通信双频波分复用原理

通信双频波分复用原理
通信双频波分复用原理

实验一通信双频波分复用原理

一、实验目的

1、熟悉WDM器件的使用。

2、掌握WDM器件的插入损耗及串扰的测试。

3、掌握经过同一光纤信道的多机通信。

二、实验原理

波分复用(WDM)通信的基本原理

波分复用是指一条光纤中同时传输具有不同波长的几个载波,而每个载波又各自载荷一群数字信号,因此波分复用又称为多群复用。如图1所示。具有不同波长、各自载有信息信号的若干个载波经由CH1、CH2、…….CHn等进入合波器,被耦合到同一条光纤中去,再经此光纤长距离传输,到终端进入合波器,由其按波长将各载波分离,分别进入各自通道CH1’、CH2’、…….CHn’,分别解调,从而使各自载荷信息重现。同样过程可沿与上述相反的方向进行,如图1中的虚线所示,这样的复用称为双向复用,显然,双向复用的复用量将增大一倍,如一个通道传输的信息为B,单向复用传输的则为NB,双向复用传输的则为2NB。

波分复用器

波分复用器的工作原理来源于物理光学,如利用介质薄膜的干涉滤光作用、利用棱镜和光栅的色散分光作用等。

图1 波分复用原理图

(1)干涉滤光片型波分复用器由薄膜光学原理得知,具有高折射率nH、低折射率nL的两种材料交替组成的膜系呈现出滤光效应,如图2所示。在λ0处吸收最小,即透过率最大,因此起到了滤光作用。不过,比较来说,由于Δλ难以作到很窄,故复用的路数是有限的,而且要求被分割的两路波长之间不能靠的太近,以防止串扰。这些都属于干涉滤光片型波分复用器的缺点。

图2 干涉滤波WDM原理

(2)光栅型波分复用器光栅是一种等间隔分割光波波面的光学装置,它具有明显的角色散作用,因此可以用来做分光和合光器件,如下图所示,光源S发出的光通过光栅G,在其后焦面的P点上得到光强可以写成如下形式:

其中u,v是与光栅常数(a,b)有关的系数,显然,当V=kл时可获得最大光强,或者说,在满足下列方程(即光栅方程)的方向(θ角)上,会出现亮线:

这样,当入射光为多种波长组成的复合光时,则由上两式确定出,不同的波长将沿不同的方向出射,从而达到分光的目的;如沿反方向传播,则作用相反,即起到合光作用,光栅靠的是角色散作用分光合光的,角色散的大小可由下式求出,即

由此可以得出:为获得较大的角色散,应取较高的级次(k),如果再考虑高级次有足够的能量,因此使用闪烁型光栅最为适宜,如图3所示,目前使用或研制的光栅型复用器几乎均采用此类型光栅。与滤光片型比较,光栅型复用器的最大优点是:分路(合路)的路数多;缺点是:插入损耗大,制作工艺相对复杂些。

图3 光栅型波分复用器

(3)棱镜型波分复用器和光栅一样,棱镜也是一种熟知的角色散器件,因此也具有显著的分光作用,棱镜的角色散为

其中n是折射率,a是棱镜的折射角,(dn/dλ)是色散率,由此可见,为了实现较多路数的分波和合波,即要求较大的角色散,则应选择大的折射角和高色散率的棱镜。

由于棱镜型复用器件的工艺复杂,制作较难,因此单独使用的较少,一般多将它与其它类型的复用器件结合使用,构成复合型的复用器件。

(4)光纤耦合型波分复用器上述几种复用器件虽各有优点,但他们有一个共同的缺点,即

插入损耗比较大。光纤耦合型波分复用器的插入损耗可以做的非常低,因此很有竞争力。其工作原理是,将若干条光纤拉成锥型并熔融一起,或者采用去除包层研磨、抛光、粘接的方法,促使光纤中的光场间发生耦合,从而达到分波和合波的目的。本实验系统所使用的WDM 既为此种原理,原理图如下所示。

图4 光纤耦合型波分复用器

需要指出的是,随着光复用技术的迅速发展,近年来又先后发展出全光型和集成光学型复用器,不过从原理上看,它们仍源于上述四种基本形式的复用器件。

三、实验步骤

1、WDM器件与实验板的连接

将WDM器件如图5所示和实验板连接。接上电话机,打开电源。弹起自锁开关PA401,切换到数字传输。把各个跳线跳到数字传输。

图5 实验装置图

2、测试WDM器件的步骤

双向耦合器如上图所接。弹起PA401选择数字传输方式。测1310nm的插入损耗:先把耦合器从系统中分离出来,直接使用光纤跳线测量1310nm光源的输出功率P1,然后把1310nm 对应的光纤臂接到1310nm光源,然后测另一耦合器的1310nm输出端输出功率为P2。耦合器的插入损耗即为:

通过调节W406改变LD输出功率,并记录每次实验的数据填入下表,并求平均的插入损耗。

四、实验数据及处理

可求得平均值L0=0.30604

可知这损耗值还是挺大的,原因有:

1.在连接耦合器时每一次旋紧度不同,导致功率有相差

2.光纤接口表面脏了,导致功率变大。

五、思考题

1、测试WDM器件的重要指标的方法。

答:a以白光源作为测试光源,再用光谱仪扫描

b 以1550 nm LED光源作为测试光源,再用光谱仪扫描

c 以可调谐激光器作为测试光源,再用光功率计检测

d以S+C+L宽带光源作为测试光源,再用光谱仪扫描

e以ASE-C+L宽带光源作为测试光源,再用光谱仪扫描

2、测试WDM器件的插入损耗的实验步骤。

答:用差模测试方法。

光波分复用系统的基本原理

光波分复用系统的基本原理 本文简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术 光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。 WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。 二、WDM系统的基本构成 WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成 以双纤单向WDM系统为例,一般而言,WDM系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机 光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。

波分复用系统WDM结构原理和分类

波分复用系统(WDM),波分复用系统(WDM)结构原理和分类 波分复用系统简要介绍 光波分复用技术是在一根光纤中传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。具体如下。 如图1所示。发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。每个光波承载1路信号。再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。若线路很长,光信号太弱,就加一光放大器,把光信号放大。在接收端有N个光滤波器(1-N)。滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。光接收机的作用是把载有信号的光信号还原为原信号。 光波分复用的关键器件 (1)分布反馈多量子阱激光器(DFB MQW—LD) (2)光滤波器 (3)光放大器

图1 波分复用系统原理 波分复用系统的发展与现状 WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。 WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。 在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。 通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。1998到1999年,中国

密集波分复用(DWDM)传输原理考试题

密集波分复用(DWDM)传输原理考试题 一、填空题 1.DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个(低损耗)窗口,在传输过程中共享光纤放大器的高容量WDM系统。 2.DWDM系统的工作方式主要有双纤单向传输和(单纤双向传输)。 3.G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB,后者为(0.2dB)。 4.G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位移到(1550)nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5.G.655在1530~1565nm之间光纤的典型参数为:衰减<(0.25)dB/km;色散系数在1~6ps/nm·km之间。 6.克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的(非线性)现象。 7.在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的(调制),这种现象称交叉相位调制。 8.当多个具有一定强度的光波在光纤中混合时,光纤的(非线性)会导致产生其它新的波长,就是四波混频效应。 9.光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器实际起到一个(开关)的作用。 10.恒定光源是一个连续发送固定波长和功率的(高稳定)光源。 11.电光效应是指电场引起晶体(折射率)变化的现象,能够产生电光效应的晶体称为电光晶体。 12.光耦合器的作用是将信号光和泵浦光合在一起,一般采用(波分复用)器来实现。 13.光栅型波分复用器属于角色散型器件,是利用(角色散)元件来分离和合并不同波长的光信号。 14.DWDM系统中λ1中心波长是(1548.51nm)。

密集波分复用(DWDM)传输原理试题

第二章密集波分复用(DWDM)传输原理 一、填空题 1. DWDM系统是指波长间隔相对较小,波长复用相对密集,各信道共用光纤一个低损耗窗口, 在传输过程中共享光纤放大器的高容量WDM系统。 2. DWDM系统的工作方式主要有双纤单向传输和单纤双向传输。 3. G.652光纤有两个应用窗口,即1310nm和1550nm,前者每公里的典型衰耗值为0.34dB, 后者为0.2dB 。 4. G.653光纤又称做色散位移光纤是通过改变折射率的分布将1310nm附近的零色散点,位 移到1550 nm附近,从而使光纤的低损耗窗口与零色散窗口重合的一种光纤。 5. G.655在1530~1565nm之间光纤的典型参数为:衰减< 0.25 dB/km;色散系数在1~ 6ps/nm·km之间。 6. 克尔效应也称作折射率效应,也就是光纤的折射率n随着光强的变化而变化的非线性现象。 7. 在多波长光纤通信系统中,克尔效应会导致信号的相位受其它通路功率的调制,这种现象 称交叉相位调制。 8. 当多个具有一定强度的光波在光纤中混合时,光纤的非线性会导致产生其它新的波长,就 是四波混频效应。 9. 光纤通信中激光器间接调制,是在光源的输出通路上外加调制器对光波进行调制,此调制器 实际起到一个开关的作用。 ⒑恒定光源是一个连续发送固定波长和功率的高稳定光源。 ⒒电光效应是指电场引起晶体折射率变化的现象,能够产生电光效应的晶体称为电光晶体。 ⒓光耦合器的作用是将信号光和泵浦光合在一起,一般采用波分复用器来实现。 ⒔光栅型波分复用器属于角色散型器件,是利用角色散元件来分离和合并不同波长的光信号。 ⒕DWDM系统中λ1中心波长是1548.51nm 。 ⒖DWDM系统中λ2中心频率是193.5THz 。 二、单项选择题 ⒈光纤WDM明线技术中的FDM模拟技术,每路电话( B)。 A、2kHz B、4kHz C、6kHz D、8kHz ⒉光纤WDM中的小同轴电缆60路FDM模拟技术,每路电话( B )。 A、2kHz B、4kHz C、6kHz D、8kHz ⒊光纤WDM中的中同轴电缆1800路FDM模拟技术,每路电话( B )。

