河流、湖泊、水库、湿地水环境容量计算模型

合集下载

河湖湿地补水水面面积计算公式

河湖湿地补水水面面积计算公式

河湖湿地补水水面面积计算公式河湖湿地补水水面面积的计算公式是根据水体的形状来确定的。

通常情况下,水体的形状可以近似为矩形、圆形或椭圆形。

1.矩形水体:
矩形水体的长度为L,宽度为W,补水后的水面面积为A。

A = L * W
2.圆形水体:
圆形水体的半径为R,补水后的水面面积为A。

A = π * R^2
3.椭圆形水体:
椭圆形水体的长轴长度为A,短轴长度为B,补水后的水面面积为S。

S = π * (A/2) * (B/2)
以上是常见的计算公式,适用于大多数情况。

但在实际情况中,水体的形状可能更加复杂,此时需要更为精确的测量和计算方法,可以借助测量工具和计算机辅助软件进行精确计算。

另外,在实际计算当中还需要考虑一些因素,如水位变化、湖泊流动等,这些因素可能对水面面积的计算结果产生影响。

因此,在具体计算时需要根据实际情况进行相应的调整。

河流水质数学模型

河流水质数学模型

2、2011年十大水系水质类别比例
长江、黄河、珠江、松花江、淮河、海河、辽河、浙闽片河流、西南 诸河与内陆诸河十大水系监测得469个国控断面中Ⅰ~Ⅲ类、Ⅳ~Ⅴ类 与劣Ⅴ类水质断面比例分别为61、0%、25、3%与13、7%。主要污 染指标为化学需氧量、五日生化需氧量与总磷。
3、 河流中有机污染物得相关情况
L0kd
2、3 S-P模型得修正模型
1925年,Street-Phelps提出BOD-DO偶合模型以后,水质模型得研究在很长 一段时间里进展缓慢。到了20世纪60年代,由于环境污染得加剧,水质问题引起 人们得关注,水质模型得研究也获得了快速发展。20世纪60~80年代就是水质 模型得快速发展时期。
2、2不考虑弥散作用得稳态解 当不考虑弥散作用,即弥散系数ks=0时,(1)式变化为
u C x
K1C
解上述方程得
K1 x
C C0e u
二维模型:如果模拟得河流水面较宽(超过200m),则按一维模型 计算结果可能误差较大,因此需采用二维模型计算。
3、二维情况下河流水环境容量模型
一个均匀河段得起始断面,从排污口连续稳定得向河流排
ksy
2C y 2
Байду номын сангаас
K1C
三、河流水质模型
(一)一维河流水质模型 1、河段划分 2、单一河段水质模型 3、多河段水质模型
(二)二维河流水质模型 4、正交曲线坐标系统 5、断面累积流量曲线 6、BOD模型 7、DO有限单元模型
1、河段划分
河流作为地球上分布最广泛得一种水体,其最显
著得特点就就是其在三维空间尺度上存在着巨大 得差异,并且其沿程得水文条件一般变化都较大。
B
ks
) e(kd ks )t

河流水环境容量一维计算模型分析

河流水环境容量一维计算模型分析

河流水环境容量一维计算模型分析在一定水文设计条件和水质目标前提下,根据一维河流水质模型理论,探讨不同控制断面和排污口位置下的河流水环境容量的计算方法。

在计算水环境容量时,对于长度较短的河段,排污口均匀概化和中点概化差异不大;对于长度较长的河段,排污口均匀概化比中点概化更接近实际情况。

段首法最为严格,适于经济发达地区、水源地或旨在改善水质的区域;段尾法次之;功能区末端控制法要求达到的环境目标值更低。

标签:水环境容量;排污口概化;段首控制法;段尾控制法水环境容量是指某一水环境单元在特定的环境目标下所能容纳污染物的量,也就是环境单元依靠自身特性使本身功能不至于破坏的前提下能够允许容纳的污染物的量[1]。

其大小与水环境功能目标、水体特征、污染物特性及排污方式相关。

通常以单位时间(如:一年)内水体所能承受的污染物排放总量表示。

水环境容量也可称为水域的纳污能力。

1 计算流程在计算水环境容量时一般按以下流程:(1)调查收集水环境功能区的基本资料并分析整理;(2)调查分析水环境功能区的水质状况;(3)调查分析沿河排污口的位置分布、排污负荷等具体情况;(4)调查水环境功能区水文参数;(5)确定水体的水质目标;(6)选用适当的计算模型,计算水域的环境容量;(7)分析、验证计算结果的合理性。

