北大 外院大综合 2018 试题
2018年北京高考试题汇总语文数学英语文综理综Word版全套真题试卷6套含答案

2018年普通高等学校招生全国统一考试试题北京卷真题试卷汇总(6套全)目录2018年普通高等学校招生全国统一考试语文试题................ 2018年普通高等学校招生全国统一考试语文试题答案........ 2018年普通高等学校招生全国统一考试文科数学................ 2018年普通高等学校招生全国统一考试文科数学答案........ 2018年普通高等学校招生全国统一考试理科数学................ 2018年普通高等学校招生全国统一考试理科数学答案........ 2018年普通高等学校招生全国统一考试英语试题................ 2018年普通高等学校招生全国统一考试英语试题答案........ 2018年普通高等学校招生全国统一考试文科综合试题........ 2018年普通高等学校招生全国统一考试文科综合试题答案........ 2018年普通高等学校招生全国统一考试理科综合试题........ 2018年普通高等学校招生全国统一考试理科综合试题答案........绝密★启用前2018年普通高等学校招生全国统一考试语文(北京卷)本试卷共10页,150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、本大题共8小题,共24分。
阅读下面的材料,完成1—7题。
材料一当年,科学技术的巨大进步推动了人工智能的迅猛发展,人工智能成了全球产业界、学术界的高频词。
有研究者将人工智能定义为:对一种通过计算机实现人脑思维结果,能从环境中获取感知并执行行动的智能体的描述和构建。
人工智能并不是新鲜事物。
20世纪中叶,“机器思维”就已出现在这个世界上。
1936年,英国数学家阿兰•麦席森•图灵从模拟人类思考和证明的过程入手,提出利用机器执行逻辑代码来模拟人类的各种计算和逻辑思维过程的设想。
1950年,他发表了《计算机器与智能》一文,提出了判断机器是否具有智能的标准,即“图灵测试”。
2018年北京大学(北大)英语MTI(笔译)考研参考书目、备考专业课重点、考研新攻略

北京大学英语笔译MTI考研信息整理北京大学英语笔译考研参考书、招生人数、历年分数线、报录比、复试信息1.招生人数(北大英语MTI只有英语笔译方向)2015年的北大英语笔译方向计划招生30人,接受推免人数15~20人;实际招生人数为:18人(2人为港澳台学生)接受推免人数:12人;2016年的北大英语笔译方向计划招生30人,接受推免人数15人;实际招生人数为:18人(1人为港澳台学生)接受推免人数:12人;2017年计划招生:055101英语笔译拟招收:30推免:13★(少推免2人)宋宋注:北大这两年属于扩招的形式,统考的人数增加,推免人数相应的减少。
学制:两年北大翻硕学费:2016年:5万/两年;2015年:8万/两年;★前几年北大翻硕的学费相比同类院校收费要高,16年进行了调整,降至5万。
2.初试考试科目:1、101思想政治理论(100分)2、211翻译硕士英语(100分)3、357英语翻译基础(150分)4、448汉语写作与百科知识(150分)★★★育明宋老师解析:北大英语MTI只有笔译一个方向,初试除了思想政治理论是全国统一试卷,剩下的三门专业课,都是北大自主出题,出题的整体方向都偏文学性,特别指出的是,北大英语MTI 和日语的MTI的专业课汉语写作与百科知识,考的是同一张试卷,分为基础知识(100分)和专业知识(50分)两部分,满分150分.3.初试题型分析:一、初试题型1、翻译硕士英语:单选、阅读理解、写作(个别院校会有完型和改错);北大的题型会有一些不同,在原有的基础上加入了排序题,排序题相对来说会有一定的难度。
2、英语翻译基础:本考试包括二个部分:词语翻译和外汉互译,总分150分;词语翻译30分(英译汉、汉译英):15个外文术语及15个中文术语、缩略语或专有名词;段落翻译120分(英译汉、汉译英):两端段或是文章,250-350个单词或者150-250个汉字;3、汉语写作与百科知识:本考试包括二个部分:百科知识和汉语写作,总分150分;百科知识50分:名词解释或者是选择填空25个;汉语写作100分:可分为大作文和小作文的写作,大作文(60分)体裁可以是说明文、议论文或应用文;小作文(40分)的写作一般是通知类、说明类、倡议书、会议通知、商务信函等。
2018北大博雅计划物理试题答案

2018北大博雅计划物理试题答案关于物体的惯性,下列说法正确的是:A. 静止的火车启动时,速度变化慢,说明静止的物体惯性大B. 高速运动的汽车很难停下来,说明汽车的速度越大,其惯性也越大C. 宇航员在宇宙飞船中能漂起来是因为此时宇航员不存在惯性D. 乒乓球可以快速抽杀,是因为乒乓球的惯性小答案:D下列关于物理学史的说法正确的是:A. 牛顿通过扭秤实验较为准确地测出了引力常量B. 库仑通过实验较为准确地测出了静电力常量C. 伽利略通过斜面实验合理外推,间接证明了自由落体运动是匀变速直线运动D. 法拉第通过实验发现了电流的磁效应答案:BC关于力和运动的关系,下列说法正确的是:A. 物体受力才会运动B. 力使物体的运动状态发生改变C. 停止用力,运动的物体就会停止D. 力是使物体保持静止或匀速直线运动状态的原因答案:B下列关于电场和磁场的说法正确的是:A. 电场线和磁感线都是闭合曲线B. 电场线和磁感线都是不存在的,是人们为了研究问题方便假想出来的C. 电场线和磁感线都可能相交D. 电场线和磁感线都是客观存在的答案:B关于电磁波,下列说法正确的是:A. 电磁波在真空中的传播速度与电磁波的频率无关B. 周期性变化的电场和磁场可以相互激发,形成电磁波C. 电磁波在真空中的传播速度等于光速D. 电磁波和机械波都需要介质来传播答案:ABC关于热力学定律,下列说法正确的是:A. 热量可以从低温物体传到高温物体B. 不可能从单一热源吸热使之完全变为有用的功,而不产生其他影响C. 气体的温度升高时,分子的热运动变得剧烈,分子的平均动能增大,撞击器壁时对器壁的作用力增大,从而气体的压强一定增大D. 一定质量的理想气体,如果压强不变,体积增大,那么它一定从外界吸热答案:ABD下列关于光学现象的说法正确的是:A. 用光导纤维束传送图象信息,这是光的衍射现象的应用B. 太阳光通过三棱镜形成彩色光谱,这是光的干涉现象C. 眯着眼睛看发光的灯丝时能观察到彩色条纹,这是光的偏振现象D. 在照相机镜头前加装偏振滤光片拍摄日落时水面下的景物,可使景像清晰答案:D关于原子核和核能,下列说法正确的是:A. 原子核的结合能等于使其完全分解成自由核子所需的最小能量B. 一重原子核衰变成α粒子和另一原子核,衰变产物的结合能之和一定大于原来原子核的结合能C. 铀核((\mspace{2mu}{92}{238}U))衰变为铅核((\mspace{2mu}{82}{206}Pb))的过程中,要经过8次α衰变和10次β衰变D. 根据玻尔理论,氢原子的核外电子由较高能级跃迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小答案:AD。
