波分复用系统WDM结构原理和分类
第八章 光波分复用系统

8.2.3 WDM系统波长规划
表8-4 32通路DWDM系统中心频率
序号 1 2 3 …… 标称中心频率(THz) 标称中心波长(nm) 192.10 192.20 192.30 …… 1560.61 1559.79 1558.98 ……
30
31 32
195.00
195.10 195.20
37
8.1 波分复用原理
提高光纤通信系统的容量的方法包括时分复用( TDM )、 波分复用(WDM)、空分复用(SDM)、模分复用(MDM) 和极化复用(PDM)等 最常见的 TDM 方法的主要缺点是当电信号的传输速率达 到较高等级(如10Gbit/s或更高时),对于光器件(如激光 器和调制器)的开关速率等性能要求较高,实现难度较大, 同时光纤中的色散和非线性等也限制了调制信号的速率。 波分复用( WDM )为代表的多信道光纤通信系统成为实 现大容量传输的主要技术方案之一。
图8-2 双纤单向传输WDM系统 可以方便地分阶段动态扩容,可以根据实际业务量的需要
15 逐步增加波长来实现扩容,是目前最主要的应用形式。
8.1.2 WDM系统的应用形式
λ1
Tx1
复 用
Txn
λn
器
λ1······λ1n
解 复 用 器
λ1
Rห้องสมุดไป่ตู้1
λn
Rxn
λn+1
光纤放大器 解 复 用 器
复
Rxn+1
第8章 光波分复用系统
本章要点
本章主要介绍以波分复用(WDM)为代表的多 信道光纤通信系统及其关键技术,以及光时分复用 (OTDM)技术原理。
2
WDM系统和SDH系统的关系
在光网络传送层的关系:WDM系统与SDH系统均属于传送网 层,二者都是建立在光纤传输媒质。SDH系统是在电通道层上 进行的复用、交叉连接和组网,而WDM系是在光域上进行的复 用、交叉连接和组网。 对承载信号复用方式的区别:SDH是基于单波长(一根光纤 传输一个波长光路)的时分复用(TDM)系统;WDM技术在一根 光纤中同时传输不同波长的多个光载波信号,为FDM系统,充 分利用光纤带宽资源,增加系统传输容量。 信号的光接口标准:SDH设备的光接口符合ITU-T G.957和 G.691建议,该标准对工作中心波长没有特别规定。在WDM系统 中,光接口必须满足ITU-T G.692建议。该建议规定了每个光 通路的参考频率、通路间隔、标称中心频率(即中心波长)、 3 中心频率频率偏差等参数。
光纤波分复用技术及WDM工作原理

表8.2
h
8
8.2 WDM系统的基本组成
从上一节WDM的工作原理我们了解到, WDM系统必须有工作在不同波 长上的激光器,有能够将不同波长的光信号进行合并﹑选择和分路的波分复 用器和解复用器,还有有光接收机将解复用后的光信号进行光电检测,原出 原始信号。若要传输更长的距离,则还需要能够将各路光信号同时进行放大 的放大器等。图8.2.1示出了一个包含有功率光放大器,在线光放大器和前置 光放大器的单向传输WDM系统。其中,Tx表示发射机(Transmitter),Rx表 示接收机(Receiver)。OC-192表示光层的传输速率,参见第9章表9.5所示。
光纤波分复用技术及WDM工作原理
WDM工作原理 WDM系统的基本组成 WDM系统中的关键器件 波分复用系统规范 设备实例
h
1
1 WDM工作原理
1.1 WDM工作原理
WDM技术,就是以光波作为载波,在同一根光纤内同时传输多
个不同波长的光载波信号的技术。每个波长的光波都可以单独携带语
音、数据和图像信号,因此,WDM技术可以让单根光纤的传输容量
种工作在1550nm的窄线宽DFB激光器为例,它可在0.8nm的谱带内发射信号,
因此在1525nm~1565nm共40nm的范围内,WDM系统可传送50个信道。若每
个信道的传输速率为10Gbit/s,则系统总的传输速率即为50×10Gbit/s,比单信
道传输的容量增加了50倍。
h
WDM-1

