计算机组成原理课程设计全
计算机组成原理课程设计

计算机组成原理课程设计1. 引言计算机组成原理是计算机科学与技术专业中一门重要的基础课程。
通过学习计算机组成原理,可以了解计算机的基本组成结构、工作原理和性能提升方法。
为了更好地掌握和应用所学知识,本文将介绍一项针对计算机组成原理课程的设计任务。
2. 任务描述本次课程设计任务要求设计一个简单的单周期CPU,实现基本的指令执行功能。
具体要求如下:•CPU的指令集包括加载(Load)、存储(Store)和算术逻辑运算(ALU)指令,需要支持整数加法、减法、乘法和除法运算。
•CPU需要具备基本的流水线功能,包括取指(Instruction Fetch)、译码(Decode)、执行(Execute)和写回(Write Back)。
•CPU需要支持基本的寄存器操作,包括寄存器读取(Register Read)和寄存器写入(Register Write)。
•CPU的指令和数据存储器使用单端口RAM,指令和数据的访问都需要经过存储器。
3. 设计思路针对上述需求,我们可以采用以下设计思路:3.1 CPU总体设计•CPU采用单周期结构,即每个指令都在一个时钟周期内完成。
•CPU主要分为指令存储器、数据存储器、寄存器文件和控制逻辑四个部分。
3.2 指令存储器设计•指令存储器采用单端口RAM,每个指令的长度为固定的32位。
•指令存储器需要实现读取指令的功能,每次从内存中读取一个指令。
3.3 数据存储器设计•数据存储器也采用单端口RAM,每个数据的长度为固定的32位。
•数据存储器需要实现读取数据和写入数据的功能,执行指令时需要从存储器中读取数据,计算结果需要写回存储器。
3.4 寄存器文件设计•寄存器文件包含若干个通用寄存器,用于存储指令执行过程中的临时数据。
•寄存器文件需要实现读取寄存器和写入寄存器的功能,执行指令时需要读取和写入寄存器。
3.5 控制逻辑设计•控制逻辑负责根据当前指令的操作码和操作数生成控制信号,控制CPU的工作流程。
计算机组成原理课程设计报告 完整实现及完整报告

计算机组成原理课程设计报告专业:网络工程学号:学生姓名:指导教师:2012年月日1 课程设计的题目和内容 (3)1.1课程设计的题目 (3)1.2课程设计完成的内容 (3)2 课程设计的基本要求 (3)3 课程设计的具体步骤 (4)3.1完成系统的总体设计 (4)3.2设计控制器的逻辑结构框图 (4)3.3设计机器指令格式和指令系统 (5)3.4设计时序产生器电路 (5)3.5设计微程序流程图 (6)3.6设计操作控制器单元(即微程序控制器) (6)3.7设计单元电路 (7)3.8编写汇编语言源程序 (8)3.9机器语言源程序 (8)3.10编译和功能仿真 (9)3.11主要器件电路图 (9)3.12机器语言源程序的功能仿真波形图及结果分析 (10)4 故障现象和故障分析 (12)5 心得体会 (13)6 软件清单 (13)7 附录表(微程序流程图) (31)1 课程设计的题目和内容1.1 课程设计的题目设计一台嵌入式CISC模型计算机(采用定长CPU周期、联合控制方式),并运行能完成一定功能的机器语言程序进行验证,实现方法如下:●连续输入5个有符号整数(8位二进制补码表示,用十六进制数输入),求最大的负数并输出显示。
说明:①5个有符号数从外部输入;②一定要使用符号标志位(比如说SF),并且要使用为负的时候转移(比如JS)或不为负的时候转移(比如JNS)指令。
第二类(最高成绩为“良”):采用单数据总线结构的运算器,不采用RAM;1.2 课程设计完成的内容1.完成系统的总体设计,画出模型机数据通路框图;2.设计微程序控制器(CISC模型计算机)的逻辑结构框图;3.设计机器指令格式和指令系统;4.设计时序产生器电路;5.设计所有机器指令的微程序流程图;6.设计操作控制器单元;在CISC模型计算机中,设计的内容包括微指令格式(建议采用全水平型微指令)、微指令代码表(根据微程序流程图和微指令格式来设计)和微程序控制器硬件电路(包括地址转移逻辑电路、微地址寄存器、微命令寄存器和控制存储器等。
《计算机组成原理》教案

