD)及美国环保总署(EPA)也已将全氟化合物列为“可能使人致癌的物质”。 目前,关于PFOA和PFOS等全氟有机化合物的研究已逐渐成为国际上环境健康领域的研究热点。至今,人类对PFOS和PFOA等全氟有机化合物的环境污染途径、对生物多样性的危害、人体的暴露途径及人体健康损害的研究还处于初始阶段。 我国是全氟化有机化合物生产和使用的大国,我国人体PFOS污染水平较高,居世界前列。而中国PFOS的研究也刚刚起步,对其实施环境管理面临挑战。 2. 什么是Pops?Pops就是一个简称,它指的是持久性有机污染物。它是一类化学物质,这类化学物质可以在环境里长期的存留,可以在全球广泛的分布,它可以通过食物链蓄积,逐级的传递,进入到有机体的脂肪组织里聚积。最终会对生物体、人体产生不利的影响。 POPs的基本特性是:在环境中降解缓慢、滞留时间长,可在水体土壤和底泥等环境中存留数年时间。因其具有很强的亲脂憎水性,可以沿食物链逐级放大,导致低浓度存在于大气、水、土壤的POPs物质可通过食物链对处于最高营养级的人类健康造成严重损害。POPs物质因具有半挥发性,使得它们能够以蒸气形式存在或者吸附在大气颗粒物上,可在大气环境中作远距离迁移,导致全球范围的污染传播。POPs对人类健康和生态系统产生毒性影响,对肝、肾等脏器和神经系统、内分泌系统、生殖系统等有急性和慢性毒性,并具有致癌性、生殖毒性、神经毒性、内分泌干扰特性等 3. POPs"十二五"污染防治规划,构建我省POPs管理长效机制

碳化物

Mo2C形成的过程与金属储氧的过程相似,可以预测C原子进入体心立方的Mo 的结构后,形成了更小的,可能更适合原子储存的间隙。 人们己经发现很多碳化物具有良好的储氧性能:如在低温,高压的条件下,SiC纳米管、BC纳米管的储氢容量分别可高达、并且WC纳米管储氢的理论可行性也已经被报道. 根据Mo2C性质与结构可以推测材料可能具有可观的电化学储氢性能,经过电化学储氢测试与循环伏安测试,表明二者均具有很高的电化学储氢容量,其充放电循环性能有待进一步加强。二者均是潜在的储氢材料,潜在的电池的负极材料。 金属间化合物材料分为两大类:结构材料和功能材料。结构材料是以强度、韧性、刚度、耐磨性的等力学性能为主要特征,用以制造以受力为主的结构器件;功能材料则是具有特殊物理性能、化学性能、生物性能等而主要作为制作功能器件的材料。 理论计算表明碳化物中的成键同时包含金属键、共价键和离子键的成分。金属键与金属-金属的键合有关,共价键源于碳原子的2s轨道与金属的d轨道的相互作用,而离子键和金属原子与碳原子的相互作用有关。过渡金属碳化物的离子性取决于金属组分的电负性,从ⅣB到ⅥB族,电负性增加,碳

化物中离子性成分也增加。对于碳化钼(或钨),XPS等表征结果显示电子是由金属原子向碳原子转移,碳原子获得电子就意味着碳化物中碳原子周围的电子密度有所增加。这一结果是与用APW理论计算的结果相一致的,但却与简单的原子轨道线性组合(LCAO)的计算结果不相符。电子从金属原子转移到碳原子就减小了金属原子核外d电子的填充程度,但金属与间歇碳原子形成合金时,金属原子间距M-M增加,导致d带产生收缩,d带收缩就会使得d带的填充程度增大其费米能级附近的d带态密度数字增高且类似于Ⅷ族金属,尽管有电子从金属原子向外转移。d带收缩就会导致金属原子核外电子的局域化,使得在催化过程中不易被化学吸附的分子的重叠轨道所获得,于是就减小了它们的结合能,这就会导致被化学吸附的分子的活化所需要的能量减小。 根据过渡金属碳化物的一些性能,讨论了在结构材料或结构增强材料和功能材料方面的应用。 (稀土碳化钼和碳化钼的制备)

陶瓷的分类及性能

陶瓷材料的力学性能 陶瓷材料 陶瓷、金属、高分子材料并列为当代三大固体材料之间的主要区别在于化学键不同。 金属:金属键高分子:共价键(主价键)范德瓦尔键(次价键) 陶瓷:离子键和共价键。普通陶瓷,天然粘土为原料,混料成形,烧结而成。 工程陶瓷:高纯、超细的人工合成材料,精确控制化学组成。 工程陶瓷的性能:耐热、耐磨、耐腐蚀、绝缘、抗蠕变性能好。 硬度高,弹性模量高,塑性韧性差,强度可靠性差。 常用的工程陶瓷材料有氮化硅、碳化硅、氧化铝、氧化锆、氮化硼等。 一、陶瓷材料的结构和显微组织 1、结构特点 陶瓷材料通常是金属与非金属元素组成的化合物;以离子键和共价键为主要结合键。 可以通过改变晶体结构的晶型变化改变其性能。 如“六方氮化硼为松散的绝缘材料;立方结构是超硬材料” 2、显微组织 晶体相,玻璃相,气相 晶界、夹杂 (种类、数量、尺寸、形态、分布、影响材料的力学性能。 (可通过热处理改善材料的力学性能) 陶瓷的分类 玻璃 — 工业玻璃 (光学,电工,仪表,实验室用);建筑玻璃;日用玻璃 陶瓷 —普通陶瓷日用,建筑卫生,电器(绝缘) ,化工,多孔 ……特种陶瓷 -电容器,压电,磁性,电光,高温 …… 金属陶瓷 -- 结构陶瓷,工具(硬质合金) ,耐热,电工 …… 玻璃陶瓷 — 耐热耐蚀微晶玻璃,光子玻璃陶瓷,无线电透明微晶玻璃,熔渣玻璃陶瓷 … 2. 陶瓷的生产 (1)原料制备(拣选,破碎,磨细,混合)普通陶瓷(粘土,石英,长石等天然材料)特种