WDM原理1 波分复用光传输技术 (1)1.1 波分复用的基本概念 (1)1.2 WDM 技术的发展背景 (2)1. 空分复用SDM(Space Division Multiplexer) (2)2. 时分复用TDM(Time Division Multiplexer) (3)3. 波分复用WDM(Wavelength Division Multiplexing) (3)4. TDM 和WDM 技术合用 (4)3 WDM 设备的传输方式 (5)3.1 单向WDM (5)3.2 双向WDM (5)4 开放式与集成式系统 (6)5 WDM 系统组成 (6)6 WDM 的优势 (7)1 波分复用光传输技术1.1 波分复用的基本概念光通信系统可以按照不同的方式进行分类。
如果按照信号的复用方式来进行分类,可分为频分复用系统(FDM-Frequency Division Multiplexing )、时分复用系统(TDM-Time Division Multiplexing)、波分复用系统(WDM Wavelength Division Multiplexing)和空分复用系统(SDM-Space Division Multiplexing)。
所谓频分、时分、波分和空分复用,是指按频率、时间、波长和空间来进行分割的光通信系统。
应当说,频率和波长是紧密相关的,频分也即波分,但在光通信系统中,由于波分复用系统分离波长是采用光学分光元件,它不同于一般电通信中采用的滤波器,所以我们仍将两者分成两个不同的系统。
波分复用是光纤通信中的一种传输技术,它利用了一根光纤可以同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号。
光波分复用的实质是在光纤上进行光频分复用(OFDM),只是因为光波通常采用波长而不用频率来描述、监测与控制。
随着电-光技术的向前发展,在同一光纤中波长的密度会变得很高。
波分复用系统(WDM)结构原理和分类

波分复用系统(WDM),波分复用系统(WD M)结构原理和分类波分复用系统简要介绍光波分复用技术是在一根光纤中传输多波长光信号的一项技术。
其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。
具体如下。
如图1所示。
发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。
每个光波承载1路信号。
再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。
若线路很长,光信号太弱,就加一光放大器,把光信号放大。
在接收端有N个光滤波器(1-N)。
滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。
光接收机的作用是把载有信号的光信号还原为原信号。
光波分复用的关键器件(1)分布反馈多量子阱激光器(DFB M QW—LD)(2)光滤波器(3)光放大器图1波分复用系统原理波分复用系统的发展与现状WDM波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TD M 的迅速发展从155Mbit/s 到622Mbi t/s 再到2.5G bit/s系统TDM速率一直以过去几年就翻 4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM系统的发展出现了转折一个重要原因是当时人们在TD M 10G bit/s技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上W DM 系统才在全球范围内有了广泛的应用。
光纤波分复用技术及WDM工作原理

本次演示将深入探讨光纤波分复用技术及WDM的工作原理,为您呈现最新的 WDM技术和未来发展方向。
波分复用与频分复用的对比
1 波分复用
基于波长进行传输,多个信号在不同的波长上传输,每个波长之间独立传输。
2 频分复用
基于频率进行传输,通过在频域将多个信号拆分后调制。
WDM的工作原理和主要组成部分
1
宽带接入
2
WDM技术正在迅速发展,为大规模
的传输提供更多的资源和更高的速度。
3
高速网路
WDM技术的发展趋势是高速网络和 超大容量传输,以应对数据爆炸和日 益增长的网络需求。
物联网
WDM技术有望促进物联网的发展, 加强物联网对于数据传输和处理的支 持。
优点:适用于长距离传输, 允许数据在两个方向上传输。
波分交叉WDM
优点:可以同时传输多个波 长,缺点是成本较高。
WDM在通信领域的应用和发展趋势
光纤传输
WDM技术在光纤传输中广泛应 用,增强了大容量、高速率和 低延迟的数据传输。
高速网络
WDM技术为高速网络提供了更 多的传输资源,实现了超高速 数据和视频传输。
覆盖率
WDM的发展趋势是提高网络的 效率和覆盖范围,降低成本并 简化网络管理。
WDM技术对网络拓扑结构和可靠性的 改善
网络拓扑结构
WDM技术为网络提供了更高的容量和速度,使网络更具灵活性和可扩展性。
可靠性
WDM技术具有更高的重要性,使网络的故障排除更加简单,有助于保持网络的稳定性和可 靠性。
WDM技术未来的发展方向
1
波长多路复用器
用于将多个信号的波长分离和复用,允许多个信号共享一条光纤传输。
光波分复用的基本原理

