(完整版)大数据时代的数据概念分析及其他
大数据概念及应用

大数据概念及应用引言概述:大数据是指规模庞大、种类繁多的数据集合,其特点是高速、多样和巨大。
随着信息技术的发展,大数据在各行各业的应用越来越广泛。
本文将从五个方面详细介绍大数据的概念及其应用。
一、大数据的概念1.1 数据规模:大数据的特点之一是数据规模巨大,以TB、PB甚至EB为单位进行计量。
1.2 数据多样性:大数据不仅包括结构化数据,还包括半结构化数据和非结构化数据,如文本、图像、音频等。
1.3 数据速度:大数据的产生速度非常快,需要实时或近实时地进行处理和分析。
二、大数据的应用领域2.1 商业智能:通过对大数据的分析,企业可以了解市场趋势、消费者需求等信息,从而做出更明智的商业决策。
2.2 金融领域:大数据可以帮助银行、保险公司等金融机构进行风险评估、客户分析等工作,提高业务效率和风险控制能力。
2.3 医疗健康:大数据在医疗领域的应用可以帮助医院进行疾病预测、个性化治疗等工作,提高医疗水平和病人的生活质量。
三、大数据的技术支持3.1 分布式计算:由于大数据的规模巨大,传统的计算机无法满足处理需求,因此需要采用分布式计算技术,如Hadoop、Spark等。
3.2 数据挖掘:大数据中蕴含着丰富的信息,通过数据挖掘技术,可以从中发现隐藏的模式、关联规则等,为决策提供支持。
3.3 机器学习:大数据的应用离不开机器学习算法,通过机器学习可以对大数据进行分类、预测等分析,提高决策的准确性。
四、大数据的挑战与风险4.1 数据隐私与安全:大数据中可能包含个人隐私信息,如何保护数据的安全性是一个重要的挑战。
4.2 数据质量与准确性:大数据中可能存在噪声、缺失等问题,如何保证数据的质量和准确性是一个难题。
4.3 数据处理与分析能力:大数据的处理和分析需要强大的计算能力和算法支持,如何提高处理效率是一个挑战。
五、大数据的未来发展趋势5.1 人工智能与大数据的结合:人工智能技术的发展将进一步推动大数据的应用,如自动驾驶、智能机器人等。
大数据概念及应用

大数据概念及应用一、概念介绍大数据是指规模庞大、种类繁多且难以通过传统数据处理方式进行管理和处理的数据集合。
大数据的特点主要包括四个方面:数据量大、处理速度快、数据种类多样以及数据价值密度低。
二、大数据的特点1. 数据量大:大数据的特点之一是数据量庞大,通常以TB、PB、EB甚至更大的单位来衡量。
这些数据来自于各种来源,包括社交媒体、互联网、传感器等。
2. 处理速度快:大数据的处理速度要求非常高,需要在有限的时间内对大量的数据进行分析和处理。
传统的数据处理方式已经无法满足这一需求,因此需要借助新的技术和工具来处理大数据。
3. 数据种类多样:大数据不仅包括结构化数据,还包括非结构化数据和半结构化数据。
结构化数据是指可以通过表格或数据库进行存储和管理的数据,如数字、文本等;非结构化数据是指无法通过传统方式进行存储和管理的数据,如音频、视频、图像等;半结构化数据是指介于结构化数据和非结构化数据之间的数据,如XML、JSON等。
4. 数据价值密度低:大数据中的数据价值密度通常较低,即其中包含的有价值信息只占总数据量的一小部分。
因此,在处理大数据时需要进行数据清洗和筛选,提取出有价值的信息。
三、大数据的应用1. 商业智能:大数据可以帮助企业进行商业智能分析,通过对大数据的挖掘和分析,可以发现潜在的商业机会和趋势,提供决策支持。
2. 金融风控:大数据可以用于金融风控领域,通过对大量的金融数据进行分析,可以预测风险,提高金融机构的风险管理能力。
3. 医疗健康:大数据在医疗健康领域的应用非常广泛,可以帮助医疗机构进行疾病预测、个性化治疗等方面的工作。
4. 城市管理:大数据可以用于城市管理,通过对城市中的各种数据进行分析,可以提高城市的管理效率,改善城市居民的生活质量。
5. 交通运输:大数据可以用于交通运输领域,通过对交通数据进行分析,可以优化交通路线,提高交通效率,减少交通拥堵。
6. 电子商务:大数据在电子商务领域的应用也非常广泛,可以通过对用户数据进行分析,提供个性化的推荐服务,提高用户的购物体验。
大数据的概念技术及应用

大数据的概念技术及应用在这个信息爆炸的时代,大数据已经成为了一个热门的话题。
无论是企业管理、科学研究还是社会发展,大数据都发挥着重要的作用。
本文将介绍大数据的概念、技术和应用,并探讨其对我们生活的影响。
一、大数据的概念大数据,顾名思义,指的是数据的规模巨大、种类多样。
传统的数据处理方法已经无法满足对大数据的处理需求。
大数据的特点包括“4V”,即Volume(数据量大)、Velocity(数据流速快)、Variety(数据种类多样)和Value(价值密度低)。
大数据的概念在近年来得到了广泛的认可,并在各个领域得到了迅速的发展。
二、大数据的技术大数据的处理离不开相关的技术。
以下是几种常用的技术:1. 数据采集和存储:大数据的处理需要采集各种形式的数据,包括结构化、半结构化和非结构化数据等。
常用的数据采集方法包括传感器技术、网络爬虫、日志记录等。