陶瓷(人工的化学或化工原料 --- 各种化合物如氧、碳、氮、硼化合物) (2) 坯料的成形 (可塑成形,注浆成形,压制成形) (3)烧成或烧结 3. 陶瓷的性能 (1)硬度 是各类材料中最高的。 (高聚物<20HV,淬火钢500-800HV,陶瓷1000-5000HV) (2)刚度是各类材料中最高的(塑料1380MN/m2,钢MN/m2) (3)强度理论强度很高(E/10--E/5);由于晶界的存在,实际强度比理论值低的多。 2 (E/1000--E/100)。耐压(抗压强度高),抗弯(抗弯强度高),不耐拉(抗拉强度很低比抗压强度低一个数量级)较高的高温强度。 (4)塑性:在室温几乎没有塑性。 (5) 韧性差,脆性大。是陶瓷的最大缺点。 (6) 热膨胀性低。导热性差,多为较好的绝热材料(λ=10-2~10-5w/m﹒K) (7)热稳定性 — 抗热振性(在不同温度范围波动时的寿命)急冷到水中不破裂所能承受的最高温度。陶瓷的抗热振性很低(比金属低的多,日用陶瓷 220 ℃) (8)化学稳定性 :耐高温,耐火,不可燃烧,抗蚀(抗液体金属、酸、碱、盐) (9) 导电性 — 大多数是良好的绝缘体,同时也有不少半导体( NiO , Fe3O4 等) (10) 其它: 不可燃烧,高耐热,不老化,温度急变抗力低。 普通陶瓷

氯及其重要化合物的性质和应用

第五讲氯及其重要化合物的性质和应用一、知识梳理 (一)氯气的性质及用途 1.物理性质 常温下,氯气是黄绿色、有刺激性、能溶于水、比空气重、易液化的有毒气体。2.化学性质:氯气是化学性质很活泼的非金属单质。 (1)与金属反应(与变价金属反应,均是金属被氧化成高价态) 如:①2Na+Cl2点燃 2NaCl(产生白烟)②Cu+Cl2 点燃 CuCl2(产生棕黄色的烟) ③2Fe+3Cl2点燃 2FeCl3(产生棕色的烟)注:常温下干燥的氯气或液氯不与铁反应,所以液氯通常 储存在钢瓶中。 (2)与非金属反应 如:①H2+Cl2点燃 2HCl(发出苍白色火焰,有白雾生成)——可用于工业制盐酸 H2+Cl2光照 2HCl(会发生爆炸)——不可用于工业制盐酸 ②2P+3Cl2点燃 2PCl3(氯气不足,产生白雾)2P+5Cl2 点燃 2PCl5(氯气充足,产生白烟) (3)与水反应:Cl 2+H2O HCl+HClO (4)与碱反应:Cl 2+2NaOH NaCl+NaClO+H2O(用于除去多余的氯气)2Cl 2+2Ca(OH)2 Ca(ClO)2+CaCl2+2H2O(用于制漂粉精) Ca(ClO)2+CO2+H2O = CaCO3↓+2HClO(漂粉精的漂白原理) (5)与某些还原性物质反应 如:①2FeCl 2+Cl2 2FeCl3 ②2KI+Cl 22KCl + I2(使湿润的淀粉-KI试纸变蓝色,用于氯气的检验) ③SO 2+Cl2+2H2O 2HCl + H2SO4 (6)与某些有机物反应 如:①CH4+Cl2光照 CH3Cl + HCl(取代反应)②CH2=CH2+Cl2→ CH2ClCH2Cl(加成反应) 3.氯水的成分及性质 氯气溶于水得黄绿色的溶液——氯水。在氯水中有少部分氯分子与水反应, Cl 2 + H2O HCl + HClO (次氯酸),大部分是以Cl2分子状态存在于水中。 注意:(1)在新制的氯水中存在的微粒有:H2O、Cl2、HClO、H+、Cl-、ClO-、OH-;久置氯水则几乎是盐酸溶液。 ①一元弱酸,比H2CO3弱 (2)HClO的基本性质②不稳定,2HClO2HCl + O 2↑ ③强氧化性;

钢中的碳化物

白口铸铁中碳化物的类型 根据碳化物的结晶点阵形式,碳化物可分为两大类型: 1.简单密排结构的间隙碳化物当r C/r M<0.59时,碳原子处在简单的点阵间隙之间,形成不同于原金属结晶点阵的间隙相。这类金属元素是Mo、W、V、Ti、Nb、Zr,形成的碳化物有: MC型——WC、VC、TiC、NbC、ZrC M2C型——W2C、Mo2C 如果同时存在多种过渡族金属元素,将形成复杂的碳化物。在满足点阵类型、电化因素和尺寸因素三条件时,其中的金属原子可互相置换,如TiC–VC系形成(Ti、V)C;VC–NbC系形成(Nb、V)C;TiC–ZrC系形成(Ti、Zr)C等。 MC型碳化物中的金属原子M具有面心简单六方结构,其中八面体间隙相都被碳原子占领,所以,M:C=1:1,晶体为NaCl型结构。 M2C碳化物具有密排六方结构,例如:W2C、Mo2C、V2C、Nb2C,碳原子处于四面体的空隙中。 2.复杂密排结构的间隙碳化物当r C/r M>0.59时,碳不可能与金属元素形成简单密排的间隙相,而是形成一种结晶点阵复杂的间隙化合物。Cr、Mn、Fe的碳化物属于复杂密排结构,其中M23C6、M6C为复杂立方、M7C3为复杂六方、M3C为斜方点阵。常见到的复杂密排结构的碳化物为 M3C型——Fe3C、Mn3C或(Cr、Fe)3C,简称K c; M7C3型——Cr7C3、Mn7C3或(Cr、Fe)7C3,简称K2; M23C6型——Cr23C6、Mn23C6,及三元碳化物Fe21W2C6、Fe21Mo2C6、(Cr、Fe)23C6,简称K1; M6C型——Fe3W3C、Fe4W2C、Fe3Mo3C、Fe4Mo C等三元碳化物。 (1)M3C型碳化物:最常见的是普通白口铸铁中的渗碳体(Fe3C)。渗碳体的晶体结构为斜方晶格,晶格常数a=0.45144μm,b=0.50787μm,c=0.67287μm。渗碳体的晶体结构见图1所示。在每个碳原子外围都有六个铁原子,它们构成八面体,各八面体的轴彼此倾斜一个角度形成菱晶。因为每个八面体内部都有一个C原子,而每个Fe原子都同时属于两个八面体,因此正好满足分子式中Fe3C的Fe/C原子比。一个渗碳体的空间八面体的投影为菱形的链状结构(见图2)。从整体看,菱形面之间互相平行,呈层状排列。在每个菱晶中,Fe–C原子由共价键连接,它是由四个碳原子的共价电子和四个最近位于菱晶顶尖的铁原子3d电子来实现的。其余的两个铁原子处于邻近的菱晶中,在那里,铁原子与下一个碳原子的距离较小,因而在各层上便具有了牢固的联系。此外铁和碳之间的电负性差更增强了Fe–C的结合,故Fe–C结合强度约为Fe–Fe结合强度的两倍。而层与层之间则由铁原子之间的金属键连接,层间的结合力弱,使渗碳体形成强烈的各向异性。往铁碳二元合金中加入第三元素,可使Fe–C键的强度发生变化。使Fe–C键增强的元素促进渗碳体更稳定;而使Fe–C键变弱的元素,Fe–C键容易断开,削弱渗碳体稳定,结果促进石墨化。