北大外交学考研中国外交考试题库历年真题及考点

2024年北大外交学考研中国外交考试题库历年真题及考点2024年北大外交学考研中国外交考试题库历年真题及考点一、文章类型及主题本文将主要分析2024年北大外交学考研中国外交考试题库中的历年真题及考点。
通过深入挖掘这些试题,我们将更好地理解中国外交考试的重点和难点,为即将参加考试的考生提供有价值的参考。
二、历年真题及考点1、(2015年) “一带一路”倡议是中国政府为应对经济全球化挑战、扩大国际影响力提出的重要战略。
简要论述该倡议的背景、目的、实施方式和影响。
考点:考生需要理解并掌握“一带一路”倡议的基本概念、政策目的、实施策略以及可能产生的影响。
2、(2017年) 近年来,中国与周边国家的关系呈现出紧密合作的态势。
请分析这种合作的主要领域、原因和影响。
考点:考生需要理解并掌握中国与周边国家紧密合作的主要领域、合作的原因以及可能产生的影响。
3、(2019年) 近年来,国际社会对中国在全球治理中的角色和影响存在不同的看法。
请阐述中国在全球治理中的角色、策略及其影响。
考点:考生需要理解并掌握中国在全球治理中的角色、参与策略以及国际社会对中国在全球治理中的影响的评价。
三、素材积累为了更好地回答以上问题,考生需要积累以下素材:1、关于“一带一路”倡议的相关知识,包括倡议的背景、目的、实施策略以及产生的影响。
2、关于中国与周边国家紧密合作的相关知识,包括合作的主要领域、合作的原因以及可能产生的影响。
3、关于中国在全球治理中的相关知识点,包括中国的角色、参与策略以及国际社会对中国在全球治理中的影响的评价。
四、逐步展开在回答以上问题时,考生可以从以下几个方面展开:1、简要介绍问题涉及的概念或人物,明确问题的主旨和答题方向。
2、从不同角度对问题进行深入分析,包括背景、目的、实施方式、影响等。
3、引经据典或结合实际案例,用具体数据或事实来支持观点,增强说服力。
4、总结归纳,将所有要点简明扼要地概括出来,同时对问题作出有深度的回答。
《学习强国》每周一答的2018年10月至2019年4月所有的试题(含答案)

《学习强国》每周一答的2018年10月至2019年4月所有的试题(含答案)2018 年10 月第一周答题1. 填空题习近平在《弱鸟如何先飞——闽东九县调查随感》一文中提出,扶贫先要扶志,要从思想上【淡化“贫困意识”】。
不要言必称贫,处处说贫。
2. 单选题把生态文明建设纳入中国特色社会主义事业总体布局的是(党的十八大)。
A. 党的十八大B. 党的十八届三中全会C. 党的十九大3. 单选题2016 年7 月1 日,在庆祝中国共产党成立95 周年大会上的讲话中,习近平总书记指出【发展】是党执行兴国的第一要务,是解决中国所有问题的关键。
A. 改革B. 发展C. 稳定4. 多选题构成中国特色社会主义法治道路的核心要义,并规定和确保着中国特色社会主义法治体系的制度属性和前进方向的是【党的领导、中国特色社会主义制度、中国特色社会主义法治理论】。
A. 党的领导B. 中国特色社会主义制度C. 中国特色社会主义法治理论5. 填空题习近平总书记在十八届中央政治局第一次集体学习时的讲话中指出,【共同富裕】是中国特色社会主义的根本原则,所以必须使发展成果更多更公平惠及全体人民,朝着共同富裕方向稳步前进。
2018 年10 月第二周答题1. 填空题习近平总书记在2012 年12 月15 日的中央经济工作会议的讲话中指出,创新的实质效果是优胜劣汰、【破旧立新】。
2. 填空题中国在扶贫攻坚中采取的重要举措,就是实施【精准扶贫】方略,找到“贫根”,对症下药,靶向治疗。
3. 单选题人类可以利用自然、改造自然,但归根到底(是自然的一部分),必须呵护自然,不能凌驾于自然之上。
A. 是自然的一部分B. 是自然的主人C. 要无条件听从自然4. 单选题【转变政府职能】是深化行政体制改革的核心,实质上要解决的是政府应该做什么,不应该做什么,重点是政府、市场、社会的关系。
A. 精简机构B. 转变政府职能C. 提高行政效率6. 多选题在十九届三中全会上作的《关于深化党和国家机构改革决定稿和方案稿的说明》中,习近平总书记指出这次深化机构改革是一场【系统性、整体性、重构性】的变革。
2018年北京大学世界史考研真题(附答案)(转)

2018年北京大学世界史考研真题一、简答题2. 拉丁美洲运动的成果和局限18世纪末19世纪初的拉美独立战争,波及地区之广、卷入人口之多、斗争时间之长,在近代世界殖民地革命斗争史上都是空前的。
它是世界资产阶级革命的重要组成部分,沉重打击了西班牙和葡萄牙腐朽的封建势力,动摇了庞大的西班牙和葡萄牙殖民帝国。
它不仅加速了欧洲封建制度的崩溃,且改变了国际格局。
(1)拉丁美洲运动彻底粉碎了西班牙和葡萄牙的殖民统治,在原西班牙、葡萄牙和法国的殖民地上建立了17个独立国家,推动了整个拉丁美洲的进步,基本形成了今天拉丁美洲国家的格局;(2)为资本主义在拉美的发展创造了有利条件。
拉美各国取得独立后,政治上,颁布了宪法,建立了议会制共和国;经济上,废除奴隶制,取消了阻碍生产力发展的专卖制和对工商业的种种限制;宗教文化上,削弱了天主教会的权势。
拉美独立战争的局限性在于,运动的结果只是由土生土长的白人统治取代了半岛人的统治,基本保留了殖民地的社会经济结构,大土地所有制和封建剥削仍被保留,严重阻碍了拉美的经济发展,使拉美各国很快又沦为美、英等国的半殖民地,拉美人民仍面临着民族解放和民主革命的任务。
3.甘地的非暴力不合作运动非暴力不合作运动,是甘地领导印度民族解放运动的一种方式,他希望通过和平的方式达到反抗英国殖民统治,实现印度独立的目的。