而对于海量数据的存储,则需要使用分布式存储技术,如Hadoop、HBase等。
2. 数据清洗和预处理:大数据通常存在一些杂乱无章的问题,如缺失数据、噪声数据等。
为了提高数据的质量和准确性,需要进行数据清洗和预处理。
常用的方法包括去重、填补缺失值、异常值检测等。
3. 数据分析和挖掘:大数据的最终目标是从中提取有价值的信息。
数据分析和挖掘技术可以帮助我们揭示数据背后的规律和模式。
常用的方法包括统计分析、机器学习、数据挖掘等。
4. 数据可视化:大数据的处理结果通常很难直接理解和解释。
数据可视化技术可以将数据以图形的形式展示出来,使人们更容易理解和分析数据。
常见的数据可视化工具包括Tableau、D3.js等。
三、大数据的应用大数据的应用已经渗透到各个领域。
下面分别介绍几个重要的应用领域:1. 商业和市场:大数据可以帮助企业分析市场趋势、预测消费者行为、优化供应链等。
通过大数据的分析,企业可以更好地制定商业策略,提高竞争力。
2. 医疗和健康:大数据在医疗和健康领域的应用可以帮助提高疾病的诊断和治疗效果,优化医疗服务,促进健康管理。
大数据时代的数据分析

大数据时代的数据分析在当今社会,大数据时代已经到来,数据分析作为一种重要的技术手段,对于企业和组织的发展起着至关重要的作用。
本文将从数据分析的定义、数据分析的意义、数据分析的方法、数据分析的应用以及数据分析的未来展望等五个方面进行详细阐述。
一、数据分析的定义1.1 数据分析是指通过收集、加工、分析和解释大量数据,发现其中的规律和趋势的过程。
1.2 数据分析可以帮助人们更好地理解数据之间的关系,为决策提供依据。
1.3 数据分析可以通过统计分析、机器学习等技术手段来实现。
二、数据分析的意义2.1 数据分析可以帮助企业了解市场需求,提高产品和服务的质量。
2.2 数据分析可以帮助企业降低成本,提高效率,提高竞争力。
2.3 数据分析可以帮助企业发现潜在的商机,实现商业增长。
三、数据分析的方法3.1 统计分析是数据分析的基础方法,包括描述统计、推断统计等。
3.2 机器学习是数据分析的高级方法,包括监督学习、无监督学习、强化学习等。
3.3 数据挖掘是数据分析的重要方法,包括分类、聚类、关联规则挖掘等。
四、数据分析的应用4.1 在市场营销领域,数据分析可以帮助企业了解消费者需求,精准推送广告。
4.2 在金融领域,数据分析可以帮助银行进行风险评估,预测市场走势。
4.3 在医疗领域,数据分析可以帮助医院进行疾病预测,提高诊断准确率。
五、数据分析的未来展望5.1 随着大数据技术的不断发展,数据分析将变得更加智能化、自动化。
5.2 数据分析将更加注重隐私保护和数据安全,避免数据泄露和滥用。
5.3 数据分析将与人工智能、物联网等技术结合,为各行业带来更多创新和突破。
总之,数据分析在大数据时代具有重要的地位和作用,通过合理的数据分析,企业和组织可以更好地把握市场动态,提高决策效率,实现可持续发展。
希望本文的分析可以为读者对数据分析的理解和应用提供一些启发。
大数据的概念

大数据的概念引言概述:大数据是当今社会中一个热门话题,它涉及到海量的数据收集、存储、处理和分析。
随着科技的进步,大数据的应用范围越来越广泛,对各行各业都产生了深远的影响。
本文将从概念、应用、挑战、优势和未来发展等五个方面,详细阐述大数据的概念。
一、概念:1.1 大数据的定义:大数据指的是规模庞大、类型多样且难以处理的数据集合。
它不仅包括结构化数据,如数据库中的表格数据,还包括非结构化数据,如社交媒体上的文本、图片和视频等。
1.2 大数据的特征:大数据的特征主要包括四个方面,即数据量大、速度快、多样性和价值密度低。
数据量大指的是数据规模达到TB、PB甚至EB级别;速度快指的是数据的产生和流动速度非常快;多样性指的是数据类型多样,包括结构化、半结构化和非结构化数据;价值密度低指的是大数据中包含了大量的噪声和冗余信息,需要通过分析和挖掘提取有价值的信息。
二、应用:2.1 商业领域:大数据在商业领域的应用非常广泛,包括市场营销、客户关系管理、供应链管理等。
通过对大数据的分析,企业可以更好地了解市场需求、优化产品设计和提升销售效率。
2.2 医疗健康:大数据在医疗健康领域的应用可以帮助医生提高诊断准确性、优化治疗方案和预防疾病的发生。
通过对大数据的分析,医疗机构可以实现精准医疗,为患者提供更好的医疗服务。
2.3 城市管理:大数据在城市管理中的应用可以帮助政府更好地规划城市发展、提升城市治理效率和改善居民生活质量。
通过对大数据的分析,政府可以了解城市交通流量、环境污染等情况,从而采取相应的措施。
三、挑战:3.1 数据获取:大数据的获取是一个巨大的挑战,因为数据量庞大且类型多样,如何高效地获取数据成为了一个难题。
3.2 数据质量:大数据中存在大量的噪声和冗余信息,对数据质量的保证是一个重要的挑战。
因此,数据清洗和预处理是大数据分析的重要环节。
3.3 隐私和安全:大数据中包含了大量的个人隐私信息,如何保护数据的隐私和安全是一个亟待解决的问题。