氯及其化合物知识点

氯及其化合物 一、氯元素的原子结构与自然界的存在 氯元素位于周期表__周期__族,在自然界中的主要存在形:。 二、活泼的氯气 1、氯气的物理性质:色有气味的体,毒,溶于水。 2、氯气的化学性质 ①与金属单质的反应:与钠反应方程式。现象是。与铁反应方程式。现象是。与铜反应方程式。现象是。 ②与氢气的反应:化学方程式:,反应现象:氢气在氯气中燃烧;氯气与氢气的爆炸实验。 思考:在初中我们是如何定义燃烧的?现在通过氢气与氯气的燃烧实验,你有什么新的认识? ③与水的反应:与水反应的离子方程式:,说明:氯气与水反应很微弱,且未可逆反应。 思考:氯水的成分及性质?氯水的保存方法? ④次氯酸的性质: a、一元弱酸(比弱) b、强氧化性(应用:) c、不稳定(见光或受热分解):化学方程式:。 ⑤与碱的反应Cl2 + _NaOH —。(常用于除去多余氯气)离子方程式:。漂白液主要成分是。漂白粉的制法:。其主要成分:,有效成分:。漂白原理:ClO-+ H+= HClO(实际漂白者),

Ca(ClO)2+_HCl(稀)= 。Ca(ClO)2+CO2+H2O = 。 思考:抗洪救灾中防疫部门,向灾民发放的漂白粉片或漂粉精用于饮用水消毒。漂粉精为何要密封保存在阴暗处? (一)卤素的原子结构 共同点:原子的最外层均为个电子,都易个电子 不同点:核电荷数逐渐;电子层数逐渐; 原子半径依次,得电子能力逐渐;单质 氧化性逐渐。 (二)单质的物理性质:随卤素核电荷数增加,其原子结构递变而使卤素单质的物理性质呈规律性变化.从F →I2 2 1、颜色逐渐,状态从→→。 2、单质的溶解性——除氟外(与水剧烈反应)在水中溶解度都较,都易溶于有机溶剂,右表列出Cl2、Br2、I2在不同溶剂中的颜色. (三)卤素单质的化学性质(相似性及递变性) 由于最外层均为个电子,极易电子,因此卤素都是剂,在自然界均只以态存在.但随着电子层数递增,原子半径渐,核对外层电子的引力渐,得电子能力渐,其氧化性逐渐,主要表 现:。 【例1】下列有关氯的叙述中正确的是 A.液氯和氯水是同一物质B.红磷在氯气中燃烧产生白色烟雾

钢中常见元素的存在状态

钢中常见元素的存在状态 一、碳 碳是钢铁中的主要成分之一,是钢铁分类的重要依据,一般含水量碳量在1。7%以下者为钢,大于1。7%为铁。碳在钢中主要以碳化铁Fe3C和合金元素的碳化物状态存在,如Mn3C、Cr3C2、WC、TiC、NbC等,以这种形式存在的碳,称为化合碳。游离碳包括无定型碳、石墨碳和退火碳等。当碳含水量增加时,其强度和硬度随之增加,而塑性和延展性随之降低,使钢脆且难以加工;反之,随着碳含量的减少,钢的韧性得到增强且易切削加工。 二、硅 硅要钢中主要以固溶体状态存在,其形式为FeSi或更复杂的化合物FeMnSi,也有少部分硅酸盐状态的夹杂物,在高碳硅钢中可能有少量SiC形成。 硅和氧的亲和力仅次铝和钛,而强于锰、铬和钒,所以在炼钢过程中,硅用作还原剂和脱氧剂。硅还能增强钢的抗张力、弹性、耐热性,又能增大钢的电阻系数。故钢中含硅量一般不小于0。10%,作为一种合金元素来考虑,一般不低于0。40%,而硅金刚中含硅量可高达4%以上。 三、锰 锰在钢中主要以固溶体和MnS状态存在,当生成MnS后有多余的锰时,也可组成Mn3C,此外,也有少量的MnSi、FeMnSi等存在。 锰在炼钢中通常作脱氧剂和脱硫剂而特意加入。锰和硫作用可防止热脆,从而提高钢的可锻性。锰在钢中一般含量0。3~0。8%,含量超过0。8%即作锰合金钢。当锰钢中锰含量超过10%时,特别耐磨。 四、磷 磷在钢中主要以固深体、磷化物(Fe2P、Fe3P、FeP)及少量磷酸盐夹杂物的状态存在,常呈析离状态。磷在钢中的分布具有不同程度的偏析现象,所以在取样时应注意代表性。磷通常是钢铁中的有害元素,如Fe3P是一种很硬的物质,易发生冷脆现象影响钢的性能。但在某些情况下,磷能改善钢材的切削性能,故易切钢也要求有较高的磷含量。 五、硫 硫在钢中主要以MnS和FeS状态存在,它易使钢产生热脆,使钢的机械性能降低,同时对钢的耐蚀性、可焊性不利,因此硫是钢的有害元素之一,在普通钢中硫的含量不超过0。05%优质结构钢、工具钢中不超过0。045%或0。05%,高级优质钢中不超过0。020%,但在易切削和高锰钢中硫含量可以高些。 硫在钢中易偏析,因此取样时必须注意代表性。 六、铬 铬在钢中的状态较为复杂,有金属状态、碳化物、硅化物、氮化物、氧化特等状态,其中以铬的碳化物状态较为稳定。 铬是合金元素中应用最广泛的元素之五,铬能提高钢的机械性能和耐磨性,也可增加钢的淬透性及淬火后的抗变形能力,增加钢的硬度、弹性等。 七、镍 镍在钢中主要以固溶体形式存在,也有以碳化物状态存在。由于镍在钢中不易形成稳定的化合物,所以大多数含镍钢和合金都溶于酸,但浓硝酸易使镍钝化,回此在溶解含镍钢时,一般采用稀硝酸和稀盐酸。 八、钼 钼在钢中主要以固溶体和碳化物(MoC、Mo2C)的形式存在。钼作为合金元素加入,能增加钢的强度,而不降低其可塑性和韧性,同时能使钢在高温下有足够的温度,并改善钢的各种性能。