光波分复用的基本原理光波分复用(Wavelength Division Multiplexing,WDM)是利用多个不同波长的光信号在一根光纤中传输的技术。
它是一种高效、高速的光通信方式,可以提高光纤通信的容量和速度。
WDM技术是通过将多个信号分别调制成不同波长的光信号,然后将这些光信号合并在一根光纤中传输,最后再将这些信号通过波分复用器(WDM器)进行分离,达到同时传输多个信号的目的。
本文将详细介绍WDM的基本原理及其应用。
一、WDM的原理WDM的基本原理是利用不同波长的光信号在一根光纤中传输,这些光信号可以同时传输,并且不会相互干扰。
WDM具体实现过程可以分为三个步骤:波长选择、光信号的多路复用、光信号的分路解复用。
1.波长选择在WDM中,每个光通道都有一个不同的波长,因此需要选择合适的波长区间。
一般来说,波长区间可以是常见的几个光纤谱段,例如1320~1360nm、1460~1625nm,或者是更小的波长间隔,如0.4nm、0.8nm或1.6nm。
2.光信号的多路复用当多个不同波长的光信号传递到一个单一光纤中时,它们会相互影响并干扰对方。
因此必须将它们在合适的位置上合并成单一的光束,这个过程称为多路复用。
在多路复用的过程中,需要用到一系列光学器件,例如:波分复用器(WDM器)、光衰减器、滤波器、耦合器、放大器、修补器、反射器等。
3.光信号的分路解复用在传输结束后,需要将合成的光信号恢复成原始的多个信号,这个过程称为分路解复用。
分路解复用的关键是在合适的位置上使用波分复用器(WDM器),将多个信号根据波长进行区分并进行分离。
分离后,可以通过调制解码等方法将信号恢复成原始数据。
二、WDM的应用WDM技术在光通信领域中的应用广泛,以下列出几个主要应用:1. 宽带网宽带网是一种将多种网络服务集成在一起的网络。
WDM技术可以在该网络中提供高达10Gbps的带宽,满足不同用户对网络传输速率、稳定性等方面的需求。
WDM基本原理简介

波分复用原理简介产生背景传输带宽的需求增长,传输系统需扩容:✧增加系统数量(光纤数量):敷设光缆,没有有效利用光纤带宽✧提高系统速率(TDM时分复用PDH/SDH):10Gb/s,40Gb/s电子器件技术极限/成本/G.652光纤1550nm窗口的高色散✧波分复用(WDM)技术EDFA(erbium-doped fiber amplifier掺铒光纤放大器)的成熟和商用化基本概念波分复用(WDM)充分利用单模光纤低损耗区的巨大带宽资源,将光纤的低损耗窗口划分成若干个信道,把光波作为信号的载波,将多种不同波长的光载波信号在发送端经复用器(亦称合波器,Multiplexer)汇合在一起,并耦合到光线路的同一根光纤中进行传输;在接收端,经解复用器(亦称分波器,Demultiplexer)将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。
这种在同一根光纤中同时传输两个或众多不同波长光信号的技术,称为波分复用。
波分复用在本质上是光域上的频分复用(FDM)技术。
通道间隔的不同,可分为:–CWDM(Coarse Wavelength Division Multiplexing稀疏/粗波分复用)信道间隔为20nm–DWDM(Dense Wavelength Division Multiplexing密集波分复用)信道间隔从0.2nm 到1.2nm。
波分复用技术的优点(1) 传输容量大,可以充分利用光纤的巨大带宽资源,节约宝贵的光纤资源。
(2) 对各类业务信号“透明”,可以传输不同类型、多种格式的业务信号。
对于“业务”层信号来说,WDM的每个波长就像“虚拟”的光纤一样。
(3) 扩容方便。
WDM技术是理想的扩容手段。
对于早期芯数不多的光纤系统,利用此技术,不必做较大改动,就可以轻松扩容。
增加一个附加光波长就可以引入任意新业务或扩充容量。
(4) 组建动态可重构的光网络,在网络节点使用光分插复用器(OADM)或者使用光交叉连接设备(OXC),可以组成具有高度灵活性、高可靠性、高生存性的全光网络。
波分基本原理