1919年,阿姆利则惨案促使印度人民反英斗争走向高涨。
1920年12月,国大党年会通过了甘地提出的“非暴力不合作计划”,第一:所以印度人都应放弃殖民政府授予的头衔和荣誉职位,第二:如果第一条不发生效力,就对立法机关,法院和学校实行普遍抵制,并抵制英货,最后逐步走向抗税阶段。
1921-1922开展了第一次非暴力不合作运动,1930-1934年以甘地领导的食盐长征为开端开展了第二次非暴力不合作运动。
但是工农运动往往突破非暴力限制而遭到甘地的终止。
第一次非暴力不合作运动:甘地在组织几次非暴力的抵抗运动的过程获得重要的经验也赢得了极大的声望。
第19课时 生物的多样性

备考训练
一、单项选择题
1.黄河三角洲湿地是国家级自然保护区,有植物393种,
其中浮游植物116种、蕨类植物4种、裸子植物2种、被
子植物271种,鸟类有265种。这主要体现了( C )
A.生态系统的多样性 B.生活环境的多样性
C.物种的多样性
D.遗传的多样性
2.下列有关生物多样性的叙述 不正确的是( B ) A.树种单一的人工林比天然林容易发生严重的虫害 B.为了丰富动植物资源,应该大力引进外来物种 C.长白山自然保护区是为了保护温带森林生态系统 D.藏羚羊濒临灭绝的主要原因是偷猎者的疯狂捕杀
备考训练
二、非选择题
4.(2016·漳州市)“漳州西溪亲水公园依九龙江畔而设,
这里不仅是鱼、虾、贝类的栖息地,更是白鹭的天堂 。我们可
以骑着自行车沿路赏花,和纷飞的蜜蜂、蝴蝶一同徜徉……”
请结合资料回答:
(1)上述生物中具有社会行为的无脊椎动物是_蜜__蜂___。
(2)生活在九龙江水里的动物靠_鳃___呼吸;江面上飞舞的白鹭,
考题回顾
1.(2018·三明市质检题) 生物多样性的内涵 不包
括 下列哪一项( D )
ห้องสมุดไป่ตู้
A.基因的多样性
B.生物种类的多样性
C.生态系统的多样性 D.生物性状的多样性
2.(2016·泉州市)南沙群岛是我国传统渔场。这里 的珊瑚礁里生活着许多品种的珊瑚虫,这种生物多样 性的实质是( B ) A.形态结构的多样性 B.基因(遗传)的多样性 C.生态系统的多样性 D.生物种类(物种)的多样性
主要依靠发达的胸肌牵动两__翼__完成飞行动作。
(3)若根据下划线部分写出食物链,则缺少的成分是 生产者
________。
2018年北大附中新高一分班考试数学试题-真题-含详细解析

2018年北大附中新高一分班考试数学试题-真题2018.8一、选择题(本大题共12小题,共36分)1.如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.其中,符合图中所示函数关系的问题情境的个数为()A. 0B. 1C. 2D. 32.候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取()A. 甲B. 乙C. 丙D. 丁3.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A. 12x(x+1)=28 B. 12x(x−1)=28 C. x(x+1)=28 D. x(x−1)=284.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A. ∠DAB′=∠CAB′B. ∠ACD=∠B′CDC. AD=AED. AE=CE5.若点A(−5,y1),B(−3,y2),C(2,y3)在反比例函数y=3x的图象上,则y1,y2,y3的大小关系是()A. y1<y3<y2B. y1<y2<y3C. y3<y2<y1D. y2<y1<y36.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A. BCB. CEC. ADD. AC6题图 7题图 8题图7.如图,在△ABC中,∠ACB=90°,将△ABC绕点C顺时针旋转得到△DEC,使点B的对应点E恰好落在边AC上,点A的对应点为D,延长DE交AB于点F,则下列结论一定正确的是()A. AC=DEB. BC=EFC. ∠AEF=∠DD. AB⊥DF8.如图,是一种古代计时器--“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)()A. B. C. D.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2−4ac>0;②abc>0;③8a+c>0;④9a+3b+c<0其中,正确结论的个数是()A. 1B. 2C. 3D. 410.已知抛物线y=−16x2+32x+6与x轴交于点A,B,与y轴交于点C,若点D是AB的中点,则CD的长是()A. 154B. 92C. 132D. 15211.已知抛物线y=x2−4x+3与x轴相交于点A,B(点A在点B左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线解析式为()A. y=x2+2x+1B. y=x2+2x−1C. y=x2−2x+1D. y=x2−2x−112.二次函数y=ax2x…−2−1012…y…t m−2−2n…=ax2+bx+c且当x=−1时,与其对应的函数值y>0.有下列结论:2①abc>0;②−2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<20.3其中,正确结论的个数是()A. 0B. 1C. 2D. 3二、填空题(本大题共9小题,共27分)13.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为______(度).13题图 14题图 15题图14.如图,已知正方形ABCD的边长为3,E为CD边上一点,DE=1.以点A为中心,把△ADE顺时针旋转90°,得△ABE′,连接EE′,则EE′的长等于______.15.如图,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AG的值为______.AF16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为____(度).16题图 17题图17.