平面向量的运算及应用PPT 演示文稿

合集下载

平面向量的数量积与平面向量应用举例_图文_图文

平面向量的数量积与平面向量应用举例_图文_图文

三、向量数量积的性质
1.如果e是单位向量,则a·e=e·a. 2.a⊥b⇔ a·b=0 .
|a|2
4.cos θ=
.(θ为a与b的夹角)
5.|a·b| ≤ |a||b|.
四、数量积的运算律
1.交换律:a·b= b·a . 2.分配律:(a+b)·c= a·c+b·c . 3.对λ∈R,λ(a·b)= (λa)·b= a·(λb.) 五、数量积的坐标运算
∴a与c的夹角为90°. (2)∵a与b是不共线的单位向量,∴|a|=|b|=1. 又ka-b与a+b垂直,∴(a+b)·(ka-b)=0, 即ka2+ka·b-a·b-b2=0. ∴k-1+ka·b-a·b=0. 即k-1+kcos θ-cos θ=0(θ为a与b的夹角). ∴(k-1)(1+cos θ)=0.又a与b不共线, ∴cos θ≠-1.∴k=1. [答案] (1)B (2)1
解析:(1) a=(x-1,1),a-b=(x-1,1)-(-x+1,3)= (2x-2,-2),故a⊥(a-b)⇔2(x-1)2-2=0⇔x=0或2 ,故x=2是a⊥(a-b)的一个充分不必要条件.
答案: (1)B (2)D
平面向量的模 [答案] B
[答案] D
[典例总结]
利用数量积求长度问题是数量积的重要应用,要掌 握此类问题的处理方法:
[巩固练习]
2.(1)设向量a=(x-1,1),b=(-x+1,3),则a⊥(a-b)
的一个充分不必要条件是
()
A.x=0或2
B.x=2
C.x=1
D.x=±2
(2)已知向量a=(1,0),b=(0,1),c=a+λb(λ∈R),
向量d如图所示,则
()
A.存在λ>0,使得向量c与向量d垂直 B.存在λ>0,使得向量c与向量d夹角为60° C.存在λ<0,使得向量c与向量d夹角为30° D.存在λ>0,使得向量c与向量d共线

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1


→ AM
= 1,12

→ BN

-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的数量积)

返回导航 上页 下页
向量 a 在向量 b 上的投影向量的求法 将已知量代入 a 在 b 方向上的投影向量公式|a|cos θ e(e 是与 b 方向相同的单位向量, 且 e=|bb|)中计算即可.
必修第二册·人教数学A版
返回导航 上页 下页
2.已知|a|=4,|b|=6,a 与 b 的夹角为 60°,则向量 a 在向量 b 上的投影向量是________. 解析:向量 a 在向量 b 上的投影向量是|a|cos 60°|bb|=4×12×16b=13b. 答案:13b
我们称上述变换为向量 a 向向量 b 投影 ,A→1B1叫做向量 a 在向量 b 上的 投影向量 .
必修第二册·人教数学A版
返回导航 上页 下页
(2)如图,在平面内任取一点 O,作O→M=a,O→N=b,设 与 b 方向相同的单位向量为 e,a 与 b 的夹角为 θ,过点 M 作直线 ON 的垂线,垂足为 M1,则O→M1= |a|ecos θ . 特别地,当 θ=0 时,O→M1= |a|e . 当 θ=π 时,O→M1= -|a|e . 当 θ=π2时,O→M1=0.
返回导航 上页 下页
必修第二册·人教数学A版
⑥cos θ=|aa|·|bb|.
必修第二册·人教数学A版
返回导航 上页 下页
知识点五 平面向量数量积的性质
预习教材,思考问题
根据实数乘法的运算律,类比得出向量数量积的运算律,如下表,这些结果正确吗?
运算律 实数乘法
平面向量数量积
交换律
ab=ba
a·b=b·a
结合律
(ab)c=a(bc)
(a·b)·c=a·(b·c) (λa)·b=a·(λb)=λ(a·b)
解析:(2a+3b)·(3a-2b) =6a2-4a·b+9b·a-6b2 =6|a|2+5a·b-6|b|2 =6×42+5×4×7·cos 120°-6×72 =-268.

6.2平面向量的运算课件共40张PPT

6.2平面向量的运算课件共40张PPT
故选 B.




即时训练 3-2:在四边形 ABCD 中,=,若||=||,则四边形 ABCD 的
形状为
.