大数据时代的数据分析

大数据时代的数据分析在大数据时代,数据分析成为了企业决策和业务发展的重要工具。
数据分析是指通过采集、清洗、处理和解释数据,以发现有价值的信息和模式,从而支持决策和优化业务流程。
本文将详细介绍大数据时代的数据分析,并探讨其应用和未来发展趋势。
一、数据分析的定义和重要性数据分析是指利用统计学、模型和算法等方法,对大量数据进行处理和解释,以发现隐藏在数据中的信息和规律。
数据分析能够匡助企业了解客户需求、优化产品和服务、提高运营效率、降低风险等。
数据分析在大数据时代尤其重要。
随着互联网、物联网、社交媒体等技术的快速发展,数据量呈指数级增长。
这些数据中蕴含着海量的信息,但也存在着挑战,如数据的复杂性、多样性和实时性等。
数据分析能够匡助企业从这些海量数据中获取有价值的洞察,为决策提供支持。
二、数据分析的应用领域1. 市场营销:通过数据分析,企业可以了解客户的需求、行为和偏好,从而制定个性化的营销策略。
例如,通过分析用户购买历史和行为数据,电商企业可以向用户推荐个性化的产品和优惠券,提高销售转化率。
2. 金融风控:金融机构可以通过数据分析来评估客户的信用风险和欺诈风险。
例如,通过分析客户的信用记录、交易行为和社交网络等数据,银行可以建立风险模型,及时发现潜在的风险事件。
3. 物流和供应链管理:通过数据分析,企业可以优化物流和供应链管理,提高运营效率和降低成本。
例如,通过分析销售数据和库存数据,零售企业可以预测产品需求,合理安排库存和物流,减少库存积压和运输成本。
4. 医疗健康:数据分析在医疗健康领域有广泛的应用。
通过分析大量的医疗数据,如病历、医学影像和基因数据,医疗机构可以提高诊断准确性、优化治疗方案,并发现新的疾病风险因素和治疗方法。
5. 社交媒体和网络安全:社交媒体平台可以通过数据分析来了解用户的兴趣和行为,从而提供个性化的内容和广告。
同时,数据分析也可以匡助企业检测和预防网络安全威胁,保护用户的隐私和数据安全。
大数据时代的概念和特点

大数据时代的概念和特点随着信息技术的发展和应用,大数据技术在各个领域中扮演着越来越重要的角色。
大数据时代的到来,给我们带来了许多新的概念和特点。
本文将就大数据时代的概念和特点展开探讨。
一、大数据时代的概念大数据时代是指在信息技术高速发展的背景下,不同正奇需求之间数据量巨大、速度快、多样性丰富等特征的时代。
这些数据可以来自互联网、社交媒体、物联网、传感器等各个渠道,涵盖了人类社会活动的方方面面。
大数据时代的概念主要包括以下几个方面。
1.1 数据量巨大传统的数据处理方式已经无法满足现代社会对数据处理的需求,传统的数据库技术在处理海量数据时会遇到性能瓶颈和存储限制。
因此,大数据时代的特点之一就是数据量巨大,以至于传统的数据处理方式无法处理这样规模的数据。
1.2 速度快在大数据时代,数据的产生速度非常快,传统的数据处理方式已经无法满足实时处理的需求。
例如,金融领域的股票交易数据、网络公司的用户行为数据等,都需要实时进行处理和分析。
因此,大数据时代的特点之一就是需要实时处理海量数据。
1.3 多样性丰富在大数据时代,数据的多样性丰富。
传统的数据处理方式主要处理结构化数据,例如数据库中的数据。
而在大数据时代,除了结构化数据外,还包括文本数据、图像数据、音频数据、视频数据等非结构化数据。
这些非结构化数据的处理对于传统的数据处理方式来说是一个巨大的挑战。
二、大数据时代的特点2.1 数据价值高在大数据时代,数据被认为是一种重要的资源和资产。
通过对大数据的挖掘和分析,可以发现隐藏在数据中的有价值的信息和规律。
这些信息和规律可以用来指导决策、优化产品和服务、提升效率等。
因此,大数据时代的特点之一就是数据价值高。
2.2 数据来源广泛在大数据时代,数据的来源非常广泛。
除了传统的数据来源,如企业内部的数据库,还包括互联网、社交媒体、物联网等各种渠道。
这些不同来源的数据具有不同的特点和价值,通过对这些数据的综合分析,可以得到更全面和准确的结论。
大数据时代的数据分析与解释

大数据时代的数据分析与解释知识点:大数据时代的数据分析与解释一、大数据概念与特征1. 定义:大数据是指在规模(数据量)、多样性(数据类型)和速度(数据生成及处理速度)三个方面超出传统数据处理软件和硬件能力范围的数据集合。
2. 特征:a. 大量(Volume):数据量规模巨大,涉及各种类型和格式的数据。
b. 多样(Variety):数据类型丰富,包括结构化数据、半结构化数据和非结构化数据。
c. 快速(Velocity):数据生成和处理速度快,要求实时或近实时分析。
d. 价值(Value):数据价值密度相对较低,需通过数据分析挖掘有价值的信息。
二、数据分析方法与技术1. 描述性分析:通过对数据进行汇总、统计和可视化,揭示数据的基本特征和趋势。
2. 诊断性分析:探寻数据背后的原因和关系,回答“为什么”的问题。
3. 预测性分析:基于历史数据建立模型,预测未来趋势和事件。
4. 规范性分析:优化决策过程,提出改进措施和建议。