通信双频波分复用原理

实验一通信双频波分复用原理 一、实验目的 1、熟悉WDM器件的使用。 2、掌握WDM器件的插入损耗及串扰的测试。 3、掌握经过同一光纤信道的多机通信。 二、实验原理 波分复用(WDM)通信的基本原理 波分复用是指一条光纤中同时传输具有不同波长的几个载波,而每个载波又各自载荷一群数字信号,因此波分复用又称为多群复用。如图1所示。具有不同波长、各自载有信息信号的若干个载波经由CH1、CH2、…….CHn等进入合波器,被耦合到同一条光纤中去,再经此光纤长距离传输,到终端进入合波器,由其按波长将各载波分离,分别进入各自通道CH1’、CH2’、…….CHn’,分别解调,从而使各自载荷信息重现。同样过程可沿与上述相反的方向进行,如图1中的虚线所示,这样的复用称为双向复用,显然,双向复用的复用量将增大一倍,如一个通道传输的信息为B,单向复用传输的则为NB,双向复用传输的则为2NB。 波分复用器 波分复用器的工作原理来源于物理光学,如利用介质薄膜的干涉滤光作用、利用棱镜和光栅的色散分光作用等。 图1 波分复用原理图 (1)干涉滤光片型波分复用器由薄膜光学原理得知,具有高折射率nH、低折射率nL的两种材料交替组成的膜系呈现出滤光效应,如图2所示。在λ0处吸收最小,即透过率最大,因此起到了滤光作用。不过,比较来说,由于Δλ难以作到很窄,故复用的路数是有限的,而且要求被分割的两路波长之间不能靠的太近,以防止串扰。这些都属于干涉滤光片型波分复用器的缺点。

图2 干涉滤波WDM原理 (2)光栅型波分复用器光栅是一种等间隔分割光波波面的光学装置,它具有明显的角色散作用,因此可以用来做分光和合光器件,如下图所示,光源S发出的光通过光栅G,在其后焦面的P点上得到光强可以写成如下形式: 其中u,v是与光栅常数(a,b)有关的系数,显然,当V=kл时可获得最大光强,或者说,在满足下列方程(即光栅方程)的方向(θ角)上,会出现亮线: 这样,当入射光为多种波长组成的复合光时,则由上两式确定出,不同的波长将沿不同的方向出射,从而达到分光的目的;如沿反方向传播,则作用相反,即起到合光作用,光栅靠的是角色散作用分光合光的,角色散的大小可由下式求出,即 由此可以得出:为获得较大的角色散,应取较高的级次(k),如果再考虑高级次有足够的能量,因此使用闪烁型光栅最为适宜,如图3所示,目前使用或研制的光栅型复用器几乎均采用此类型光栅。与滤光片型比较,光栅型复用器的最大优点是:分路(合路)的路数多;缺点是:插入损耗大,制作工艺相对复杂些。 图3 光栅型波分复用器 (3)棱镜型波分复用器和光栅一样,棱镜也是一种熟知的角色散器件,因此也具有显著的分光作用,棱镜的角色散为 其中n是折射率,a是棱镜的折射角,(dn/dλ)是色散率,由此可见,为了实现较多路数的分波和合波,即要求较大的角色散,则应选择大的折射角和高色散率的棱镜。 由于棱镜型复用器件的工艺复杂,制作较难,因此单独使用的较少,一般多将它与其它类型的复用器件结合使用,构成复合型的复用器件。 (4)光纤耦合型波分复用器上述几种复用器件虽各有优点,但他们有一个共同的缺点,即

波分复用技术论文

波分复用技术 摘要波分复用(WND)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。 关键词波分复用技术(WDM),光纤,光传输网,交叉连接 引言 WDM是一种在光域上的复用技术,形成一个光层的网络既全光网,将是光通讯的最高阶段。建立一个以WDM和OXC(光交叉连接)为基础的光网络层,实现用户端到端的全光网连接,用一个纯粹的“全光网”消除光电转换的瓶颈将是未来的趋势。现在WDM技术还是基于点到点的方式,但点到点的WDM技术作为全光网通讯的第一步,也是最重要的一步,它的应用和实践对于全光网的发展起到决定性的作用。 1 波分复用技术 指在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复 用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。 光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: 1.1 充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 1.2 具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 1.3 对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 1.4 由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 1.5 有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 1.6 系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的