2 计算模型根据所采用的水质数学模型维数的不同,水环境容量计算模型可分为零维模型、一维模型和二维模型。

其中零维模型主要适用于污染物均匀混合的小型河流及河网流域;一维模型主要适用于河道宽深比不大,在较短时间内污染物质能在横断面上均匀混合的中小型河流;二维模型主要适用于河道宽度较大,河流横向距离显著大于垂向距离,在横断面上污染物分布不均匀的河流,或者宽度虽然不大,但是存在如鱼类的洄游通道等特殊功能需求的河流。

以下将重点讨论河流非持久性污染物的一维水环境容量计算模型。

一维稳态水质模型:式中C1为排污口废水浓度,mg/L;q为废水量,m3/s;C0为上游河水浓度,mg/L;Q0为流量,m3/s;K为水质降解系数,1/d;x为距排污口的距离,m;u 为流速,m/s。

环境规划课件 水环境容量计算

环境规划课件 水环境容量计算


若排污口距离较近,可把多个排污口简化成集中的排
污口
排污口概化的重心计算: X=(Q1C1X1+Q2C2X2+·· nCnXn)/(Q1C1+Q2C2+·· nCn) ·Q · ·Q · X:概化的排污口到功能区划下断面或控制断面的距离; Qn:第n个排污口(支流口)的水量; Xn:第n个排污口(支流口)到功能区划下断面的距离; Cn:第n个排污口(支流口)的污染物浓度;
水环境容量计算
水环境容量:反映流域的自然属性(水文特性),又反映人类对环境 的需求(水质目标) W自净 水环境容量= 稀释容量(W稀释) +自净容量(W自净) 两部分
自净
W稀释 稀释
W
排放方式
稀释容量:在给定水域的来水污染物浓度低于出水水质目标时,依靠稀 释作用达到水质目标所能承纳的污染物量
自净容量:由于沉降、生化、吸附等物理、化学和生物作用,给定水域 达到水质目标所能自净的污染物量
式中:WC—水域允许纳污量(g/L); S—控制断面水质标准(mg/L)
多点源排放
WC S (Q p QEi ) Q p C p
i 1
n
式中:QEi——第i个排污口污水设计排放流量(m3/s); n——排污口个数
定常设计条件下河流稀释混合模型

考虑吸附态和溶解态污染指标耦合模型
水环境容量基本特征

资源性 水环境容量是一种自然资源—能容纳一定量的 污染物也能满足人类生产、生活和生态系统的需要;水环 境容量是有限的可再生自然资源。 区域性 受各类区域的水文、地理、气象条件等因素的影 响,不同水域对污染物的物理、化学和生物净化能力存在 明显的差异,导致水环境容量有明显的地域性特征。 系统性 河流、湖泊等水域一般处在大的流域系统中,水 域与陆域、上游与下游、左岸与右岸构成不同尺度的空间 生态系统,因此,在确定局部水域水环境容量时,必须从 流域的角度出发,合理协调流域内各水域的水环境容量。

课件-(7水环境数学模型及预测)

课件-(7水环境数学模型及预测)