5. 数据挖掘技术:包括分类、聚类、关联规则挖掘、预测建模等。
6. 机器学习:通过算法自动分析数据,识别模式和特征,提高分析效率。
7. 深度学习:模拟人脑神经网络,处理复杂数据,如图像、语音等。
三、数据分析工具与平台1. 数据存储与管理:关系型数据库、非关系型数据库、数据仓库、数据湖等。
2. 数据处理与分析:Excel、Python、R、SQL、Spark等。
3. 数据可视化:Tableau、Power BI、matplotlib、ggplot2等。
4. 大数据处理平台:Hadoop、Spark、Flink、MapReduce等。
5. 云计算平台:AWS、Azure、Google Cloud Platform等。
四、数据分析在各个领域的应用1. 金融:信用评级、风险管理、欺诈检测、算法交易等。
2. 医疗:疾病预测、就诊行为分析、药物研发、医疗资源优化等。
3. 教育:学生行为分析、个性化推荐、教育资源优化、在线教育等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据时代的数据概念分析及其他一、概念:"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。
"大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。
接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。
最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。
百度概念:大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
大数据的4V特点:Volume、Velocity、Variety、Veracity。
研究机构Gartner概念:"大数据"是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
从数据的类别上看,"大数据"指的是无法使用传统流程或工具处理或分析的信息。
它定义了那些超出正常处理范围和大小、迫使用户采用非传统处理方法的数据集。
亚马逊网络服务(AWS)、大数据科学家JohnRauser提到一个简单的定义:大数据就是任何超过了一台计算机处理能力的庞大数据量。
研发小组对大数据的定义:"大数据是最大的宣传技术、是最时髦的技术,当这种现象出现时,定义就变得很混乱。
" Kelly说:"大数据是可能不包含所有的信息,但我觉得大部分是正确的。
对大数据的一部分认知在于,它是如此之大,分析它需要多个工作负载,这是AWS的定义。
当你的技术达到极限时,也就是数据的极限"。
大数据不是关于如何定义,最重要的是如何使用。
最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。
这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二、大数据分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。
那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。
基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的五个基本方面:1、可视化分析Analytic Visualizations大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法Data Mining Algorithms大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。
另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3、预测性分析能力Predictive Analytic Capabilities大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4、语义引擎Semantic Engines大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。
5、数据质量与数据管理Data Quality and Master Data Management大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
三、大数据技术数据采集:ETL L(extract, transform and load)工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取:关系数据库、NOSQL、SQL等。
基础架构:云存储、分布式文件存储等。