如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有______个.18.有一张矩形纸片ABCD,按下面步骤进行折叠:第一步:如图①,将矩形纸片ABCD折叠,使点B、D重合,点C落在点C′处,得折痕EF;第二步:如图②,将五边形AEFC′D折叠,使AE、C′F重合,得折痕DG,再打开;第三步:如图③,进一步折叠,使AE、C′F均落在DG上,点A、C′落在点A′处,点E、F落在点E′处,得折痕MN、QP.这样,就可以折出一个五边形DMNPQ.(1)请写出图①中一组相等的线段______写出一组即可;(2)若这样折出的五边形DMNPQ,如图③,恰好是一个正五边形,当AB=a,AD=b,DM=m时,有下列结论:①a2−b2=2abtan18°;②m=√a2+b2⋅tan18°;③b=m+atan18°;④b=32m+mtan18°.其中,正确结论的序号是______把你认为正确结论的序号都填上.19.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则S正方形MNPQS正方形AEFG的值等于______.19题图 20题图 21题图20.如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为______.21.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE、折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上,若DE=5,则GE的长为______.三、解答题(本大题共8小题,共47分)22.已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C.(1)如图①,若AB=2,∠P=30°,求AP的长(结果保留根号);(2)如图②,若D为AP的中点,求证:直线CD是⊙O的切线.23.在平面直角坐标系中,已知点A(−2,0),点B(0,4),点E在OB上,且∠OAE=∠OBA.(Ⅰ)如图①,求点E的坐标;(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).24.注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路按下面的要求填空,完成本题的解答也可以选用其他的解题方案,此时不必填空,只需按照解答题的一般要求进行解答.青山村种的水稻2007年平均每公顷产8000kg,2009年平均每公顷产9680kg,求该村水稻每公顷产量的年平均增长率.解题方案:设该村水稻每公顷产量的年平均增长率为x.(1)用含x的代数式表示:①2008年种的水稻平均每公顷的产量为______;②2009年种的水稻平均每公顷的产量为______;(2)根据题意,列出相应方程______;(3)解这个方程,得______;(4)检验:______;(5)答:该村水稻每公顷产量的年平均增长率为______%.25.某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为______,图①中m的值为______;(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.26.如图,一艘海轮位于灯塔P的北偏东64°方向,距离灯塔120海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,求BP和BA的长(结果取整数).(参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05,√2取1.414).27.已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:(Ⅰ)求y1与x之间的函数关系式;(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).(1)求y2与x之间的函数关系式;(2)当x12tx…−103…y1=ax2+bx+c (09)40…28.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,−1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.29.已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=−3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.答案和解析1.【答案】C【解析】解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,故①与图象不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为:1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,故②符合函数图象;③如图所示:当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4;当点P在DA上运动时,S△ABP减小,这段时间为3,故③符合函数图象;综上可得符合图中所示函数关系的问题情境的个数为2.故选:C.①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,图象纵坐标不符合;②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;本题考查了函数的图象,解答本题需要同学们仔细分析所示情景,判断函数图象是否符合,要求同学们能将实际问题转化为函数图象,有一定难度.2.【答案】B【解析】解:甲的平均成绩为:(86×6+90×4)÷10=87.6(分),乙的平均成绩为:(92×6+83×4)÷10=88.4(分),丙的平均成绩为:(90×6+83×4)÷10=87.2(分),丁的平均成绩为:(83×6+92×4)÷10=86.6(分),因为乙的平均分数最高,所以乙将被录取.故选:B.