《计算机组成原理》教案一、教学目标1. 了解计算机硬件系统的组成及功能2. 掌握数据的表示和运算方法3. 理解存储器的层次结构和工作原理4. 掌握中央处理器(CPU)的工作原理和性能指标5. 了解计算机的输入输出系统及其接口技术二、教学内容1. 计算机硬件系统计算机的组成输入输出设备存储器中央处理器(CPU)2. 数据的表示和运算数制转换计算机中的数据类型算术运算逻辑运算3. 存储器层次结构随机存储器(RAM)只读存储器(ROM)硬盘存储器虚拟存储器4. 中央处理器(CPU)CPU的组成和结构指令集和指令系统指令执行过程CPU性能指标5. 输入输出系统输入输出设备I/O接口技术中断和直接内存访问(DMA)总线和接口三、教学方法1. 采用讲授法,讲解基本概念、原理和方法。
2. 结合实例分析,让学生更好地理解计算机组成原理。
3. 使用实验和实训,培养学生的实际操作能力。
4. 开展课堂讨论和小组合作,提高学生的分析和解决问题的能力。
四、教学资源1. 教材:《计算机组成原理》2. 课件:PowerPoint或其他教学软件3. 实验设备:计算机、内存条、硬盘等4. 网络资源:相关在线教程、视频、论文等五、教学评价1. 平时成绩:课堂表现、作业、实验报告等(30%)2. 期中考试:测试计算机组成原理的基本概念、原理和方法(30%)3. 期末考试:综合测试计算机组成原理的知识点和实际应用(40%)六、教学安排1. 课时:共计48课时,每课时45分钟。
第一章:8课时第二章:6课时第三章:10课时第四章:10课时第五章:4课时第六章:6课时第七章:6课时第八章:4课时第九章:4课时第十章:4课时2. 教学方式:讲授、实验、课堂讨论、小组合作等。
七、教学重点与难点1. 教学重点:计算机硬件系统的组成及功能数据的表示和运算方法存储器的层次结构和工作原理中央处理器(CPU)的工作原理和性能指标输入输出系统及其接口技术2. 教学难点:存储器的工作原理中央处理器(CPU)的指令执行过程输入输出系统的接口技术八、教学进度计划1. 第一周:计算机硬件系统概述2. 第二周:数据的表示和运算3. 第三周:存储器层次结构4. 第四周:中央处理器(CPU)5. 第五周:输入输出系统6. 第六周:综合练习与实验九、教学实践活动1. 实验:实验一:计算机硬件组成认识实验二:数据表示与运算实验三:存储器测试实验四:CPU性能测试实验五:输入输出系统实验2. 课堂讨论:讨论话题:计算机硬件技术的未来发展讨论形式:小组合作、课堂分享1. 课程结束后,对教学效果进行自我评估和反思。
《计算机组成原理》教案

《计算机组成原理》教案一、课程简介1.1 课程背景计算机组成原理是计算机科学与技术专业的一门核心课程,旨在帮助学生了解和掌握计算机的基本组成、工作原理和性能优化方法。
通过本课程的学习,学生将能够理解计算机硬件系统的整体结构,掌握各种计算机组件的功能和工作原理,为后续学习操作系统、计算机网络等课程打下基础。
1.2 课程目标(1)了解计算机系统的基本组成和各部分功能;(2)掌握计算机指令系统、中央处理器(CPU)的工作原理;(3)熟悉存储器层次结构、输入输出系统及总线系统;(4)学会分析计算机系统的性能和优化方法。
二、教学内容2.1 计算机系统概述(1)计算机的发展历程;(2)计算机系统的层次结构;(3)计算机系统的硬件和软件组成。
2.2 计算机指令系统(1)指令的分类和格式;(2)寻址方式;(3)指令的执行过程。
2.3 中央处理器(CPU)(1)CPU的结构和功能;(2)流水线技术;(3)多核处理器。
2.4 存储器层次结构(1)存储器概述;(2)随机存取存储器(RAM);(3)只读存储器(ROM);(4)缓存(Cache)和虚拟存储器。
2.5 输入输出系统(1)输入输出设备;(2)中断和DMA方式;(3)总线系统。
三、教学方法3.1 讲授法通过讲解、举例、分析等方式,使学生掌握计算机组成原理的基本概念、原理和应用。
3.2 实验法安排实验课程,使学生在实践中了解和验证计算机组成原理的相关知识。
3.3 案例分析法分析实际案例,使学生了解计算机组成原理在实际应用中的作用和意义。
四、教学评价4.1 平时成绩包括课堂表现、作业完成情况、实验报告等。
4.2 期末考试采用闭卷考试方式,测试学生对计算机组成原理知识的掌握程度。
五、教学资源5.1 教材《计算机组成原理》(唐朔飞著,高等教育出版社)。
5.2 辅助资料包括课件、实验指导书、案例分析资料等。
5.3 网络资源推荐学生访问相关学术网站、论坛,了解计算机组成原理的最新研究动态和应用成果。
计算机组成原理课程设计报告

计算机组成原理课程设计报告一、引言计算机组成原理是计算机科学与技术专业的重要课程之一,通过学习该课程,我们可以深入了解计算机的硬件组成和工作原理。