实验1.9WDM光波分复用器

1.9 WDM光波分复用器 实验者:钦(12342080) 合作者:王唯一(12342057) (大学物理科学与工程技术学院,光信息科学与技术12级2班 B13) 2015年3月26日,19,70% c 一、实验目的和容 1、了解WDM光波分复用器的工作原理和制作工艺,即熔融拉锥技术。 2、认识WDM光波分复用器的基本技术参量的实际意义,学会测量插入损耗、附加损耗、隔离度、偏振相关损耗等。 3、分析测量误差的来源。 二、实验基本原理 在熔融拉锥技术中,具体制作方法一般是将两根(或者两根以上)除去涂覆层的裸光纤以一定方式靠近,在高温加热下熔融,同时向两侧拉伸,利用计算机监控其光功率耦合曲线,并根据耦合比与拉伸长度控制停火时间,最后形成双锥结构。采用熔融拉锥法实现光纤间传输光功率耦合的耦合系数与波长有关,光传输波长发生变化时,耦合系数也会变化,即耦合器的分光比发生变化。考虑到熔融拉锥的耦合是周期性的,耦合周期愈多,耦合系数与传输波长的关系越大,所以尽量减少熔融拉锥中耦合的次数,最好在一个周期完成耦合。合理改变熔融拉锥条件,能够获得不同功能的全光纤耦合器件。熔融拉锥机的控制原理模块图如图1所示。熔融拉锥型光纤耦合器工作原理示意图如图2所示。 图1 熔融拉锥机系统控制示意图 图2 熔融拉锥型光纤耦合器工作原理示意图 1、单模耦合器 HE信号。图3是单模光纤耦合器的迅衰场耦合示意图。但在单模光纤中传导模是两个正交的基模 11 传导模进入熔锥区时,随着纤芯的不断变细,归一化频率V逐渐减小,有越来越多的光功率掺入光纤包层中。实际上光功率是在由包层作为芯,纤外介质(一般是空气)作为包层的复合波导中传播的;在输出端,随着纤芯的逐渐变粗,V值重新增大,光功率被两根纤芯以特定比例“捕获”。在熔锥区,两光纤包层合并在一起,纤芯足够逼近,形成弱耦合。将一根光纤看做是另一光纤的扰动,在弱导近似下,并假设光纤是无吸收的,则有

波分复用系统的基本原理

一、波分复用系统的基本原理 所谓波分复用(WDM),就是采用波分复用器(合波器)在发送端将规定波长的信号光载波合并起来,并送入一根光纤中传输;在接收侧,在由另一个波分复用器(分波器)将这些不同信号的光载波分开。由于不同波长的光载波信号可以看作相互独立(不考虑光纤非线性时),从而在一根光纤中可实现多路光信号的复用传输。不同类型的光波分复用器,可以复用的波长数也不同,目前商用化的一般是8个波长、16个波长和32个波长的系统。波分复用系统的原理如图1-1所示。 图1-1 波分复用系统原理 在80年代初光纤通信兴起时,首先被采用的是1310nm/1550nm的两个波长复用系统(即在光纤的两个低损耗窗口1310nm和1550nm各传送一路光波长信号),也叫粗波分复用系统。这种系统比较简单,一般采用熔融的波分复用器,插入损耗小,在每个中继站,两个波长都进行解复用和光/电/光再生中继。随着1550nm窗口EDFA的商用化,光传输工程可以利用EDFA对传送的光信号进行放大,实现超长距离无电再生中继传输,在1550nm窗口传送多个波长信号,这些信号相邻波长间隔较窄,且工作在一个共享的EDFA工作带宽内,这种波长间隔紧密的WDM系统称为密集型波分复用系统(DWDM)。其频谱分布如图1-2所示。ITU-T G.692建议,DWDM系统的绝对参考频率为193.1THz(对应波长1552.52nm),不同波长的频率间隔为100GHz的整数倍(对应波长间隔约为0.8.nm的整数倍)。由于密集波分复用系统的波长间隔较小,必须采用高分辨率的波分复用器件,熔融的波分复用器一达不到要求。不加特别说明,波分复用系统通常指DWDM系统。 λ1λ2λ3λ 4 λ5λ6λ7λ8 波长 图1-2 DWDM系统的频谱分布 (一)DWDM的工作方式 双纤单向传输:一根光纤只完成一个方向信号的传输,反向光信号的传输由另一根光纤来完成,统一波长在两个方向上可以重复利用(如图1-3所示)。这种DWDM系统可以