根据题意先算出甲、乙、丙、丁四位候选人的加权平均数,再进行比较,即可得出答案.此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.3.【答案】B【解析】解:每支球队都需要与其他球队赛(x−1)场,但2队之间只有1场比赛,x(x−1)=4×7.所以可列方程为:12故选:B.关系式为:球队总数×每支球队需赛的场数÷2=4×7,把相关数值代入即可.本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.【答案】D【解析】【分析】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB//CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.5.【答案】D【解析】【分析】此题主要考查了反比例函数图象上点的坐标特点,正确把握反比例函数的增减性是解题关键.直接利用反比例函数图象上点的坐标特点,结合增减性得出答案.【解答】的图象上,解:∵点A(−5,y1),B(−3,y2),C(2,y3)在反比例函数y=3x∴A,B点在第三象限,C点在第一象限,在每个象限y随x的增大而减小,∴y3一定最大,y1>y2,∴y2<y1<y3.故选:D.6.【答案】B【解析】【分析】本题考查轴对称−最短问题,等腰三角形的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.如图连接PC,只要证明PB=PC,即可推出PB+PE=PC+PE,由PE+PC≥CE,推出P、C、E共线时,PB+PE的值最小,最小值为CE的长度.【解答】解:如图连接PC,∵AB=AC,BD=CD,∴AD垂直平分BC,∴PB=PC,∴PB+PE=PC+PE,∵PE+PC≥CE,∴P、C、E共线时,PB+PE的值最小,最小值为CE的长度,故选B.7.【答案】D【解析】解:由旋转可得,△ABC≌△DEC,∴AC=DC,故A选项错误,BC=EC,故B选项错误,∠AEF=∠DEC=∠B,故C选项错误,∠A=∠D,又∵∠ACB=90°,∴∠A+∠B=90°,∴∠D+∠B=90°,∴∠BFD=90°,即DF⊥AB,故D选项正确,故选:D.依据旋转可得,△ABC≌△DEC,再根据全等三角形的性质,即可得出结论.本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.8.【答案】B【解析】解:由题意知:开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、D;由于漏壶漏水的速度不变,所以图中的函数应该是一次函数,可以排除C选项;所以B选项正确.故选:B.由题意知x表示时间,y表示壶底到水面的高度,然后根据x、y的初始位置及函数图象的性质来判断.主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.9.【答案】D【解析】解:①由图知:抛物线与x轴有两个不同的交点,则△=b2−4ac>0,故①正确;②抛物线开口向上,得:a>0;=1,b=−2a,故b<0;抛物线的对称轴为x=−b2a抛物线交y轴于负半轴,得:c<0;所以abc>0;故②正确;③根据②可将抛物线的解析式化为:y=ax2−2ax+c(a≠0);由函数的图象知:当x=−2时,y>0;即4a−(−4a)+c=8a+c>0,故③正确;④根据抛物线的对称轴方程可知:(−1,0)关于对称轴的对称点是(3,0);当x=−1时,y<0,所以当x=3时,也有y<0,即9a+3b+c<0;故④正确;所以这四个结论都正确.故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10.【答案】D【解析】【分析】令y=0,则−16x2+32x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.【解答】解:令y=0,则−16x2+32x+6=0,解得:x1=12,x2=−3∴A、B两点坐标分别为(12,0)(−3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD=√4.52+62=152.故选:D.11.【答案】A【解析】【分析】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出A,B,M点坐标,进而得出平移方向和距离,即可得出平移后解析式.【解答】解:当y=0,则0=x2−4x+3,(x−2)2=1,解得:x1=1,x2=3,∴A(1,0),B(3,0),y=x2−4x+3=(x−2)2−1,∴M 点坐标为:(2,−1),∵平移该抛物线,使点M 平移后的对应点M′落在x 轴上,点B 平移后的对应点B′落在y 轴上, ∴抛物线向上平移一个单位长度,再向左平移3个单位长度即可,∴平移后的解析式为:y =(x +1)2=x 2+2x +1.故选:A .12.【答案】C【解析】【分析】①当x =0时,c =−2,当x =1时,a +b =0,abc >0,①正确;②x =12是对称轴,x =−2时y =t ,则x =3时,y =t ,②正确; ③m +n =4a −4;当x =−12时,y >0,a >83,m +n >203,③错误;本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,能够从表格中获取信息确定出对称轴是解题的关键.【解答】解:当x =0时,c =−2,当x =1时,a +b −2=−2,∴a +b =0,∴y =ax 2−ax −2,∴abc >0,①正确;x =12是对称轴, x =−2时y =t ,则x =3时,y =t ,∴−2和3是关于x 的方程ax 2+bx +c =t 的两个根;②正确;m =a +a −2,n =4a −2a −2,∴m =n =2a −2,∴m +n =4a −4,∵当x =−12时,y >0,∴a >83,∴m +n >203,③错误;故选:C .13.【答案】55【解析】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°−∠PAO−∠P−∠PBO=360°−90°−70°−90°=110°,∴∠C=12∠AOB=55°.