含氟化合物

含氟化合物 目前使用的农用薄膜通常由合成树脂(例如聚氯乙烯树脂)制成,使用氟系表面活性剂作为防雾剂,含这种防雾剂的农用薄膜,在其内表面附近常常有雾形成(小水滴),水滴沿大棚内侧表面流下来,从而提高日光入射量。但是,现有的氟系表面活性剂不能防止雾的生成或防雾性差,仍然会影响日光照射量,不能令人满意。 本发明人研究发明了一种合成树脂添加剂,将其添加到合成树脂中制得的农用薄膜,可抑制在农膜表面附近形成雾(即具有防雾性),而且具有优异的防雾持久性,适合于大棚植物的栽培。 所述的合成树脂添加剂为用下式(1)表示的含氟化合物: C8F17-Q-O-(A-O)n-H 式(1) 式中:Q是碳原子数为1~5的亚烷基; A是碳原子数为2~4的亚烷基; 当n≧2时,A可以相同或不相同。 式(1)中,Q优选的是碳原子数为3~5,特别是3或4的亚烷基,当该含氟化合物中Q的碳原子数为3~5是,C8F17全氟烷基的吸电子性对Q亚烷基的影响很小,因此化合物的化学稳定性好,即使在各种环境中使用,都具有良好的耐热性和优异的防雾性。基团A是从亚乙基、亚丙基和四亚甲基中选出的一种或一种以上的基团。 含氟化合物的具体例子如下,但不限于下面举出的化合物。 C8F17-C3H6-O-(C2H4-O)28-H C8F17-C3H6-O-(C3H6-O)4-H C8F17-C4H8-O-(C3H6-O)4-(C2H4-O)8-H C8F17-C4H8-O-(C2H4-O)12-(C3H6-O)4H C8F17-C5H10-O-(C3H6-O)10-H 本发明的含氟化合物由C8F17QOH与环醚开环加成反应制得。首先,环醚与C8F17QOH或其混合物在碱性催化剂存在下进行加成反应,但是实验中发现在强碱性条件下会发生脱HF的副反应,因此优选采用NaBH4/NaI/I2三元催化剂等温和的碱性催化剂,加成反应的温度为-20℃~+180℃,优选0℃~130℃;然后,将由此制得的加成产物的聚氧亚烷基链末端的羟基进行酯化,得到粗产物;最后,经精致、脱水、过滤、干燥,制得本发明的含氟化合物。本发明含氟化合物在合成树脂中的添加量,每100份重量的合成树脂,一般掺入0.01重量份以上,2.0重量份以下的含氟化合物,优选0.02~1.0重量份。 作为制备农膜所用的合成树脂,优选使用的是聚氯乙烯。 在用于制备农膜的合成树脂,还可以常量加入各种常用添加剂,如增塑剂、润滑剂、热稳定剂、紫外线吸收剂、颜料等。 发明人所做的实验如下。(略) 新颖性检索中发现一篇相关文献:公开了一种合成树脂组合物,含有式为C8F17-CH2-CH (OH)-CH2-O- (C2H4O)2-30CH3的含氟化合物作为合成树脂的添加剂。在100份合成树脂中,添加0.05~2.0重量份所述含氟化合物,并加入其他常用添加剂,按常规方法混合均匀制成薄膜。由此制得的合成树脂作为农膜使用时,具有防雾效果,且不影响太阳光透过,有利于作物生长,但防雾的持久性不够好。 请问代理人还需要向发明人了解什么?根据上述提供的资料和了解到的情况,撰写权利要求书和摘要。