加油站 高速公路
巡逻车
WDM的定义
把不同波长的光信号复用到同一根光纤中进行传送,这种方式我们 把它叫做波分复用( Wavelength Division Multiplexing )
SDH signal IP package ATM cells
1
1 2
n
2
┉
┋
n
WDM的系统结构
波段划分
波段 O波段 E波段 S波段 C波段 L波段 U波段
说明 原始 扩展 短波长 常规波长 长波长 超长波长
范围(nm) 1260~1360 1360~1460 1460~1525 1525~1565 1565~1625 1625~1675
带宽(nm) 100 100 65 40 60 50
因为C波段和L波段这两个传输窗口的传输衰耗最小,所以DWDM系统中信号光选择在C波段和L波段。 粗波分由于传输距离短,衰耗并非主要限制因素,所以CWDM系统中信号光跨越多个波段(1311~1611nm)。
光波分复用解复用主要参数: 插入损耗 通道隔离度 通道带宽 偏振相关损耗
光监控通道
对光监控的要求:
不应限制OA上的泵浦光波长; 不应限制未来1310nm波长的业务; OA失效时仍有效; 可超长传输;具有分段双向传输功能。
采用1510/1625nm波长 信号速率为2.048Mb/s 接收机灵敏度:-48dBm 信号码型: CMI 信号发送功率: 0 -- -7dBm
OSC
F
F
S C C
OTU1
I
I
OTU2
M
U
U
OTU3 OTU4
4 0
M 4 0
OSC
OTU1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波分复用系统(WDM),波分复用系统(WDM)结构原理和分类
波分复用系统简要介绍
光波分复用技术是在一根光纤中传输多波长光信号的一项技术。
其基本原理是在发送端将不同波长的光信号组合起来(复用),并耦合到光缆线路上的同一根光纤中进行传输,在接收端又将组合波长的光信号分开〔解复用),并进一步处理,恢复出原信号后送入不同的终端。
具体如下。
如图1所示。
发送端内有N个发射机:发射机所发出的光的波长是不同的,它们的波长分别为波长1-N。
每个光波承载1路信号。
再把N个光发射机发出的光信号(光信号1-N)集中为1个光的群信号,送进光纤线路,直到接收端。
若线路很长,光信号太弱,就加一光放大器,把光信号放大。
在接收端有N个光滤波器(1-N)。
滤波器1对载有信号1的光信号(波长1)有选择通过的作用,……滤波器N对载有信号N的光信号(波长N)有选择通过的作用。
光接收机的作用是把载有信号的光信号还原为原信号。
光波分复用的关键器件
(1)分布反馈多量子阱激光器(DFB MQW—LD)
(2)光滤波器
(3)光放大器
图1 波分复用系统原理
波分复用系统的发展与现状
WDM 波分复用并不是一个新概念在光纤通信出现伊始人们就意识到可以利用光纤的巨大带宽进行波长复用传输但是在20世纪90年代之前该技术却一直没有重大突破其主要原因在于TDM 的迅速发展从155Mbit/s 到622Mbit/s 再到2.5Gbit/s系统TDM 速率一直以过去几年就翻4 倍的速度提高人们在一种技术进行迅速的时候很少去关注另外的技术1995 年左右WDM 系统的发展出现了转折一个重要原因是当时人们在TDM 10Gbit/s 技术上遇到了挫折,众多的目光就集中在光信号的复用和处理上WDM 系统才在全球范围内有了广泛的应用。
WDM技术还具有以下若干优点:1 )能同时传输多种不同类型的信号;2)能实现单根光纤双向传输;3)有多种应用方式;4)节约线路投资;5)降低器件的超高速要求;6)对数据格式透明,能支持IP业务;7)具有高度的组网灵活性、经济性和可靠性。
在80年代中,已有人采用1.3微米和1.55微米两个频道的光波分复用技术,制造出简便实用的光纤通信系统。
在90年代初,光波分复用的关键器件有突破,它包括:高精确和稳定的波长的激光器、滤光器和光放大器。
于是,所谓密集光波分复用(DWDM,dense wavelenght division multiplex)光纤通信系统研制成功。
通过引入光交叉连接( OXC,Optical Cross-Connected)和光分插复用器(OADM, Optical Add-Drop Multiplexing),组建下一代智能化的宽带大容量的高度可靠的自动交换光网络将成为可能。
WDM技术首先是作为一种点到点的传输技术而提出的,它发展很快并很快走向成熟,目前在骨干光纤网上己经得到广泛的推广和应用。
从1995年到1999年,美国各大长途电话公司已经完成在其干线网络中配置WDM设备的工作。
1998到1999年,中国
电信在多条省际光缆干线上引入了WDM技术。
波分复用系统存在的问题
(1)光放大器的增益平坦问题
(2)四波混频FWM问题
(3)光纤的色散补偿问题。