数据处理:自然语言处理(NLP,NaturalLanguageProcessing)是研究人与计算机交互的语言问题的一门学科。
处理自然语言的关键是要让计算机"理解"自然语言,所以自然语言处理又叫做自然语言理解(NLU,NaturalLanguage Understanding),也称为计算语言学(Computational Linguistics。
一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。
统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
数据挖掘:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化、Description and Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)模型预测:预测模型、机器学习、建模仿真。
结果呈现:云计算、标签云、关系图等。
四、大数据特点要理解大数据这一概念,首先要从"大"入手,"大"是指数据规模,大数据一般指在10TB(1TB=1024GB)规模以上的数据量。
大数据同过去的海量数据有所区别,其基本特征可以用4个V来总结(Vol-ume、Variety、Value和Veloc-ity),即体量大、多样性、价值密度低、速度快。
第一,数据体量巨大。
从TB级别,跃升到PB级别。
第二,数据类型繁多,如前文提到的网络日志、视频、图片、地理位置信息,等等。
第三,价值密度低。
以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快。
1秒定律。
最后这一点也是和传统的数据挖掘技术有着本质的不同。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大数据技术是指从各种各样类型的巨量数据中,快速获得有价值信息的技术。
解决大数据问题的核心是大数据技术。
目前所说的"大数据"不仅指数据本身的规模,也包括采集数据的工具、平台和数据分析系统。
大数据研发目的是发展大数据技术并将其应用到相关领域,通过解决巨量数据处理问题促进其突破性发展。
因此,大数据时代带来的挑战不仅体现在如何处理巨量数据从中获取有价值的信息,也体现在如何加强大数据技术研发,抢占时代发展的前沿。
五、当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。
大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。
二是规范一套建设标准。
没有标准就没有系统。
应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。
三是搭建一个共享平台。
数据只有不断流动和充分共享,才有生命力。
应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。
四是培养一支专业队伍。
大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。
六、大数据作用大数据时代到来,认同这一判断的人越来越多。
那么大数据意味着什么,他到底会改变什么?仅仅从技术角度回答,已不足以解惑。
大数据只是宾语,离开了人这个主语,它再大也没有意义。
我们需要把大数据放在人的背景中加以透视,理解它作为时代变革力量的所以然。
1、变革价值的力量未来十年,决定中国是不是有大智慧的核心意义标准(那个"思想者"),就是国民幸福。
一体现在民生上,通过大数据让有意义的事变得澄明,看我们在人与人关系上,做得是否比以前更有意义;二体现在生态上,通过大数据让有意义的事变得澄明,看我们在天与人关系上,做得是否比以前更有意义。
总之,让我们从前10年的意义混沌时代,进入未来10年意义澄明时代。
2、变革经济的力量生产者是有价值的,消费者是价值的意义所在。
有意义的才有价值,消费者不认同的,就卖不出去,就实现不了价值;只有消费者认同的,才卖得出去,才实现得了价值。
大数据帮助我们从消费者这个源头识别意义,从而帮助生产者实现价值。
这就是启动内需的原理。
3、变革组织的力量随着具有语义网特征的数据基础设施和数据资源发展起来,组织的变革就越来越显得不可避免。
大数据将推动网络结构产生无组织的组织力量。
最先反映这种结构特点的,是各种各样去中心化的WEB2.0应用,如RSS、维基、博客等。
大数据之所以成为时代变革力量,在于它通过追随意义而获得智慧。
七、大数据处理周涛:大数据处理数据时代理念的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。
具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结了一个普遍适用的大数据处理流程,并且这个流程应该能够对大家理顺大数据的处理有所帮助。