本次课程设计旨在通过设计一个简单的计算机系统,加深对计算机组成原理的理解,并实践所学知识。
二、设计目标本次课程设计的目标是设计一个基于冯·诺依曼体系结构的简单计算机系统,包括中央处理器(CPU)、存储器、输入输出设备等。
通过该设计,我们可以掌握计算机系统的基本组成和工作原理,加深对计算机组成原理的理解。
三、设计方案1. CPU设计1.1 硬件设计CPU由控制单元和算术逻辑单元组成。
控制单元负责指令的解码和执行,算术逻辑单元负责算术和逻辑运算。
1.2 指令设计设计一套简单的指令集,包括算术运算指令、逻辑运算指令、数据传输指令等。
1.3 寄存器设计设计一组通用寄存器,用于存储数据和地址。
2. 存储器设计2.1 主存储器设计一块主存储器,用于存储指令和数据。
2.2 辅助存储器设计一个简单的辅助存储器,用于存储大容量的数据。
3. 输入输出设备设计3.1 键盘输入设备设计一个键盘输入设备,用于接收用户的输入。
3.2 显示器输出设备设计一个显示器输出设备,用于显示计算结果。
四、实施步骤1. CPU实现1.1 根据CPU的硬件设计,搭建电路原型。
1.2 编写控制单元的逻辑电路代码。
1.3 编写算术逻辑单元的逻辑电路代码。
1.4 进行仿真验证,确保电路的正确性。
2. 存储器实现2.1 设计主存储器的存储单元。
2.2 设计辅助存储器的存储单元。
2.3 编写存储器的读写操作代码。
2.4 进行存储器的功能测试,确保读写操作的正确性。
3. 输入输出设备实现3.1 设计键盘输入设备的接口电路。
3.2 设计显示器输出设备的接口电路。
3.3 编写输入输出设备的读写操作代码。
3.4 进行输入输出设备的功能测试,确保读写操作的正确性。
五、实验结果与分析通过对CPU、存储器和输入输出设备的实现,我们成功设计了一个基于冯·诺依曼体系结构的简单计算机系统。
计算机组成原理课程设计

计算机组成原理课程设计一、设计背景计算机组成原理是计算机科学与技术专业的一门基础课程,旨在培养学生对计算机硬件组成和工作原理的深刻理解。
通过课程设计,学生可以巩固和应用所学的知识,提高解决实际问题的能力。
二、设计目标本次计算机组成原理课程设计的目标是让学生通过实践,加深对计算机硬件组成和工作原理的理解,培养学生的设计和实现能力。
具体目标包括:1. 设计并实现一个简单的计算机系统,包括中央处理器(CPU)、存储器、输入输出设备等。
2. 熟悉计算机指令系统的设计与实现,包括指令的编码、解码和执行过程。
3. 学会使用硬件描述语言(如VHDL)进行计算机硬件的设计和仿真。
4. 掌握计算机系统的性能评估方法,包括指令周期、时钟频率等。
三、设计内容本次计算机组成原理课程设计的内容为设计并实现一个简单的基于冯·诺依曼结构的计算机系统。
具体设计内容包括以下几个方面:1. 计算机系统的总体设计根据冯·诺依曼结构的原理,设计计算机系统的总体框架。
包括中央处理器(CPU)、存储器、输入输出设备等。
2. 指令系统的设计与实现设计并实现一个简单的指令系统,包括指令的编码、解码和执行过程。
指令集可以包括算术运算、逻辑运算、数据传输等常见指令。
3. 中央处理器(CPU)的设计与实现设计并实现一个简单的中央处理器,包括指令寄存器、程序计数器、算术逻辑单元等。
通过对指令的解码和执行,实现计算机的基本功能。
4. 存储器的设计与实现设计并实现一个简单的存储器模块,包括指令存储器和数据存储器。
通过存储器的读写操作,实现程序的加载和数据的存储。
5. 输入输出设备的设计与实现设计并实现一个简单的输入输出设备,如键盘和显示器。
通过输入输出设备,实现用户与计算机系统的交互。
6. 系统性能评估对设计的计算机系统进行性能评估,包括指令周期、时钟频率等指标的测量和分析。
通过性能评估,优化计算机系统的性能。
四、设计步骤本次计算机组成原理课程设计的步骤如下:1. 确定设计的整体框架和目标,明确设计的内容和要求。
东北大学计算机组成原理课程设计

计算机组成原理课程设计报告班级:班姓名:学号:完成时间:一、课程设计目的1.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;2.通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;3.培养综合实践及独立分析、解决问题的能力。