人类活动的热排放
主要为火力发电厂、冶炼厂等冷却水的排放,可按随水 流迁移的热交换公式进行计算
6
5.1.2水体与大气的热交换
A R E C
辐射热通量
R I RI G RG S I G S
I为入射的太阳短波辐射通量;RI为被水面反射的太阳辐 射通量;G为入射的大气长波辐射通量;RG为G被水面反 射的大气辐射通量;S为水面发出的长波辐射热通量,单 位均为J/(m2.h)
12
5.1.3河流水温模型
程序步骤如下:
(1)计算上断面的初始水温。进入上断面的热量有干流 来水和支流来水带来的热量及排污热量,与水流充分混 合后,得到从上断面流入本河段的起始水温T0
W q T0 TI Tx TI QC p Q
热污染源引起 的水温变化 支流引起的水 温变化
9
5.1.3河流水温模型
类似于一维水质基本方程,可以写出河流 纵向一维水温迁移转化基本方程:
T T 2T u E 2 ST t x x
E为热量在水中的扩散、离散系数;ST为微元河段关于水 温的源漏项。一般河流中的扩离散作用远小于移流作用, 可忽略不计,则上式可简化为
T T u ST t x
20
5.2.2 QUAL - Ⅱ河流水质综合模型
各水质变量之间的相互关系
1-大气复氧作用;2-河底生物的耗氧;3-碳化合物BOD耗氧;4-光合 作用产氧;5-氨氮氧化耗氧;6-亚硝酸盐氮氧化耗氧;7-碳化合物 BOD的沉淀;8-浮游植物对硝酸盐氮的吸收;9-浮游植物对磷酸盐磷 的吸收;10-浮游植物代谢产生磷酸盐磷;11-浮游植物的死亡和沉淀; 12-浮游植物代谢产生氨氮;13-底泥释放氨氮;14-氨氮转化为亚硝 21 酸盐氮;15-亚硝酸盐转化为硝酸盐;16-底泥释放磷

(完整word版)水环境容量估算(word文档良心出品)

(完整word版)水环境容量估算(word文档良心出品)

根据《规划环境影响评价技术导则 总纲》(HJ 130-2014), 规划环评应“在充分考虑累积环境影响的情况下, 动态分析不同规划时段可供规划实施利用的资源量、环境容量及总量控制指标”。

本章就上述内容展开分析。

14.1 环境容量分析14.1.1 水环境容量估算《规划环境影响评价技术导则 总纲》(HJ 130-2014)中未详细给出环境容量的计算方法, 故本次评价参考《开发区区域环境影响评价技术导则》(HJ/T 131-2003)附录B 的2.4条和2.5条, 采用水质模型建立污染物排放和受纳水体水质之间的输入响应关系, 并应考虑多点排污的叠加影响, 以受纳水体水质按功能达标为前提, 估算其最大允许排放量。

14.1.1.1 估算指标按照各级环境保护规划, 国家将化学需氧量(COD )、氨氮(NH3-N )作为水污染物总量控制指标, 因此本次水环境容量估算的指标也定为上述两项。

14.1.1.2 控制单元划分及其所对应的环境功能区划水环境容量计算的控制单元一般是在综合考虑混合过程段长度及重点污染源排放口、大型水工构筑物、水质控制断面等因素的基础上进行划分。

河流岸边排污的混合过程段长度计算采用如下公式:()()()210065.0058.06.04.0gHI B H Bua B L +-=式中: L ——混合过程段的长度, m B ——河流宽度, m H ——平均水深, m I ——平均坡度, 无量纲 u——平均流速, m/sa ——排放口到岸边的距离, m根据其水文参数, 滃江干流枯水期岸边排放污染物情况的混合过程段长度计算结果如表14.1-1所示。

表14.1-1滃江干流岸边排放污染物情况的混合过程段长度计算一览表清远华侨工业园的废水排放受纳水体最终均为滃江。

根据调查, 园区附近的滃江干流上主要建有3座低水头径流式水电站, 分别为红桥水电站、英华水电站及狮子口水电站;此外, 大镇水汇入口处为滃江干流的水质交界断面, 该断面上游江段的水质控制目标为Ⅲ类, 其下游江段的水质控制目标为Ⅱ类。