故答案为:55.首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.14.【答案】2√5【解析】解:根据旋转的性质得到:BE′=DE=1,在直角△EE′C中:EC=DC−DE=2,CE′=BC+ BE′=4.根据勾股定理得到:EE′=√EC2+CE′2=√20=2√5.根据旋转的性质得到:BE′=DE=1,在直角△EE′C中,利用勾股定理即可求解.本题主要运用了勾股定理,能根据旋转的性质得到BE′的长度,是解决本题的关键.15.【答案】√32【解析】解:在△CAD与△ABE中,AC=AB,∠CAD=∠ABE=60°,AD=BE,∴△CAD≌△ABE.∴∠ACD=∠BAE.∵∠BAE+∠CAE=60°,∴∠ACD+∠CAE=60°.∴∠AFG=∠ACD+∠CAE=60°.在直角△AFG中,∵sin∠AFG=AGAF,∴AGAF =√32.首先证明△CAD≌△ABE,得出∠ACD=∠BAE,证明∠AFG=60°.本题主要考查了全等三角形的判定、性质,等边三角形、三角形的外角的性质,特殊角的三角函数值及三角函数的定义.综合性强,有一定难度.16.【答案】45【解析】解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°−∠ACE=90°−x−y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°−x−y+x=90°−y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°−y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故答案为:45.设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°−∠ACE=90°−x−y,根据等边对等角得出∠ACE=∠AEC=x+y,∠BDC=∠BCD=∠BCE+∠DCE=90°−y.然后在△DCE中,利用三角形内角和定理列出方程x+(90°−y)+(x+y)=180°,解方程即可求出∠DCE的大小.本题考查了等腰三角形的性质及三角形内角和定理,设出适当的未知数列出方程是解题的关键.17.【答案】8【解析】【分析】本题考查了正六边形的性质,正确理解正六边形ABCDEF的六个顶点是圆的六等分点是关键.在正六边形ABCDEF的六个顶点是圆的六等分点,即可求得图中每个角的度数,即可判断等边三角形的个数.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.18.【答案】(1)AD=C′D(答案不惟一,也可以是AE=C′F等);(2)①②③【解析】解:(1)由题意知,C′D与CD是对应线段,而AB=CD,故有AD=C′D;故答案为:AD=C′D.(2)由题意知点G是矩形的中心,即延长DG过B点,延长MN也过点B,由于五边形DMNPQ,恰好是一个正五边形,且由折叠的过程知:∠MDB=54°,∠DMB=108°,∴∠DBM=∠ABM=18°,∴∠DBA=36°.∵DE=BE,∠EDB=∠DBA=36°,∴∠ADE=∠MDB−∠EDB=54°−36°=18°.在Rt△ADE中,由勾股定理知,AD2+AE2=DE2=BE2,即b2+AE2=(a−AE)2,解得AE=a2−b22a.∵tan∠ADE=tan18°=AEAD =AEb=a2−b22ab,∴a2−b2=2abtan18°,即①正确;∵PN=DM,∴PG=NG=12PN=12DM=12m,∵BG=12DB=12√a2+b2,NG=12DM=12m,NG⊥BD,∴tan∠GBN=tan18°=NG:BG=12m:12√a2+b2.∴m=√a2+b2⋅tan18°,即②正确.∵AM=AD−DM=b−m,AB=a,∴tan∠ABM=tan18°=AM:AB=(b−m):a,∴b=m+atan18°,即③正确,同时④错误.故答案为:①②③.【分析】(1)由翻折的性质知:C′D与CD是对应线段,而AB=CD,故有AD=C′D;(2)由题意知点G是矩形的中心,即延长DG过B点,延长MN也过点B,可得∠DBM=∠ABM=∠ADE=18°,然后分析四个结论.本题考查了翻折的性质:对应角相等,对应边相等及正五边形的性质、勾股定理.19.【答案】89【解析】【分析】本题考查了正方形的性质,等腰直角三角形的性质,正方形的面积的计算,属于较难题.由∠ABD=∠CBD=45°,四边形MNPQ和AEFG均为正方形,推出△BEF与△BMN是等腰直角三角形,于是得到FE=BE=AE=12AB,BM=MN=QM,同理DQ=MQ,则可得MN=13BD=√23AB,即可计算答案.【解答】解:在正方形ABCD中,∵∠ABD=∠CBD=45°,∵四边形MNPQ和AEFG均为正方形,∴∠BEF=∠AEF=90°,∠BMN=∠QMN=90°,∴△BEF与△BMN是等腰直角三角形,∴FE=BE=AE=12AB,BM=MN=QM,同理DQ=MQ,∴MN=13BD=√23AB,∴S正方形MNPQS正方形AEFG=(√23AB)2(12AB)2=89,故答案为:89.20.【答案】√5【解析】解:如图1,延长DA,GP相交于H,∵四边形ABCD和四边形EFCG是正方形,∴EG//BC//AD,∴∠H=∠PGE,∠HAP=∠GEP,∵点P是AE的中点,∴AP=EP,∴△AHP≌△EGP,∴AH=EG=1,PG=PH=12HG,∴DH=AD+AH=4,DG=CD−CG=2,根据勾股定理得,HG=√DH2+DG2=2√5,∴PG=√5,故答案为√5.延长DA,GP相交于H,先证明△AHP≌△EGP,进而求出DH,DG,最后用勾股定理即可得出结论.本题考查了勾股定理、全等三角形的判定和性质,正确作出辅助线构造直角三角形是关键.21.【答案】4913【解析】【分析】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.