二、课程设计的任务针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序;之后编写实现乘法和除法的程序进行设计的验证。
三、课程设计使用的设备(环境)1.硬件●COP2000实验仪●PC机2.软件●COP2000仿真软件四、课程设计的具体内容(步骤)1.详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现该模型机指令系统的特点:①总体概述:COP2000模型机包括了一个标准CPU所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。
其中运算器和中断控制电路以及跳转控制电路用CPLD来实现,其它电路都是用离散的数字电路组成。
微程序控制部分也可以用组合逻辑控制来代替。
模型机为8位机,数据总线、地址总线都为8位,模型机的指令码为8位,根据指令类型的不同,可以有0到2个操作数。
指令码的最低两位用来选择R0-R3寄存器,在微程序控制方式中,用指令码做为微地址来寻址微程序存储器,找到执行该指令的微程序。
而在组合逻辑控制方式中,按时序用指令码产生相应的控制位。
在本模型机中,一条指令最多分四个状态周期,一个状态周期为一个时钟脉冲,每个状态周期产生不同的控制逻辑,实现模型机的各种功能。
计算机组成原理课程设计报告模板

三、课程设计的时间安排
序号
教学顺序
教学内容
2、控制信号的说明;
3、;实验的关键设计;
4、实验的步骤
5、实验运行图;
6、实验结果分析;
六、结论(应当准确、完整、明确精练;也可以在结论或讨论中提出建议、设想、尚待解决问题等。)
七、参考文献
(一)教科书
唐朔飞编著,《计算机组成原理》,高等教育出版社 第三版
(二)参考书
(1)李勇编著,《计算机原理与设计》,国防科技大学出版社
2、学生独立设计出对应每一条指令的一段微指令,并将若干段微程序写入控制存储器,并检查其正误。
3、把程序通过存储器写操作写入内存中
4、通过存储器读操作连续进行读操作,验证6、读寄存器对寄存器堆中的寄存器连续进行读操作,验证写的数据是否正确。
《计算机组成原理》课程设计
系院:
学生姓名:
专业:
年级:
完成日期
指导教师:
课程设计小组成员名单及分工
姓名
学号
主要完成内容
备注
一、课程设计的目的与要求
本课程设计是在完成了计算机组成原理的教学后进行的,目的在于让学生在掌握了计算机组成原理的基本理论之后,在实验室里老师指导下,自己动手,搭建一个简单的计算机的模型,其模型中包括计算机中的运算器、寄存器、译码电路、存储器、和存储微指令用的控制存储器。在此基础上,给出若干条计算机指令,要求学生自行设计出这若干条指令的微指令,并将其存放于控制存储器,然后用这几条指令设计一段程序。将该段程序存放于内存中,并运行此段程序,且显示该段程序运行后其结果的正、误,分析其原因。通过该实习,让学生在实际操作中加深对计算机的组成原理和指令在计算机中运行过程的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沈阳理工大学课程专用纸成绩评定表沈阳理工大学课程专用纸课程设计任务书沈阳理工大学课程专用纸目录1. 实验计算机的设计 (2)1.1整机逻辑框图设计及整机的逻辑框图 ................21.2指令系统的设计 ..................................31.3微操作控制部件的设计 ............................61.3.1微指令编码的格式设计 (6)1.3.2微操作控制信号设计 (6)1.3.3微程序顺序控制方式设计 (7)1.4编写调试程序 ...................................152.实验计算机的组装 (16)3.实验计算机的调试 (16)3.1 调试前准备 ....................................163.2调试步骤和调试结果 .............................193.3心得体会 .......................................194、参考文献 .......................................211沈阳理工大学课程专用纸1. 实验计算机的设计1.1整机逻辑框图设计及整机的逻辑框图此模型机是由运算器,控制器,存储器,输入设备,输出设备五大部分组成。