解析:由=,可得四边形 ABCD 为平行四边形,


由||=||,可得邻边相等,此平行四边形是菱形,
所以四边形 ABCD 为菱形.
答案:菱形




[备用例 3] 若 O 是△ABC 所在平面内一点,且满足|-|=|-+
探究点二
向量加法运算律的应用
[例 2] 化简:


(1)+;





解:(1)+=+=.
[例 2] 化简:



(2)++;






解:(2)++=++



=(+)+
→→Biblioteka =+=0.
[例 2] 化简:












解:(2)原式=--+=(-)+(-)=+=0.



[备用例 2] 化简:--.






解:法一 --=-=.













8.平面向量的坐标运算ppt

8.平面向量的坐标运算ppt

∴顶点D的坐标为(2,2)
变式:已知平面上三点的坐标分别为A(2, 1),
B(1, 3), C(3, 4),求点D的坐标使这四点构
成平行四边形四个顶点。
y
D2
解由:uAuBur当 uD平uuCr得行D四1边=(2形, 为2)ADCB时,B
C
当平行四边形为ACDB时, A
D1
得D2=(4, 6)
x=1+3t ∴
,∴
1+3t<0
y=2+3t
2+3t>0,
∴ 2 t 1.
3
3
(2)因为 OA =(1,2),PB OB OP (3-3t,3-
3t),
若四边形OABP为平行四边形,则OA PB.
∴ 3-3t=1 3-3t=2,无解,
∴四边形OABP不可能为平行四边形.
总结提高: (1)要加强对向量的坐标与该向量起
解:设Bx,y,
uuur
Q AB 1,2 x, y 2,1,
即12xy21

x3 y 1
即B3,-1.
练习:(2009·辽宁文,13)在平面直角坐标系xOy中,四 边形ABCD的边AB∥DC,AD∥BC.已知A(-2,0), B (6,8),C(8,6),则D点的坐标为(0,-2). 解析 设D点的坐标为(x,y),由题意知BC AD , 即(2,-2)=(x+2,y),所以x=0,y=-2,∴D(0,-2).
即 a+b=(x1+x2,y1+y2)
同理可得 a-b=(x1-x2,y1-y2)
这就是说,两个向量和与差的坐标分别等 于这两个向量相应坐标的和与差。
探究 : 若已知 点A、B的坐标分别为 ((1,x1,3)y1,)

6.3平面向量及运算的坐标表示课件(人教版)

6.3平面向量及运算的坐标表示课件(人教版)

(3)两向量差的坐标与两向量的顺序无关。( ) (4)向量(2,3)与向量(-4,-6)同向。( )
【提示】(1)×。对于同一个向量,无论位置在哪里, 坐标都一样。 (2)√。根据向量的坐标表示,当始点在原点时,终 点与始点坐标之差等于终点坐标。 (3)×。根据两向量差的运算,两向量差的坐标与两 向量的顺序有关。
2
线,则C的坐标可以是( )
A.(-9,1) B.(9,-1)
C.(9,1)
D.(-9,-1)
【思维·引】设出点C的坐标,因为A,B,C三点共线, 写出向量 AB,AC(或 BC),由向量共线的条件结合选项 求解。
【解析】选C。设点C的坐标是(x,y),
【内化·悟】 1.由共线的坐标条件求参数的解题步骤是怎样的? 提示:(1)分别写出共线的两个向量的坐标。 (2)通过共线条件列出方程(组)。 (3)解方程(组)求出参数。
2.如何判断共线的向量u与v是同向还是反向? 提示:写成u=λv的情势,若λ>0,同向,若λ<0,反向。
角度3 三点共线问题 【典例】已知A(1,-3),B (8,1 ),且A,B,C三点共
量 AB共线的单位向量是( )
A.(3, 4) C.(6,8)
B.( 3,4 ) 55
D.( 4, 3 ) 55
【思维·引】利用向量共线的坐标表示判断。 【解析】选B。因为AB =(7,-3)-(4,1)=(3,-4), 由向量共线的条件可知,A,B,C选项中的向量均与AB共 线,但A,C中向量不是单位向量。
因为A(0,1),AC=(-3,-3),
所以
x y
3, 1 3,
解得
x y
3, 2,
所以点C的坐标为(-3,-2)。又B(3,2),所以BC=(-

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)

《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)