SEP1520-1998___钢中碳化物图谱显微检验法.pdf

SEP1520-1998 钢中碳化物图谱系列显微检验法 1.检验目的和适用范围 1.1根据出现的碳化物特征,采用显微检验的方法对钢(组织)加以评价是适宜的。本标准 为该方法的说明,本标准中附有碳化物的组成和分级图谱系列。此图谱系列用于所规定的钢 及其组织状态。它是考虑到碳化物形状、结构、尺寸和数量而制定的。 试验是在金相磨片上进行的。通过在显微镜下观察,与碳化物图谱系列进行比较,检验碳化 物状况。 1.2本标准适用于含碳量约为0.1~1.2%,合金元素总含量为5%的钢,通常只用于特殊钢。 本标准不适用于下述的碳化物检验: 低碳钢(例如深拉延的钢材) 高速工具钢(见钢铁试验标准SEP1615和其他莱氏体钢) 1.3仅按协议检验钢和碳化物,并在供货条件中规定全部检验条件(符合本标准规定条件)。 当试验条件未经协议,可采用适当的试验部位进行试验。 1.4根据钢的再加工和使用状况,而确定碳化物的合格界限,不属于标准范围内的规定。 2.试验范围: 只要符合质量标准的规定(DIN-标准,钢铁试验标准)本试验范围具有权威性。若质量标 准没有规定则检验批和取样数量,按以下推荐执行: 由同一热处理炉次和同一尺寸组成的每炉批取2个试样。 连续炉热处理时(同一冶炼炉号),每5吨盘条或每10吨同一断面的棒材,取1个试样,但 每批最少取2个试样。 此外,允许断面相近的钢材,组成一个检验批。 3.取样和试样制备:

3.1若无另外协议,取样和试验用金相磨面面积,按下述规定 3.1.1取样时,对交货检验用试样应加以标记。 3.1.2检验碳化物特征,除系列6和7碳化物带状检验为纵向磨面外,其它金相试样磨面取样部位为纵向或横向。 只要有可能且有益,每个金相试样磨面面积应为100mm2(标准面积F)。横向或纵向试样磨面位置,根据不同要求而确定。 图1为圆钢取样位置。当有待检验的碳化物特征类型,要求一定方向、位置上取样和检验试样面积与标准试样面积不同时,在这种情况下,其具体规定协商确定。 上述对圆钢的取料及试样规定,在同意的情况下也适用于方纲、宽扁钢、钢板、钢带、钢管和锻件。 3.2试样应进行磨光和抛光,并采用一种符合要求的腐蚀及侵蚀(通常为硝酸溶液;系列1~4碳化物,采用苦味酸溶液)。如采用电解腐蚀,也可以满足检验各种碳化物用金相试片的要求。 3.2.1在检验系列5网状碳化物和系列6和系列7带状碳化物之前,通常应将试样淬火处理。淬火温度为标准中规定的中限温度,保温时间约为10分钟。 淬火后的试样,采用约90ml酒精和10ml浓硝酸组成的溶液进行强腐蚀,这样就会在暗黑色的钢的基体上出现光亮的碳化物(深腐蚀)。 退火状态试样经深腐蚀后,按系列5、6和7评定应协商确定。 4.图谱系列: 本图谱系列包括7个单独存在又相互毗邻的系列,每个系列按要求划分成10个等级都表示一定的碳化物特征(除其中的一种外)。图谱系列的放大,除满足一定的分辨率外,还要考虑观察面与视场的清晰度。每个系列所表示的碳化物特征如下: 系列1:铁素体—珠光体钢中的游离铁素体。(用此系列可以看出钢的全部组织以及间接的

陶瓷及其釉料

1.陶瓷的发展史及其在现代生活中的作用 中国的科技发展史上,除了“四大发明”,最引人注目的莫过于陶瓷了。中国的英文名称,就由此而来。但大多数并不了解陶瓷。在他们眼里,陶瓷一体,事实上,陶和瓷是完全不同的两种器物。陶产生在先,用粘土制坯;瓷产生在后,用瓷土制坯,而且两者烧制的窑温度也不相同。古代陶瓷的发展早在新时期时期,我们的祖先就拉开了陶瓷发展史的序幕。一开始,陶瓷只是一般的生活用品,作为容器或餐具。后来陶瓷制造逐渐脱离了实用主义,出现了只作为装饰功用的产品。殷商初期,随着烧制温度的不断提高,瓷器初具雏形。历史上最先出现的瓷器是青瓷。与比陶相比,瓷器质地细腻致密,坚固耐用,而且表面涂上了一层釉,防漏性能有了很大的提高,这算是进步。但在早期,经常出现露胎流釉的现象。这是由于在制坯时,瓷胎涂满釉质。在烧制过程中釉质受热熔化,变为液体,流到地面上,冷却后又变回固态,把瓷器与地面粘连起来。当时这种现象十分普遍。遇到这样的情况,师傅们只能用小榔头敲击瓷器底部,以把它同地面分开。这是个投鼠忌器的过程,力道的把握非常困难,劲小了,根本敲不下来;劲大了,又会使瓷器上产生裂纹,影响品质,甚至会把瓷器打碎,那前面的所做一切就前功尽弃了。后来有人发明了“半釉”法,成功的解决了这个问题。方法就是在制胎时只把釉质涂在器物的上半部分,并且稍微涂得厚一点。烧造时釉质受热后向下流,流到器物最底下刚好流完,而不会滴到地面上,这样冷却后就不会和地面发生粘连,很容易的就可以拿起来了。东汉时,浙江的越窑的青瓷逐渐成熟起来。随着技术的进步,直至魏晋南北朝,青瓷已经独霸中国的瓷器市场。此时,白瓷在北方悄然兴起,并在青瓷的强大统治下顽强地生根发芽。经过岁月的洗礼,唐朝时已经和青瓷分庭抗礼。两者各领风骚,有“南青北白”之说。唐朝的彩陶艺术也有了很大发展,最大的成就是人们后来所熟知的“唐三彩”。唐三彩主要由黄、绿、白三色的釉彩涂于胎身,因此得名。其造型丰富多样,有各种人物、动物、花鸟等,其中最出名的,要属唐三彩的马。随着唐王朝的土崩瓦解,中国瓷器市场格局重新洗牌。到了宋朝,瓷器产品打上了地方风格的烙印,形成一个个“瓷器割据”。总体上可概括为“五大名窑”,就是人们常说的官、哥、汝、定、钧。经过近千年的发展,中国陶瓷到明清时期更加灿烂辉煌。瓷器不再单调乏味,而是五光十色,丰富多彩:有蓝釉、祭红釉、郎窑红釉、豆红釉、黄釉、孔雀绿釉、黑釉等,其中黑釉是用来描边的。明代宣德的瓷器在落款上极为讲究——真品上的落款中,“德”字右半部分“心”字之上的一横是省略的,但是宣德炉除外。因为宣德炉是皇家使用的,所以不能残缺。德化窑的产品质地极脆,制作小型瓷器尚可,大型器物则容易变形,但非常适合佛像,传世的德化窑佛像价值很高。清代是中国封建社会的衰落时期,但陶瓷制造却迎来了又一个黄金时代,景德镇依然稳居陶瓷生产的重要中心。清朝瓷器质量以“康熙、雍正、乾隆”三朝为最高。清朝的统治者非常关心陶瓷业的发展,曾多次颁布特别御令,直接指导官窑的生产活动,对每一件瓷器的器形、样式、尺寸、纹路等都有明确的批示。这个时期,普遍实行“官搭民烧”制度。所谓“官搭民烧”,就是朝廷把一些御用瓷器的制造工作外包给民窑。由专门的机构设计好瓷器的样子,同时计算好所需银两的数目,一并交给民窑。民窑拿着银两去购买原料,按要求进行烧制。如果烧出来的瓷器不合规定,或者制作过程中出现事故,导致原料无法使用,损失必须由民窑自己掏钱承担。无论返工多少