水环境容量计算方法-环境保护部环境规划院

水环境容量计算方法-环境保护部环境规划院
水环境容量计算方法
中国环境规划院 李云生 2004.5
• 基本涵义 • 计算模型 • 计算步骤 • 校核方法
第一部分 水环境容量的 基本涵义
容量涵义图示
W自净
自净容量是指由于沉降、生化、 吸附等物理、化学和生物作用, 给定水域达到水质目标所能自 净的污染物量。
自净容量
W
W稀释
稀释容量
稀释容量是指在给定水域的本底 污染物浓度低于水质目标时,依 靠稀释作用达到水质目标所能承 纳的污染物量
上界
下界 1 2 3
1#
下界 上界
• 2、距离较远并且排污量均比较小的分散排 污口,可概化为非点源入河,仅影响水域 水质本底值,不参与排污口优化分配计算。 非点源的范围主要包括农村生活源、畜禽 养殖、城市径流、矿山径流和农田径流等5 个主要方面。
污染源源强概化
• 年排放量t/a:
• 季变化系数,季污染负荷 • 月变化系数,月污染负荷 • 日变化系数,日污染负荷 • 本次计算,利用平均法确定源强。
要素之二:水环境功能区
• 水环境功能区划体现人们对水环境质量的 需求,反映了人们对水资源的态度:开发、 利用或保护。 • 已划分水环境功能区的水域,要从时间、 空间两个方面规范功能区达标标准; • 未划分水环境功能区的水域可不进行容量 计算;若考虑计算,按较高功能标准进行 (II类)。
要素之三:排污方式
4、水质模型
• 根据水环境功能区的实际情况,环境容量 计算一般用一维水质模型。对有重要保护 意义的水环境功能区、断面水质横向变化 显著的区域或有条件的地区,可采用二维 水质模型计算。在模型计算时尤其是对于 大江大河的水环境容量计算,必须结合混 合区或污染带的范围进行容量计算。
零维模型

三、水环境容量计算(演示稿)..

三、水环境容量计算(演示稿)..

somethin 问题均可按零维模型处理。 for 下面主要介绍二类常见零维模型。 od 1、定常设计条件下的河流稀释混合模型; re go 2、湖泊、水库的盒模型。
g a 4.1.2. 定常设计条件下河流稀释混合模型 ir bein 1、点源,河水和污水稀释混合方程 in the C CP QP CE QE s QP QE thing 式中:C—完全混合的水质浓度(mg/L); ll QP、CP—上游来水设计水量(m3/s)与设计水质浓度(mg/L); nd A QE、CE—污水设计流量(m3/s)与设计排放浓度(mg/L); e a 例:上游来水 CODCr(p)=14.5mg/L, QP=8.7m3/s tim污水排放源强 CODCr(E)=58mg/L,QE=1.0m3/s
ll th 3、污染性质。不同污染物本身具有不同的物理化学特性和生物反应 d A 特征,不同类型的污染物对水生生物和人体健康的影响程度不同。因此, an 对于不同的污染物具有不同的水质标准及迁移转化规律,确定了不同的 time 水环境容量,但具有一定的相互联系和影响,提高某种污染物的水环境 ing at a 4
ing① 各质源会染地因 a 水量满经源表此t根在a污是足济达水,据小t染否环发不质不规i流m源符保展到达论划域e是合要及环到是区水a否水求水保水前域污n实体,污要域者水d染现使则染求功还污小A防达用可源时能是染流l治l标功分的,要后调t域规h四排能析总则求者查i水划n川放要计量需与,水监g编污大及求算控分水都环测s制染满;出制析污需学资境i过n防足② 研提计染要 料容程t1治 总究供算源进h及如量中e 规量水依出的行地果计i,黄r控域据研达研划表地有算b川制剩;究标究培水 表e两友的余如水治水i环水训n个要水果域理体g境环讲重求环地削合的质境a稿要,境表减理水r量质e问区容水污控环监量题g域量质染制境测及o需地,及负提容o数区要d表为区荷供量据域明f水区域量依计,水o确环域水,据算r明污:s境社污为。,确染omethin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水环境容量计算模型
1)河流水环境容量模型
水环境容量是在水资源利用水域内,在给定的水质目标、设计流量和水质条件的情况下,水体所能容纳污染物的最大数量。

按照污染物降解机理,水环境容量W 可划分为稀释容量W 稀释和自净容量W 自净两部分,即:
W W W =+稀释自净
稀释容量是指在给定水域的来水污染物浓度低于出水水质目标时,依靠稀释作用达到水质目标所能承纳的污染物量。

自净容量是指由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量。

河段污染物混合概化图如图11.4-1。

根据水环境容量定义,可以给出该河段水环境容量的计算公式:
图11.4-1 完全混合型河段概化图
0()i si i i W Q C C =-稀释
i i si i W K V C =⋅⋅自净
即:0()i i si i i i si W Q C C K V C =-+⋅⋅
考虑量纲时,上式整理成:
086.4()0.001i i si i i i si W Q C C K V C =-+⋅⋅
其中:
当上方河段水质目标要求低于本河段时:0i si C C =
当上方河段水质目标要求高于或等于本河段时:00i i C C =
式中:i W —第i 河段水环境容量(kg/d );
i Q —第i 河段设计流量(m 3/s );
i V —第i 河段设计水体体积(m 3);
i K —第i 河段污染物降解系数(d -1);
si C —第i 河段所在水功能区水质目标值(mg/L );
0i C —第i 河段上方河段所在水功能区水质背景值(mg/L ),取上游来
水浓度。