由折叠及轴对称的性质可知,△ABH≌△GBH,则BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ABF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【解答】解:设折痕BF与AE交于点H,如图,∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,AB=BG,∠ABH=∠GBH,BH=BH∴△ABH≌△GBH(SAS),∴AH=GH,且∠AHB=∠GHB=90°,∴BF垂直平分线段AG,即BF⊥AE,∴∠FAH+∠AFH=90°,又∵∠FAH+∠AED=90°,∴∠AFH=∠AED,又∠FAB=∠D=90°,AD=AB,∴△ABF≌△DAE(AAS),∴AF=DE=5,在Rt△ABF中,BF=√AB2+AF2=√122+52=13,S△ABF=12AB⋅AF=12BF⋅AH,∴12×5=13×AH,∴AH=6013,∴AG=2AH=12013,∵AE=BF=13,∴GE=AE−AG=13−12013=4913,故答案为:4913.22.【答案】解:(1)∵AB是⊙O的直径,AP是切线,∴∠BAP=90°.在Rt△PAB中,AB=2,∠P=30°,∴BP=2AB=2×2=4.由勾股定理,得AP=√BP2−AB2=√42−22=2√3.(2)如图,连接OC、AC.∵AB是⊙O的直径,∴∠BCA=90°,又∵∠ACP=180°−∠BCA=90°.在Rt△APC中,D为AP的中点,∴CD=12AP=AD.∴∠4=∠3.又∵OC=OA,∴∠1=∠2.∵∠2+∠4=∠PAB=90°,∴∠1+∠3=∠2+∠4=90°.即OC⊥CD.∴直线CD是⊙O的切线.【解析】(1)易证PA⊥AB,再通过解直角三角形求解;(2)本题连接OC,证出OC⊥CD即可.首先连接AC,得出直角三角形ACP,根据直角三角形斜边上中线等于斜边一半得CD=AD,再利用等腰三角形性质可证∠OCD=∠OAD=90°,从而解决问题.此题考查了切线的判定和性质及解直角三角形等知识点,难度适中.23.【答案】方法一:解:(Ⅰ)如图①,∵点A(−2,0),点B(0,4),∴OA=2,OB=4.∵∠OAE=∠OBA,∠EOA=∠AOB=90°,∴△OAE∽△OBA,∴OAOB =OEOA,即24=OE2,解得OE=1,∴点E的坐标为(0,1);(Ⅱ)①如图②,连接EE′.由题设知AA′=m(0<m<2),则A′O=2−m.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2−m)2+42=m2−4m+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′//AA′,且EE′=AA′.∴∠BEE′=90°,EE′=m.又∵BE=OB−OE=3,∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,∴A′B2+BE′2=2m2−4m+29=2(m−1)2+ 27.当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).②如图②,过点A作AB′⊥x,并使AB′=BE= 3.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴AA′A′O =AB′OB=34,∴AA′AO =37,AO=2,∴AA′=37×2=67,∴EE′=AA′=67,∴点E′的坐标是(67,1).方法二:(1)同上.(2)由AA′=m⇒A′(m−2,0),E′(m,1),B(0,4),A′B2+BE′2=(m−2)2+(0−4)2+(0−m)2+(4−1)2,A′B2+BE2=2m2−4m+29,∴当m=1时,A′B2+BE2有最小值,最小值为27.(3)A′(m−2,0),E(m,1),B(0,4),过B作平行于x轴的直线l,∴E′关于l的对称点为E″(m,7),A′,B,E″三点共线时,A′B+BE′有最小值,根据黄金法则一:K A′B=K BE″时,A′,B,E″三点共线,(理由K1−K2,l1//l2,又l1,l2共线,即A′,B,E′三点共线)∴0−4m−2=7−4m−0,∴m=67,∴点E′的坐标是(67,1).【解析】方法一:(Ⅰ)根据相似三角形△OAE∽△OBA的对应边成比例得到OAOB =OEOA,则易求OE=1,所以E(0,1);(Ⅱ)如图②,连接EE′.在Rt△A′BO中,勾股定理得到A′B2=(2−m)2+42=m2−4m+20,在Rt△BE′E中,利用勾股定理得到BE′2=E′E2+BE2=m2+9,则A′B2+BE′2=2m2−4m+29=2(m−1)2+27.所以由二次函数最值的求法知,当m=1即点E′的坐标是(1,1)时,A′B2+BE′2取得最小值.方法二:(1)利用相似求出E点坐标.(2)①分别求出A′,B,E三点坐标,利用两点间距离公式求出最小值.②当A′B+BE′取得最小值时,由于公共点为点B,过点B作x轴平行线L,作A’或E’关于L的对称点,利用直线A′B与BE′′的斜率相等,得出A′,B,E′′三点共线,并得出A′B+BE′取得最小值.本题综合考查了相似三角形的判定与性质、平移的性质以及勾股定理等知识点.此题难度较大,需要学生对知识有一个系统的掌握.24.【答案】(1)①8000(1+x);②8000(1+x)2;(2)8000(1+x)2=9680;(3)x1=0.1,x2=−2.1;(4)x1=0.1,x2=−2.1都是原方程的根,但x2=−2.1不符合题意,所以只取x=0.1;(5)10.【解析】解:(1)①8000(1+x);②8000(1+x)(1+x)=8000(1+x)2;(2)8000(1+x)2=9680;(3)x1=0.1,x2=−2.1;(4)x1=0.1,x2=−2.1都是原方程的根,但x2=−2.1不符合题意,所以只取x=0.1;(5)10.解此类题时,先将所求问题设为x,根据增长后的产值=增长前的产值(1+增长率),即可用含x的代数式表示,再求解,判断所求的解是否符合题意,舍去不合题意的解.解此类题时,先将所求问题设为x,然后用含x的代数式表示,再求解,判断所求的解是否符合题意,舍去不合题意的解.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.25.【答案】解:(1)4÷10%=40(人),m=100−27.5−25−7.5−10=30;故答案为40人,30.