波分复用技术

波分复用技术研究 1.产生背景 1.1全球形势 随着全球互联网(Internet)的迅猛发展,以因特网技术为主导的数据通信在通信业务总量中的比列迅速上升,因特网业务已成为多媒体通信业中发展最为迅速、竞争最为激烈的领域。同时,无论是从数据传输的用户数量还是从单个用户需要的带宽来讲,都比过去大很多。特别是后者,它的增长将直接需要系统的带宽以数量级形式增长。因此如何提高通信系统的性能,增加系统带宽,以满足不断增长的业务需求成为大家关心的焦点。 面对市场需求的增长,现有通信网络的传输能力的不足的问题,需要从多种可供选择的方案中找出低成本的解决方法。缓和光纤数量的不足的一种途径是敷设更多的光纤,这对那些光纤安装耗资少的网络来说,不失为一种解决方案。但这不仅受到许多物理条件的限制,也不能有效利用光纤带宽。另一种方案是采用时分复用(TDM)方法提高比特率,但单根光纤的传输容量仍然是有限的,何况传输比特率的提高受到电子电路物理极限限制。第三种方案是波分复用(WDM)技术, WDM系统利用已经敷设好的光纤,使单根光纤的传输容量在高速率TDM 的基础上成N倍地增加。WDM能充分利用光纤的带宽,解决通信网络传输能力不足的问题,具有广阔的发展前景。 WDM波分复用并不是一个新概念,在光纤通信出现伊始,人们就意识到可以利用光纤的巨大带宽进行波长复用传输,但是在20世纪90年代之前,该技术却一直没有重大突破,其主要原因在于TDM的迅速发展,从155Mbit/s到622Mbit/s,再到2.5Gbit/s系统,TDM速率一直以过几年就翻4倍的速度提高。人们在一种技术进行迅速的时候很少去关注另外的技术。1995年左右,WDM系统的发展出现了转折,一个重要原因是当时人们在TDM10Gbit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上,WDM系统才在全球范围内有了广泛的应用。 1.2 发展过程 1.2.1 发展阶段 光纤通信飞速发展,光通信网络成为现代通信网的基础平台。光纤通信系统经历

WDM波分复用技术

WDM波分复用技术 1 绪论 本论文主要研究的是WDM波分复用技术,其中包括WDM技术的产生背景,WDM 的基本概念和特点,WDM的关键技术,WDM的网络生存性,WDM技术发展现状及发展趋势等,下面将分别从以上几个方面讨论。 2 WDM技术产生背景 随着科学技术的迅猛发展,通信领域的信息传送量正以一种加速度的形式膨胀。信息时代要求越来越大容量的传输网络。近几年来,世界上的运营公司及设备制造厂家把目光更多地转向了WDM 技术,并对其投以越来越多的关注,增加光纤网络的容量及灵活性,提高传输速率和扩容的手段可以有多种,下面对几种扩容方式进行比较。 1. 空分复用SDM(Space Division Multiplexer) 空分复用是靠增加光纤数量的方式线性增加传输的容量,传输设备也线性增加。 在光缆制造技术已经非常成熟的今天,几十芯的带状光缆已经比较普遍,而且先进的光纤接续技术也使光缆施工变得简单,但光纤数量的增加无疑仍然给施工以及将来线路的维护带来了诸多不便,并且对于已有的光缆线路,如果没有足够的光纤数量,通过重新敷设光缆来扩容,工程费用将会成倍增长。而且,这种方式并没有充分利用光纤的传输带宽,造成光纤带宽资源的浪费。作为通信网络的建设,不可能总是采用敷设新光纤的方式来扩容,事实上,在工程之初也很难预测日益增长的业务需要和规划应该敷设的光纤数。因此,空分复用的扩容方式是十分受限。 2. 时分复用TDM(Time Division Multiplexer) 时分复用也是一项比较常用的扩容方式,从传统PDH 的一次群至四次群的复用,到如今SDH 的STM-1、STM-4、STM-16 乃至STM-64 的复用。通过时分复用技术可以成倍地提高光传输信息的容量,极大地降低了每条电路在设备和线路方面投入的成本,并且采用这种复用方式可以很容易在数据流中抽取某些特定的数字信号,尤其适合在需要采取自愈环保护策略的网络中使用。 时分复用的扩容方式有两个缺陷:第一是影响业务,即在“全盘”升级至更高的速率等级时,网络接口及其设备需要完全更换,所以在升级的过程中,不得不中断正在运行的设备;第二是速率的升级缺乏灵活性,以SDH 设备为例,当一个线路速率为155Mbit/s 的

波分复用概念与其技术讲解波分复用(WDM)是将两种或多种不同波长...

波分复用概念与其技术讲解 波分复用(WDM)是将两种或多种不同波长的光载波信号(携带各种信息)在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输的技术;在接收端,经解复用器(亦称分波器或称去复用器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。通信系统的设计不同,每个波长之间的间隔宽度也有不同。按照通道间隔的不同,WDM 可以细分为CWDM(稀疏波分复用)和DWDM(密集波分复用)。CWDM 的信道间隔为20nm,而DWDM的信道间隔从0.2nm 到1.2nm,所以相对于DWDM,CWDM称为稀疏波分复用技术。 CWDM 和DWDM 的区别主要有二点:一是CWDM 载波通道间距较宽,因此,同一根光纤上只能复用5 到6 个左右波长的光波,“稀疏”与“密集”称谓的差别就由此而来;二是CWDM 调制激光采用非冷却激光,而DWDM采用的是冷却激光。冷却激光采用温度调谐,非冷却激光采用电子调谐。由于在一个很宽的波长区段内温度分布很不均匀,因此温度调谐实现起来难度很大,成本也很高。CWDM 避开了这一难点,因而大幅降低了成本,整个CWDM 系统成本只有DWDM 的30%。CWDM 是通过利用光复用器将在不同光纤中传输的波长结合到一根光纤中传输来实现。在链路的接收端,利用解复用器将分解后的波长分别送到不同的光纤,接到不同的接收机。 由于光波长与频率的关系:= ×。实际上为一种频分复用,所以WDM通常也被称为光频分复 用(OFDM), WDM系统的主要优点为: 1.充分利用光纤的低损耗波段,大大增加光纤的传输容量,降低成本 2.对革新到传输的信号的速率,格式具有透明性,有利于数字信号和模拟信号的兼容3.节省光纤和光中继器,便于对已经建成的系统进行扩容 4.可以提供波长选路,使建立透明,灵活,具有高度生存性的WDM网络成为可能 46.2.2 波分复用/解复用器件 在整个WDM 系统中,需要使用多种波长的光信号,通常光纤的损耗随着传输距离的增长而增大。光纤的传输损耗与工作波长有关。故现有光通讯系统中通常选择850nm,1310nm 和1550nm的光波用于传输(如右图所示),为了保证不同的DWDM系统之间的横向兼容性,ITU-T定义了以193.1THz(1552.52nm) 为中心频率,通道最小间隔为100GHz。下图为8/16/32个信道使用频段。