若所研究水功能区被划分为n 个河段,则该水功能区的水环境容量是n 个河段水环境容量的叠加,即:
1n
i i W W ==∑
01131.536()0.000365n n
i si i i i i i i W Q C C K V C ===-+⋅⋅∑∑
式中:W —水功能区水环境容量(t/a );
其他符合意义和量纲同上。

2)湖泊、水库水环境容量计算模型
有机物COD 、氨氮的水环境容量模型:
在目前国内外的研究中,多采用完全均匀混合箱体水质模型来预测水库水体长期的动态变化,即将水库视为一个完全混合反应器时,有机物的容量计算模型可以用水体质量平衡基本方程计算。

水库中有机物容量模型如下:
C t kV S t C t Q t C t Q dt
dc c out in in )()()()()(V(t)++•-•= 假设条件:水量为稳态,出流水质混合均匀。

式中:V(t)——箱体在t 时刻的水量,m 3;
dt dc ——箱体水质参数COD 、氨氮的变化率;
)(t Q in ——t 时刻水库的入流水量,m 3/a ;
)(t Q out ——t 时刻水库的出流水量,m 3/a ;
)(t C in ——t 时刻水库的COD 、氨氮入流浓度值,mg/L ;
)(t C ——t 时刻水库的COD 、氨氮出流浓度值,mg/L ;
c S ——其他未计入的外部源和漏污染量;
k ——COD 、氨氮的综合降解系数。

由此模型推导出的COD 、氨氮环境容量的计算公式如下:
)(out KV Q Cs W +=
转换量纲后公式为:
6out 10*)(-+=KV Q Cs W
W ——水库环境容量,t/a ;
Cs ——水库功能区目标值,mg/L ;
out Q ——水库的出流水量,m 3/a ;
K ——COD 、氨氮的综合降解系数;
V ——水库死库容,m 3。

总氮总磷的水环境容量计算模型
水库中氮和磷等营养盐物质随时间的变化率,是输入、输出和在水库内沉积的该种污染物的量的函数,因此营养盐物质容量计算可采用沃伦威得尔模型(V ollen —welder),即可以用质量平衡方程表示。

总氮总磷的水环境容量模型可采用吉柯奈尔-迪龙(Kirchner-Dillon )水库营养物浓度预测模型,其形式如下:
εγ⋅--=V
R I dt )1(dC
式中:C —总氮总磷的浓度(g/m 3);
I —总氮总磷的总负荷(g/a );
R —总氮总磷在水库中的滞留系数;
V —水库的容积;(m 3);
γ—冲刷速度常数(a -1);
γ=Qout/V ,式中Qout 为水库输出流量。

给定初始条件:当t=0时,C=Co ,可以求得上式的解析解:
πγγ-----=e V
Co V ]R 1I [R 1I C )()( 假设水库的入流、出流与污染物的输入处于稳定状态,当∞→t ,可得上式的平衡浓度Cp :
R
V Cp I V Cp -=-=1R 1I γγ)
( 式中Cp —总氮总磷的平衡浓度(mg/L )。

用总氮总磷的水环境质量标准来衡量。

滞留系数R 可以根据流入和流出支流的流量和营养物浓度近似计算:
Wi Wout QiPi outPout -=-=∑
∑1Q 1R 式中Qi 、Qout —水库输入和输出流量(m 3/a );
Pi 、Pout —水库输入和输出总氮总磷浓度(g/m );
Wi 、Wout —水库输入和输出总氮总磷量(g/a )。

3)人工湿地水环境容量计算模型
湿地水环境容量计算模式如下:(出水达标情况下)
W 净化=86.4Q 净化C 进
式中:
净化
W -人工湿地工程净化量,kg/d ; 净化
Q -人工湿地工程净化的废水量,m 3/s ; 进
C -排入人工湿地工程的污染物浓度,mg/L 。

相关文档
最新文档