(2)平均数=(13×4+14×10+15×11+16×12+17×3)÷40=15(岁),16岁出现12次,次数最多,众数为16岁;按大小顺序排列,中间两个数都为15岁,中位数为15岁【解析】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.(1)频数÷所占百分比=样本容量,m=100−27.5−25−7.5−10=30;(2)根据平均数、众数和中位数的定义求解即可.26.【答案】解:如图作PC⊥AB于C.由题意∠A=64°,∠B=45°,PA=120,在Rt△APC中,sinA=PCPA ,cosA=ACPA,∴PC=PA⋅sinA=120⋅sin64°,AC=PA⋅cosA=120⋅cos64°,在Rt△PCB中,∵∠B=45°,∴PC=BC,∴PB=PCsin45∘=120×0.90√22≈153.∴AB=AC+BC=120⋅cos64°+120⋅sin64°≈120×0.90+120×0.44≈161.答:BP的长约为153海里和BA的长约为161海里.【解析】作PC⊥AB于C,分别在Rt△APC,Rt△PCB中求解即可解决问题.本题考查了解直角三角形的应用--方位角问题,结合航海中的实际问题,解直角三角形即可,体现了数学应用于实际生活的思想.27.【答案】解:(Ⅰ)∵抛物线经过点(0,94),∴c=94.∴y1=ax2+bx+94,∵点(−1,0)、(3,0)在抛物线y1=ax2+bx+94上,∴{a−b+94=09a+3b+94=0,解得{a=−34b=32,∴y1与x之间的函数关系式为:y1=−34x2+32x+94;(II)∵y1=−34x2+32x+94,∴y1=−34(x−1)2+3,∴直线l为x=1,顶点M(1,3).①由题意得,t≠3,如图,记直线l与直线l′交于点C(1,t),当点A与点C不重合时,∵由已知得,AM与BP互相垂直平分,∴四边形ABMP为菱形,∴PA//l,又∵点P(x,y2),∴点A(x,t)(x≠1),∴PM=PA=|y2−t|,过点P作PQ⊥l于点Q,则点Q(1,y2),∴QM=|y2−3|,PQ=AC=|x−1|,在Rt△PQM中,∵PM2=QM2+PQ2,即(y2−t)2=(y2−3)2+(x−1)2,整理得,y2=16−2t (x−1)2+t+32,即y2=16−2t x2−13−tx+10−t26−2t,∵当点A与点C重合时,点B与点P重合,∴P(1,t+32),∴P点坐标也满足上式,∴y2与x之间的函数关系式为y2=16−2t x2−13−tx+10−t26−2t(t≠3);②根据题意,借助函数图象:当抛物线y2开口方向向上时,6−2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,t+32),∵3>t+32,∴不合题意,当抛物线y2开口方向向下时,6−2t<0,即t>3时,y1−y2=−3(x−1)2+3−[1(x−1)2+t+3]=3t−114(3−t)(x−1)2+3−t2,若3t−11≠0,要使y1<y2恒成立,只要抛物线y=3t−114(3−t)(x−1)2+3−t2开口方向向下,且顶点(1,3−t2)在x轴下方,∵3−t<0,只要3t−11>0,解得t>113,符合题意;若3t−11=0,y1−y2=−13<0,即t=113也符合题意.综上,可以使y1<y2恒成立的t的取值范围是t≥113.或这样考虑:y1与y2对称轴相同,当y2开口向下时可得到y2最值大于y21最值3,所以只要保证y2的开口大于y1的开口即可,根据二次函数性质,抛物线开口由a的绝对值决定,所以只要计算|16−2t |<34的绝对值即可.【解析】【分析】(I)先根据物线经过点(0,94)得出c的值,再把点(−1,0)、(3,0)代入抛物线y1的解析式即可得出y1与x之间的函数关系式;(II)先根据(I)中y 1与x 之间的函数关系式得出顶点M 的坐标.①记直线l 与直线l′交于点C(1,t),当点A′与点C 不重合时,由已知得,AM 与BP 互相垂直平分,故可得出四边形ANMP 为菱形,所以PA//l ,再由点P(x,y 2)可知点A(x,t)(x ≠1),所以PM =PA =|y 2−t|,过点P 作PQ ⊥l 于点Q ,则点Q(1,y 2),故QM =|y 2−3|,PQ =AC =|x −1|,在Rt △PQM 中,根据勾股定理即可得出y 2与x 之间的函数关系式,再由当点A 与点C 重合时,点B 与点P 重合可得出P 点坐标,故可得出y 2与x 之间的函数关系式;②根据题意,借助函数图象:当抛物线y 2开口方向向上时,可知6−2t >0,即t <3时,抛物线y 1的顶点M(1,3),抛物线y 2的顶点(1,t+32),由于3>t+32,所以不合题意,当抛物线y 2开口方向向下时,6−2t <0,即t >3时,求出y 1−y 2的值;若3t −11≠0,要使y 1<y 2恒成立,只要抛物线方向及顶点(1,3−t 2)在x 轴下方,因为3−t <0,只要3t −11>0,解得t >113,符合题意;若3t −11=0,y 1−y 2=−13<0,即t =113也符合题意.本题考查的是二次函数综合题,涉及到待定系数法二次函数解的解析式、勾股定理及二次函数的性质,解答此类题目时要注意数形结合思想的运用. 28.【答案】解:(Ⅰ)①∵点O(0,0),F(1,1), ∴直线OF 的解析式为y =x .设直线EA 的解析式为:y =kx +b(k ≠0)、 ∵点E 和点F 关于点M(1,−1)对称, ∴E(1,−3).又∵A(2,0),点E 在直线EA 上, ∴{0=2k +b−3=k +b,解得{k =3b =−6,∴直线EA 的解析式为:y =3x −6.∵点P 是直线OF 与直线EA 的交点,则{y =xy =3x −6, 解得{x =3y =3,∴点P 的坐标是(3,3).②由已知可设点F 的坐标是(1,t). ∴直线OF 的解析式为y =tx .设直线EA 的解析式为y =cx +d(c 、d 是常数,且c ≠0). 由点E 和点F 关于点M(1,−1)对称,得点E(1,−2−t). 又点A 、E 在直线EA 上, ∴{0=2c +d−2−t =c +d,解得{c =2+t d =−2(2+t),∴直线EA 的解析式为:y =(2+t)x −2(2+t). ∵点P 为直线OF 与直线EA 的交点,。