必修第二册·人教数学A版
返回导航 上页 下页
探究三 向量加法的实际应用
[例 3] 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图,一艘船从长
江南岸 A 地出发,垂直于对岸航行,航行速度的大小为 15 km/h,同时江水的速度为
向东 6 km/h.
(1)用向量表示江水速度、船速以及船实际航行的速度;
解析:设A→B,B→C分别表示飞机从 A 地按北偏东 35°的方向飞行 800 km,从 B 地按 南偏东 55°的方向飞行 800 km, 则飞机飞行的路程指的是|A→B|+|B→C|; 两次飞行的位移的和指的是A→B+B→C=A→C. 依题意,有|A→B|+|B→C|=800+800=1 600 (km), 又 α=35°,β=55°,∠ABC=35°+55°=90°,
→ 因为 tan ∠CAB=|B→C|=52,所以利用计算工具可得∠CAB≈68°.
|AB| 因此,船实际航行速度的大小约为 16.2 km/h,方向与江水速度间的夹角约ห้องสมุดไป่ตู้ 68°.
必修第二册·人教数学A版
返回导航 上页 下页
向量加法应用的关键及技巧 (1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的 相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量. (2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题 转化为向量的加法运算,进而利用向量加法的几何意义进行求解.
必修第二册·人教数学A版
1.如图,已知 a、b,求作 a+b. 解析: ①A→C=a+b ②A→C=a+b
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
探究二 向量加法的运算律 [例 2] (1)化简下列各式: ①A→B+B→C+C→D+D→A; ②(A→B+M→B)+B→O+O→M. (2)如图,四边形 ABDC 为等腰梯形,AB∥CD,AC=BD, CD=2AB,E 为 CD 的中点.试求: ①A→B+A→E;②A→B+A→C+E→C; ③C→D+A→C+D→B+E→C.

平面向量的线性运算课件

平面向量的线性运算课件

A
2b
a
b
b
a
O
[类似题]已知非零向量e1和e2不共线,如果 AB e1 e2 ,
BC 2e1 8e2 ,CD 3 e1 e2 , 证明:ABD三点共线.
2.[逆向使用]已知非零向量e1和e2不共线,欲使ke1 e2和
e1 ke2共线,确定实数k的值.
3.[课本例题 ]如图,平行四边形 ABCD 的两条对角线相交于点 M,且 AB a, AD b,用a, b表示MA, MB, MC , MD.
完毕课本84页练习
平面对量旳线性运算
——向量旳减法运算
预备知识:相反向量
类比实数旳相反数旳概率,定义相反向量:
与a长度相等,方向相反旳向量, 叫做a旳相反向
量,记作-a ; -a与a互为相反向量
要求:零向量旳相反向量仍是零向量
所以: 1、-(-a)=a;2、a+(-a)=(-a)+a=0;
3、
a=-b,b=-a,a+b=0
1.已知a,
b是两个非零向量,下列说法正确的有
概念辨析
_____ .
(1) 2a的方向与5a的方向相反,且 2a的模是5a的模的 2 ; 5
(2)a b与(b a)是一对相反向量;
(3)若a, b不共线,则 a( 0)与b不共线;
2.下列说法正确的个数是 _______
(1)若 a 0,则 0;(2)若 0,则 a 0;
探究:
问题:已知OA和OB不共线,AC t AB(t R), 试用OA和OB表示OC .
特例:对于OC (1 t)OA tOB,当t 1 时,你知道其几何意义 吗? 2
中点公式向量表示法: C为AB中点,则OC OA OB 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设 AB BC k , 则BC CA 3k , CA AB ( 3 2)k AB BC CA AB AB k ( 3 2)k ( 3 1)k
解 法 一
2
AB (1 3 )k 又BC CA CA AB CA 3k ( 3 2)k (2 3 2)k AC (2 2 3 )k 同理可求 BC ( 3 1)k , k<0, AB < CA < BC
课 前 寄 语
主 干 知 识 整 合
高考趋势:利用向量的思想方法解决有关问题,如 平行与垂直及平面几何的相关问题,并突出向量的 工具作用,已成为高考试题中的重点考查内容。 考点知识: 1.向量的有关概念。 2.向量的各种运算的几何含义及坐标表示。 3.向量平行,垂直的充要条件。 4.定比分点公式,向量的平移公式。
C
AD BE CF与BC反向平行
1 若O是直线AB外一点, AP PB, 则OP OA OB. 1 1 同学们能尝试用上述定比分点的向量式解决吗?
2.(浙江)已知 a 、 b 是平面内两个互相垂直的单位向量,若向 量 c满足, ( b c) 0, 则| C |的最大值是 ( ) (a c)
1 1 1 1 1 1 法一: AO a , AD AO OD a b, AE (AO AD) a b 2 2 2 2 2 4 A, E, F三点共线, AF AE显然>1故选B
法二:由题, AD AB a , AD AB b
C
考点热点探究 考点一 向量的基本运算
例1.(1)在△ABC中,若 AC BC 1, AB BC 2,则 ∣BC∣的值为 ( D ) A. 1 B. 3 C. 2 D. 3 分析:将两向量式相减有
(AC AB) BC BC 3, BC 3
【评注】注意向量的模与数量积之间的关系:a = a
A. 1 B. 2 C.