波分知识相关总结

WDM原理 A.把不同波长的光信号复用到同一根光纤中进行传送,这种方式我们把它叫做波分复用(WDM) B.WDM典型模型 C.WDM系统的划分 开放式WDM系统 集成式WDM系统 半开放式WDM系统 D.WDM信号光窗口范围 E.截止波长:单模光纤中光信号能以单模方式传播的最小波长;

F.DWDM系统的关键技术 .光源光电检测器 .光放大器 .合波分波技术 .监控信道 G.激光器的调试方式 .直接调制光源 .间接调制光源-----1.电吸收强制光源(EA )2马赫-策恩德尔调制光源(M-Z) H.光电检测器 1.半导体光电检测器分为两类:PIN APD. 注: 2.放大器 .半导体光放大器 . 掺铒光纤放大器(EDFA) .l拉曼放大器 光功率调测 a输入光功率接收最佳范围:灵敏度+3 ~过载点-5 b.光功率公式

P合波=P单波+10lgN N为合波信号的波数。 单波标称值=合波最大输入-10lg M M为波数3.组网方式 点到点组网环型组网 链型组网mesr型组网 4.OTM典型组网信号流

5.保护方式 NG WDM保护方案 1设备级保护-----a.电源备份保护,b.单板1+1保护---时钟1+1保护AUX板1+1保护主控1+1保护交叉1+1保护2光层保护-----光线路保护,板内1+1保护客户侧1+1保护 3电层保护------ ODUK SNCP保护SW SNCP保护支路SNCP保护ODUK环网保护 6.故障定位的基本原则

A 先外部后内部--首先排除外部设备的问题。这些外部设备问题包括光纤、接入SDH设备和掉电等问题 B.先网络后网元----传输设备出现故障时,有时不会只是一个单站出现告警信号,而是在很多单站同时会上报告警。这时我们就需要通过分析和判断缩小导致故障的范围,快速、准确地定位出是哪个站的问题。 C.先高级后低级----先分析高级别告警,后分析低级别告警 D 先多波后单波---先分析多波信号告警,后分析单波信号告警 E.先双向后单项---先分析双向信号告警,后分析单向信号告警F.先共性后个别---先分析共性告警,后分析个别告警 故障定位常用的方法 ●信号流分析法●告警性能分析法●替换法●仪表检测法●环回法 NG WDM常见的故障类型 ●业务中断类故障 ●业务瞬断类故障 ●光功率异常类故障 ●误码类故障 ●通信类故障 ●保护类故障 ●以太网故障

光波分复用(WDM)技术原理及结构分析.