钢中碳化物的相间析出

钢中碳化物的相间析出 通常,对于工业用钢,碳化物的弥散硬化和二次硬化的利用,都是在调质状态下实现的。但是,在控制轧制条件下使用的非调质高强度钢中,人们却利用添加少量Nb、V等强碳化物形成元素,有效地提高了钢的强度。之所以如此,是由于钢在冷却过程中从奥氏体中析出了细小的特殊碳(氮)化物。透射电子显微镜观察表明,这种化合物的直径约为50?,而且比较规则的一个面接一个面的排列分布。后来研究又发现,这种碳(氮)化物是在奥氏体-铁素体相界面上形成的,因此将这种转变称为“相间析出”(interphas precipitation)。相间析出的结果也是由过冷奥氏体转变为铁素体与碳化物的机械混合物。由于这种转变发生在珠光体与贝氏体形成温度之间,因而研究这种转变,不仅对非调质钢的强化有实际价值,而且对搞清珠光体和贝氏体转变机理也有一定意义。 (一)相间析出产物的形态和性能 含有强碳(氮)化物形成元素的低碳合金钢的奥氏体,在冷却过程中有可能首先发生碳(氮)化物的析出,因为析出是在奥氏体与铁素体相界面上发生的,所以把这一过程称为相间析出。 1、组织形态 钢中的相间析出的转变产物,其显微组织在低倍的光学

显微镜下,相间析形成的铁素体与先共析铁素体相似呈块状。而在高倍的电子显微镜下,可以观察到铁素体中有呈带状分布的微粒碳(氮)化物存在,这是相间析的组织形态特征。这种组织与珠光体相似,也是由铁素体与碳化物组成的机械混合物,而碳化物不是片状,而是细小粒状的,分布在有一定间距的平行的平面上,因此也称为“变态珠光体”(degenerate pearlite)。分布有微粒碳化物的平面彼此之间的距离称为“面间距离”。随着等温转变温度的降低或冷却速度的增大,析出的碳化物颗粒变细,面间距离减小。另外,钢中的化学成分不同对碳化物的颗粒直径的面间距离也有一定的影响,通常含特殊碳化物元素越多,形成碳化物颗粒越细,面间距离越小。在相同转变温度下,随着钢碳含量增高,析出碳化物的数量增多,面间距离也有所减小。 2、性能 在Fe-C合金中,相间析出转变产物的硬度,介于铁素体或珠光体与贝氏体之间。但对于低碳合金钢,其硬度可以高于贝氏体。相间析出转变产物的强度由三种因素决定,1细晶强化;2固溶强化;3沉淀强化。在三种强化因素中,以沉淀强化的贡献最大,细晶强化次之,而固溶强化的贡献最小。低碳V钢相间析出转变产物的强度,主要是由碳化物弥散强化贡献的,晶粒细化也有较大的贡献,但固溶强化的贡献较小。同时,在同种类钢中,随着转变温度的降低,由于