2
D.
2 2
方法一:向量式展开后整理有c= c ( a + b )
c a b cos
2 cos
2
1 2 1 2 2 2 ) 2
方法二: 设a (1,0),b (0,1),C(x, y), 则(x )2 (y ) 2 (
c 表示圆上动点到原点的距离,显然 c 的最大值为 2
想 一 想
2 2 2
2
变式题
已知点 A,B,C 不共线,且有 A.∣ AB ∣﹤∣ C A∣﹤∣ B C ∣ C. ∣ AB ∣﹤∣ B C ∣﹤∣ C A∣
AB BC BC C A C A AB , 1 3 32
则有(

B. ∣ B C ∣﹤∣ C A∣﹤∣ AB ∣ D. ∣ C A∣﹤∣ AB ∣﹤∣ B C ∣
2 2
2
(2)在△ABC中,tanC= ,边BC上的点H 满足AH BC 0 ,则过C、以A、H为两焦点 的椭圆的离心率为 解:∵tanC=4 , 3A源自4 3CH
B
∴C为锐角,sinC =
4 ,cosC = 3 , 5 5 4 5 设AH=2c,则AH= 5CA, ∴CA= c, 2 3 5 3 3 又CH= AH= 2c, CH+CA=2a ∴ c+ c=2a 2 4 2
经典真题感悟 1. (湖南)设D、E、F分别是△ABC的三边BC、CA、AB上的点, 且 DC=2 BD, =2 EA, ( AF=2 FB ,则 AD BE CF与BC CE ) A.反向平行 C.互相垂直
A E F B D
B.同向平行 D.既不平行也不垂直
1 2 2 解: AD BE CF AB BC BC CA CA AB 3 3 3 5 4 5 4 1 (CA AB ) BC CB BC BC 3 3 3 3 3
方法三:(借助图形分析)
如图,设 OA a , OB b,由题意知 CA CB 0即CA CD,
B
C
c ∴C在以AB为直径的圆上,当OC为圆的直径时,
取最大值 2
O A
3. (广东)在平行四边形ABCD中,AC与BD交于点 O,E是线段OD的中点,AE的延长线与CD交于点F. 若 AC , 则 ( AF ) a BD, b 1 2 1 1 1 1 2 1 a b a b a b D. a b A. B. C. 3 3 4 2 2 4 3 3
1 ∴e= 2
分析:求离心率可 转化为寻求CA+CH 与AH的数量关系式。
变式题
已知点 A,B,C 不共线,且有 A.∣ AB ∣﹤∣ C A∣﹤∣ B C ∣ C. ∣ AB ∣﹤∣ B C ∣﹤∣ C A∣
AB BC BC C A C A AB , 1 3 32
则有(

B. ∣ BC ∣﹤∣ C A∣﹤∣ AB ∣ D. ∣ C A∣﹤∣ AB ∣﹤∣ B C ∣
大致判 断
F D E O B
1 1 AD (a b), AB (a b) 2 2 DE 1 又E是OD的中点 BE 3 DEF BEA F是CD的三等分点
严格推理
A
1 1 1 2 1 DF DC AB AF AD AB a b 3 3 3 3 3
思考是一种寻觅。寻觅的过程充满混沌与 艰辛,需穿越荒漠涉过险滩,有时则穿行在 热闹的人群中,忍受着生活的单调和人们的 误解。在失败时思考,是为了渡过人生的这 一危机,在大声喧哗时思考,是为了保持冷 静;在独处时思考,是为了更仔细地梳理命 运的线索……思考的魅力是无穷的,善于思 考是人生的一大财富。愿每位同学在学习生 活中懂得思考,学会思考。
AB BC cos B BC CA cosC CA AB 解:由已知得, 1 3 32 3 AB cos B CA cosC.......... .......... ( 1 )
相关文档
最新文档