光波分复用(WDM)技术原理及结构分 析 光波分复用(WDM)技术原理及结构分析 类别:通信网络 简要介绍光波分复用系统的基本原理、结构组成、功能配置、关键技术部件和技术特点,说明光波分复用WDM系统是今后光通信发展的方向。 一、光波分复用(WDM)技术光波分复用(Wavelength Division Multiplexing,WDM)技术是在一根光纤中同时同时多个波长的光载波信号,而每个光载波可以通过FDM或TDM方式,各自承载多路模拟或多路数字信号。其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将这些组合在一起的不同波长的信号分开(解复用),并作进一步处理,恢复出原信号后送入不同的终端。因此将此项技术称为光波长分割复用,简称光波分复用技术。WDM技术对网络的扩容升级,发展宽带业务,挖掘光纤带宽能力,实现超高速通信等均具有十分重要的意义,尤其是加上掺铒光纤放大器(EDFA)的WDM对现代信息网络更具有强大的吸引力。二、WDM系统的基本构成WDM系统的基本构成主要分双纤单向传输和单纤双向传输两种方式。单向WDM是指所有光通路同时在一根光纤上沿同一方向传送,在发送端将载有各种信息的具有不同波长的已调光信号通过光延长用器组合在一起,并在一根光纤中单向传输,由于各信号是通过不同波长的光携带的,所以彼此间不会混淆,在接收端通过光的复用器将不同波长的光信号分开,完成多路光信号的传输,而反方向则通过另一根光纤传送。双向WDM是指光通路在一要光纤上同时向两个不同的方向传输,所用的波长相互分开,以实现彼此双方全双工的通信联络。目前单向的WDM系统在开发和应用方面都比较广泛,而双向WDM由于在设计和应用时受各通道干扰、光反射影响、双向通路间的隔离和串话等因素的影响,目前实际应用较少。 三、双纤单向WDM系统的组成以双纤单向WDM系统为例,一般而言,WDM 系统主要由以下5部分组成:光发射机、光中继放大器、光接收机、光监控信道和网络管理系统。 1.光发射机光发射机是WDM系统的核心,除了对WDM系统中发射激光器的中心波长有特殊的要求外,还应根据WDM系统的不同应用(主要是传输光纤的类型和传输距离)来选择具有一定色度色散容量的发射机。在发送端首先将来自终端设备输出的光信号利用光转发器把非特定波长的光信号转换成具有稳定的特定波长的信号,再利用合波器合成多通路光信号,通过光功率放大器(BA)放大输出。 2.光中继放大器经过长距离(80~120km)光纤传输后,需要对光信号进行光中继放大,目前使用的光放大器多数为掺铒光纤光放大器(EDFA)。在WDM系统中必须采用增益平坦技术,使EDFA对不同波长的光信号具有相同的放大增益,并保证光信道的增益竞争不影响传输性能。 3.光接收机在接收端,光前置放大器(PA)放大经传输而衰减的主信道信号,采用分波器从主信道光信号中分出特定波长的

波分常见问题

问题001:光功率单位dBm和mW之间怎么换算? 答复:在实际光功率的测量中,光功率的单位经常可以选dBm和mW,两者之间的换算关系 如下: 1、dBm的定义为10×lg(P/1mW),其中的P单位为“mW”。根据定义,1mW换算为0dBm,另外几个常见功率dBm和mW两个单位之间的关系如:0.5mW=-3dBm,0.1mW=-10dBm等 等。 2、在波分系统里,光纤中总的光功率应该是频率轴上信号光功率的积分,包括各波光功率和噪声之和,在理想状态下(没有噪声),总的光功率就是各波光功率总和。如WBA的单波光功率要求输入为P1(mW)(典型值为-18dBm),那么有N个波长输入时,总光功率应该是N×P1(mW)。在实际工程中,总是以dBm为单位来衡量光功率大小。理想状态下总输入光功率为10×lg(N×P1/1mW)=10lg(P1/1mW)+10×lg(N)=-18+10lg(N)。同样 道理,可以大致算出其它点的光功率。 3、在发送端,信号噪声较小,一般可以忽略噪声的影响。在实际系统中噪声会积累,接收端噪声的影响就不可以忽略,系统光路调测阶段可以采用光功率计测量,配合网管,根据经验值调高光功率,一般经过一个WPA/WLA,光功率提高1dB。在系统验收阶段中要求用光谱分析议来进行调测,以单波的光功率的典型值为准。 问题002:光功率单位dBm和dB之间的关系? 答复:dBm是光功率的单位,定义为dBm=10lgmW。dB为光功率的比值,换算关系为dB=10lgmW1/mW2=10lgmW1-10lgmW2=dBm1-dBm2,如果用dBm来表示光功率的话,dB数为两者 差。 我们在测合波器合分波器的插损的时候,只需将输入与输出的光功率的dBm数相减即可。 问题003:光纤传输的非线性效应对系统有什么影响? 答复:在SDH系统中,我们主要考虑光纤的衰耗系数和色散系数,但在WDM系统中,由于再生段的距离比较长,波分系统光器件的插损比较大,为了解决光纤衰耗的问题,采用EDFA 进行放大补偿,在放大光功率的同时,也使光纤中的非线性效应大大增加,成为限制再生中 继距离的一个重要因素。 光纤中的非线性效应包括: ①散射效应(受激布里渊散射SBS和受激拉曼散射SRS等) ②与克尔效应相关的影响,即与折射率密切相关(自相位调制SPM、交*相位调制XPM、四波 混频效应FWM),其中四波混频、交*相位调制对系统影响严重。 320G设备的WBA板的标称输出光功率一般为5dBm,16波系统在特殊情况下可以单波输出8dBm,32 波系统不得大于5dBm,+8dBm输出的功放板不能用在32波系统。可以知道16波系统最大输出光功率为5+10lg16=17dBm,特殊情况下可以到达20dBm。32波系统则最 大不能超过5+10lg32=20dBm。 实际波分工程中,发送端光功率为5dBm,也会出现由于光纤的非线性效应造成接收端出零星误码(信噪比满足要求)。不过出现非线性效应影响系统出现误码概率比较小,没有一定的规律性。处理方法是在保证系统接收端的信噪比满足要求的情况下,在WBA输出后加固定 光衰进行解决。 问题004:OTU单板上不同光模块有什么区别? 答复:开放式WDM系统发送端和接收端采用OTU将非规范的波长转换为标准波长,在OTU 单板上通过接收模块,完成信号的光电(O/E)变换,同时进行误码检测和平滑去抖动,改