钢中存在哪几种类型的碳化物

1.钢中存在哪几种类型的碳化物?比较它们稳定性的强弱。碳化物的稳定性对钢的性能及 热处理有什么意思? 答:分类:复杂点阵结构碳化物、简单点阵碳化物、合金碳化物、合金渗碳体。 性能意义:碳化物稳定性高,可使钢在高温下工作并保持其较高的强度和硬度。钢的红硬性、热强性好。相同硬度条件下,碳化物稳定性高的钢可在更高温度下回火,使钢的塑性、韧性更好。合金钢较相同硬度的碳钢综合力学性能好。碳化物的稳定性高,在高温和应力作用下不易聚集长大,也不易因原子扩散作用而发生合金元素的再分配。钢的抗扩散蠕变性能好。热处理意义:(1)特殊碳化物稳定性高,合金钢奥氏体化的温度要提高、保温时间要延长。(2)碳化物的稳定性过高,加热时不溶于奥氏体,随后冷却时加速奥氏体的分解,降低钢的淬透性;碳化物的稳定性低,加热时溶于奥氏体中,增大过冷奥氏体的稳定性,提高淬透性。(3)碳化物的稳定性高,淬火钢的回火稳定性高。 2.合金钢二次硬化现象的本质是什么?对钢的性能有什么影响? 答:二次硬化为淬火钢在回火时出现的硬度回升现象,原因是特殊碳化物的弥散强化+二次淬火。影响:提高热强性,红硬性。 3.低合金高强度钢中的主加合金元素Mn对钢的性能有哪些影响?为什么它会有这些影 响? 答:锰是A形成元素,能降低A→P转变的温度Ar1,并减缓其转变速度,可细化P,↑钢的强度和硬度。锰的加入可使Fe-C状态图中“S”点左移,使基体中P数量增多,可使钢在相同含碳量下,P量增多,致使强度不断↑。锰还能↓钢的韧脆转变温度。原因:锰属于复杂立方点阵,其点阵类型及原子尺寸与α-Fe相差较大,因而锰的固溶强化效果较强。 4.机器零件用钢中的主加合金元素有哪些?他们的作用? 答:主加合金元素:Si、Mn、Cr、Ni、B,作用:分别加入或复合加入钢中,对↑钢的淬透性、↑钢的综合力学性能起主导作用。 5.弹簧钢的成分特点是什么?这样的成分对钢的性能有哪些影响? 答:1、中、高碳碳素弹簧钢的含碳量在0.6%~0.9%之间,合金弹簧钢的含碳量一般在0.40%~0.70%之间,以保证高的弹性极限、屈服强度和疲劳强度。2、加入提高淬透性的元素主加合金元素:Si、Mn;目的:提高淬透性、强化铁素体基体和提高回火稳定性,同时也提高屈强比。硅对提高钢的弹性极限有明显的效果,但高硅量的钢有石墨化倾向,并在加热时易于脱碳。锰在钢中易使钢产生过热敏感性。辅加合金元素:碳化物形成元素Cr、Mo、W、V等,目的:进一步提高淬透性和强度,防止钢在加热时晶粒长大和脱碳,增加回火稳定性及耐热性。 6.调质钢的成分特点是什么?主加合金元素与辅加合金元素的主要作用是什么? 答:1、中碳ωc :(0. 25%~0. 50%)C。含碳量过低,不易淬硬,回火后强度不够;含碳量过高,材料的塑性、韧性变差。2、主要加入提高淬透性的元素如Cr、Ni、Mn、Si、B 等,提高淬透性,强化F。Cr、Mn、B可单独加入,Ni、Si在我国不单独加入,而是复合加入。3、加入提高回火稳定性和防止第二类回火脆性的元素V、Ti、Mo、W等,能细化晶粒,提高回火稳定性。Mo、W可以减轻和防止第二类回火脆性,其合适的质量分数约为ωMo=0.15%~0.30%或ωw=0.8%~1.2%。 7.GCr15钢从钢锭到成品,要经过以下几个温度范围的热处理工序,说明每个工序的名称、目的和热处理后的组织。 1150~1200℃;770~810℃;830~860℃;160±5℃;-60℃ 答:(1)消偏析,单相A(2)粒状F(3)M(4)消除应力(5)减小A,温度尺寸 8. GCr15钢从钢锭到成品,要经过以下几种热处理工序:(1)扩散退火(2)球化退火(3)淬火(4)回火(5)冷处理。说明每个工序的温度范围、目的和热处理后的组织。

氯及卤素

氯及其化合物 氯气和卤族元素 【知识梳理】 一、氯气 氯元素位于元素周期表第周期族,上邻氟下邻溴,左邻硫右邻氩。氯原子最外层有7个电子,极易得到1个电子形成8电子稳定结构,所以氯元素非金属性强,在自然界中仅以态形式存在。 (一)氯气的物理性质 通常状况下,氯气呈色,具有气味,比空气重,有毒,溶于水,易液化。 (二)氯气的实验室制法 1、反应原理:MnO2+4HCl(浓)MnCl2+Cl2↑+2H2O (1)浓盐酸在反应中既做,也起作用,表现性质的二重性。 (2)随着反应的进行,反应物的物质的量逐渐减小,生成水的量逐渐增大,导致盐酸的浓度减小,MnO2不能氧化稀盐酸,但能与浓盐酸反应生成氯气。 2、制取装置(了解) (三)氯气的化学性质 1、与金属反应 Cl2+2Na2NaCl(现象:)

3Cl2+2Fe2FeCl3(现 象:)Cl2+Cu CuCl2(现 象:) 2、与非金属反应 Cl2+H22HCl(现 象:) 3Cl2+2P2PCl3PCl3+Cl2PCl5 (现象:) 3、与水反应 Cl2+H2O=HCl+HClO Cl2+H2O=H++Cl—+HClO 2HClO2HCl+O2↑ (1)新制氯水含有的微粒:,久置氯水中含有:。 分析:因为新制氯水久置后,由于HClO不稳定,见光易分解成HCl和O2,致使HClO 含量逐渐减少,而HClO的减少又引起了Cl2与水的不断反应,最后HClO 和Cl2均不再含有,所以久置氯水变成了稀盐酸。 (2)次氯酸的性质:。 (3)Cl2可以作自来水的杀菌消毒剂。 分析:Cl2与水作用生成具有强氧化性的次氯酸,从而起杀菌消毒的作用。 ①由于很多自来水厂是用氯气来杀菌消毒的,打开水龙头后我们偶尔闻到的刺激性气味是自来水中散发出来的余氯的气味。 ②尽管氯气有毒,但它不能直接用来给自来水杀菌消毒,而是靠氯气与水反应生成的具有强氧化性的HClO所致。 ③自来水配制碱和碱性物质(NaOH)、还原性物质(H2S、Na2S、Na2SO3、NaHSO3、NaI、NaBr、HI、HBr、FeCl2)、以及AgNO3等化学试剂时易变质。 ④用自来水养金鱼前必须把水在阳光下曝晒一段时间而除去次氯酸。 (4)湿润的氯气具有漂白性。 分析:Cl2与水作用生成具有强氧化性的次氯酸而表现漂白性。 4、与碱反应 Cl2+2NaOH=NaCl+NaClO+H2O 2Cl2+2Ca(OH)2=CaCl2+Ca(ClO)2+2H2O Cl2+2OH-=Cl-+ClO-+H2O (1)氯气与碱的反应原理:氯气与水发生如下反应:Cl2+H2O=HClO+HCl,当向NaOH溶液中通入Cl2后,Cl2先与水反应生成HClO和HCl,然后二者再分别与NaOH溶液发生中和反应生成NaClO、NaCl和H2O。将上述两个分反应两边分别相加,即可得到氯气与碱溶液反应的化学方程式:Cl2 +2NaOH=NaCl+NaClO+H2O。显然Cl2与碱溶液的反应要快得多。实验室也是根据这一原理来吸收Cl2尾气的。 (2)Cl2与NaOH溶液的反应也是工业制取漂白液的原理。漂白液的有效成分为NaClO,

超高温陶瓷的研究进展_郭强强

·综述· 收稿日期:2015-05-20 作者简介:郭强强,1989年出生,硕士,主要从事超高温陶瓷材料的研究工作。E -mail :qqguo@outlook.com 超高温陶瓷的研究进展 郭强强 冯志海周延春 (航天材料及工艺研究所,先进功能复合材料技术重点实验室,北京100076) 文 摘 超高温陶瓷在极端环境中能够保持稳定的物理和化学性质,被认为是高超声速飞行器和大气层 再入飞行器鼻锥和前缘最有前途的候选热防护材料。本文系统评述了超高温陶瓷(主要是过渡金属硼化物、碳化物和氮化物)在粉体合成、致密化、力学性能等方面的研究进展。对超高温陶瓷研究中存在的一些问题作出初步总结,希望对超高温陶瓷的进一步研究和应用起到积极的推动作用。 关键词 超高温陶瓷,粉体合成,致密化,力学性能 中图分类号:TB3DOI :10.3969/j.issn.1007-2330.2015.05.001Progress on Ultra-High Temperature Ceramics GUO Qiangqiang FENG Zhihai ZHOU Yanchun (Science and Technology of Advanced Functional Composite Materials Laboratory ,Aerospace Research Institute of Materials &Processing Technology ,Beijing 100076) Abstract Ultra-high temperature ceramics (UHTCs )are regarded as the most promising thermal protective ma- terials for the nose and leading edge of hypersonic or re-entry vehicles due to their stability of physical and chemical properties in extreme environment.The progress on UHTCs is reviewed in detail ,including powder synthesis ,densifi-cation and mechanical properties.Also ,some problems exist in the material studies are preliminarily summarized.It is expected that this review will provide some guidance for stimulating further research and practical applications of the UHTCs. Key words Ultra-high temperature ceramics ,Powder synthesis ,Densification ,Mechanical property 引言 超高温陶瓷(UHTCs )通常指熔点超过3000?,并在极端环境中保持稳定的物理和化学性质的一类 特殊陶瓷材料,通常包括过渡金属硼化物、碳化物、氮化物及其复合材料。极端环境一般指高温、反应气氛(如原子氧,等离子体等)、机械载荷和磨损等组成的综合环境。随着航空航天技术的迅猛发展和实现空天一体化的迫切需要,高超声速飞行器是近年来许多国家航空航天部门发展的重点领域。在长时间高超声速巡航、跨大气层飞行和大气层再入等极端环境下,飞行器机翼前缘和鼻锥等关键部件在飞行过程中与大气剧烈摩擦,产生极高的温度。如Falcon 计划 中机翼前缘的驻点区域温度可以超过2000?[1],此 外火箭喷嘴口、吸气增强推进系统和发动机进气道在 飞行过程中也要承受高热载荷和机械载荷。目前,极少材料能够在如此剧烈的氧化对流环境中保持结构和尺寸的完整性。因此,如何设计和制备有着良好的抗氧化性、抗烧蚀性、抗热震性并保持一定高温强度的超高温热防护材料成为新型空天飞行器亟待解决的重要技术问题。 目前有望在1800?以上温度使用的材料一般有 难熔金属材料、陶瓷基复合材料、C /C 复合材料等。难熔金属材料密度高、加工性能和抗氧化性差,不适合作为高超声速飞行器鼻锥和前缘等部位的热防护 材料。C /C 复合材料是一种良好的结构/功能一体化材料,已成功用于制造导弹的弹头部件、航天飞机防

钢中的碳化物

第二节钢中的碳化物 一、一般特点: 碳化物是钢中的重要组成相之一,碳化物的类型、数量、大小、形状及分布对钢的性能有极重要的影响。 碳化物具有高硬度和脆性,并具有高熔点。这表明它具有共价键特点; 碳化物具有正的电阻温度系数,具有导电特性。这表明它具有金属键特点; 碳化物具有金属键和共价键的特点,以金属键占优。 二、碳化物的结构 过渡族金属的碳化物中,金属原子和碳原子可形成简单点阵或复杂点阵结构,金属原子处于点阵结点上,而尺寸较小的碳原子在点阵的间隙位置。 如果金属原子间的间隙足够大,可以容纳碳原子时,碳化物就可以形成简单密排结构。 若这种间隙还不足容纳碳原子时,就得到比简单结构稍有变形的复杂密排结构。 因此过渡族金属的原子半径(γM)和碳原子半径(γC)的比值(γC/γM)决定了可以形成简单密排还是复杂结构的碳化物。 金属Fe Mn C r V Mo W Ti Nb Zr γc/γM 0.61 0.60 0.61 0.57 0.56 0.55 0.53 0.52 0.48 (1)形成NaCl型简单立方点阵的碳化物。 如VC、NbC、TiC、ZrC等,这种MeC相不具备严格的化学计算成分和化学式,一般形式将是MeC,其中0.5≤C≤1。碳化物中碳浓度的下降使碳化物硬度下降,点阵常数减小。 (2)形成六方点阵的碳化物 如Mo 2C、W 2 C、MoC、WC 2、当γC/γM >0.59, 形成复杂点阵的碳化物(1)复杂立方点阵 如Cr 23C 6 , Mn 23 C 6 , Fe 3 W 3 C, Fe 3 Mo 3 C (2)复杂六方点阵 如Cr7C3,Mn7C3; (3)正交晶系点阵 如Fe3C,Mn3C 三、碳化物的稳定性 钢中各种碳化物的相对稳定性,对于其形成和转变、溶解、析出和聚集、长大有着极大的影响。 碳化物在钢中的相对稳定性取决于合金元素与碳的亲和力的大小,即取决于合金元素d层电子数。 金属元素的d层电子数越少,它与碳的亲和力就越大,所析出的碳化物在钢中就越稳定。 下面给出部分合金元素的d层电子数

相关文档
最新文档