《波分复用原理》模拟试题

《波分复用原理》模拟试题 一、填空题(每空1分,共26分) 1.从信道间距的选取来划分,波分复用系统包括()和()两种类型。 2.能够互连不同厂商电的SDH终端设备的WDM系统称为()。 3.DWDM系统的实际组成包括()、()、()、()等四部分。 4.WDM系统中栅格参考频率选定为(),目的是便于频率校准。 5.MPI-S参考点总的最大发送光功率主要受限于()和()的需要;最小每 信道发送光功率主要受限于接收()的需要。 6.在国标中,建议8波和16波WDM系统的光监控信道使用中心波长()nm +/-()nm,传输速率为2.048Mbit/s,采用CMI编码。 7.WDM光源常用的波长稳定技术包括()和()。 8.采用法拉第磁偏转效应实现单向传输的无源光器件称为()。 9.EDFA光放大器基本配置包括()、()和()。 10.Internet业务的()就是在一个给定的物理链路上,在不考虑通信量大小的 情况下,Internet网络上的业务呈现出基本相同的特性;()就是指在许多Internet链路上的发送和接收通道上带宽占用量存在极端的不均衡性。 11.在IP/PPP/HDLC/SDH映射过程中,()协议提供多协议封装、差错控制及 链路初始化控制等功能,()负责同步传输链路上IP数据帧的定界。 12.光网络的拓扑结构包括物理拓扑和()类型。 13.根据光节点是否支持波长变换能力,光传送网可以划分为()网络和() 网络两种类型。 二、选择题(每空2分,共44分) 1.在1530~1565nm窗口四波混频效应影响最为严重的光纤类型是()。 A.G.652 B.G.653 C.G.654 2.假设某多波长信道系统应用代码为8V5-16.2,试回答下列问题: (1)该系统总的传输容量为()Gbit/s; A.20 B.40 C.80 (2)该系统的最大色散为()ps/nm;

什么是波分复用技术

什么是波分复用技术 在同一根光纤中同时让两个或两个以上的光波长信号通过不同光信道各自传输信息,称为光波分复用技术,简称WDM。光波分复用包括频分复用和波分复用。光频分复用(FDM)技术和光波分复用(WDM)技术无明显区别,因为光波是电磁波的一部分,光的频率与波长具有单一对应关系。 通常也可以这样理解,光频分复用指光频率的细分,光信道非常密集。光波分复用指光频率的粗分,光倍道相隔较远,甚至处于光纤不同窗口。光波分复用一般应用波长分割复用器和解复用器(也称合波/分波器)分别置于光纤两端,实现不同光波的耦合与分离。这两个器件的原理是相同的。光波分复用器的主要类型有熔融拉锥型,介质膜型,光栅型和平面型四种。其主要特性指标为插入损耗和隔离度。通常,由于光链路中使用波分复用设备后,光链路损耗的增加量称为波分复用的插入损耗。当波长11,l2通过同一光纤传送时,在与分波器中输入端l2的功率与11输出端光纤中混入的功率之间的差值称为隔离度。光波分复用的技术特点与优势如下: (1)充分利用光纤的低损耗波段,增加光纤的传输容量,使一根光纤传送信息的物理限度增加一倍至数倍。目前我们只是利用了光纤低损耗谱(1310nm-1550nm)极少一部分,波分复用可以充分利用单模光纤的巨大带宽约25THz,传输带宽充足。 (2)具有在同一根光纤中,传送2个或数个非同步信号的能力,有利于数字信号和模拟信号的兼容,与数据速率和调制方式无关,在线路中间可以灵活取出或加入信道。 (3)对已建光纤系统,尤其早期铺设的芯数不多的光缆,只要原系统有功率余量,可进一步增容,实现多个单向信号或双向信号的传送而不用对原系统作大改动,具有较强的灵活性。 (4)由于大量减少了光纤的使用量,大大降低了建设成本、由于光纤数量少,当出现故障时,恢复起来也迅速方便。 (5)有源光设备的共享性,对多个信号的传送或新业务的增加降低了成本。 (6)系统中有源设备得到大幅减少,这样就提高了系统的可靠性。目前,由于多路载波的光波分复用对光发射机、光接收机等设备要求较高,技术实施有一定难度,同时多纤芯光缆的应用对于传统广播电视传输业务未出现特别紧缺的局面,因而WDM的实际应用还不多。但是,随着有线电视综合业务的开展,对网络带宽需求的日益增长,各类选择性服务的实施、网络升级改造经济费用的考虑等等,WDM的特点和优势在CATV传输系统中逐渐显现出来,表现出广阔的应用前景,甚至将影响CATV网络的发展格局。

相关文档
最新文档