74299程序计数PC地址寄存AR数据暂存LT1数据暂存LT2MER2R2寄存寄存R2寄存脉冲源及时微控指令寄存IR输入设输出设2沈阳理工大学课程专用纸图1.1模型机结构图1.运算器又是有299,74LS181完成控制信号功能的算逻部件,暂存器LDR1,LDR2,及三个通用寄存器R0,R2等组成。
2.控制器由程序计数器PC、指令寄存器、地址寄存器、时序电路、控制存储器及相应的译码电路组成。
3.存储器RAM是通过CE和W/R两个微命令来完成数据和程序的的存放功能的。
4输入设备是由置数开关SW控制完成的。
5.输出设备有两位LED数码管和W/R控制完成的图1-1中运算器ALU由U7--U10四片74LS181构成,暂存器1由U3、U4两片74LS273构成,暂存器2由U5、U6两片74LS273构成。
微控器部分控存由U13--U15三片2816构成。
除此之外,CPU的其他部分都由EP1K10集成。
存储器部分由两片6116构成16位存储器,地址总线只有低八位有效,因而其存储空间为00H--FFH。
输出设备由底板上的四个LED数码管及其译码、驱动构成,当D-G和W/R均为低电平时将数据总线的数据送入数码管显示。
在开关方式下,输入设备由16位电平开关及两个三态缓冲芯片74LS244构成,当DIJ-G为低电平时将16位开关状态送上数据总线。
在键盘方式或联机方式下,数据可由键盘或上位机输入,然后由监控程序直接送上数据总线,因而外加的数据输入电路可以不用。
本系统的数据总线为16位,指令、地址和程序计数器均为8位。
当数据总线上的数据打入指令寄存器、地址寄存器和程序计数器时,只有低八位有效。
1.2指令系统的设计规定:表1.1寄存器表Rs或rd 选定寄存器R 00 0R 01 1R 102(1)存储器访问及转移指令,结果LDA),)JMP2条转移指令,即无条件转移(,取数(STA2 设计的条访问指令,即存数()存储器的访问表:,指令格式见表BZC为零或有进位转移指令()1.2 存储器的访问表表1.2045 7 63 1 23沈阳理工大学课程专用纸rdOP-CODE 00MDM的不同其定义也不相同D为位移量,D随其中OP-CODE为操作码,rd为寄存器。
M为寻址模式,寻址模式表:1.3(2)寻址方式见寻址模式1.3有效地寻址模ME直接寻00E=D间接寻01E)R1变址寻址10 R1)+D E=(相对寻址)11E=(PC+D。
注:本机规定变址寄存器R1指定为寄存器R2 3()I/O指令输入(操作码表:1.4I/O IN)和输出(OUT)指令采用单字节指令,格式见表0 1 3 7 6 5 4 2rdOP-CODEaddr操作码表表1.4I/OOP-CODE=0100从“数据输入电路”中的开关组输入数据;当OP-CODE=0100且addr=10时,其中,当 addr=01时,将数据送到“输出显示电路”中的数码管显示。
且 1.5:(4)指令助记符,功能及格式见表 1.5指令格式表能功指令的格式汇编符号rd 0 rd 00 0111 CLR rdrd rs 1000 rs rd rd MOV rs,rd rs+rd+cy rd ADC rs,1001 rd rsrdSBC rs 1010 rd ,rs rd rs-rd-cy4沈阳理工大学课程专用纸rd rd+1 rs rd INC rd 1011rd rd rs∧rd ,AND rs rd 1100 rsrd rd rd COMrd1101rsrscyrdrRRCrdrsrdrs1110rRLCrd1111rsrdrscyrdrsrsrdE00LDArdM00DErdrdSTArd00M01DP100JMPD00MCY=Z=时1100BZCD00MPE010001rdrdaddrrdINaddOUT add010110rdrdrdaddr停HALT指令编码表:1.6 5()指令编码:表5沈阳理工大学课程专用纸微操作控制部件的设计1.3微指令编码的格式设计1.3.1设计三个控制操作微程序:CA2、CLR对地址、指令寄存器清零后,指令译码输入CA1存储器读操作(MRD):拨动清零开关连续读操作。
00”时,按“单步”键,可对RAM为“CA2、对地址、指令寄存器清零后,指令译码输入CA1)存储器写操作(MWE:拨动清零开关CLR 连续写操作。
”时,按“单步”键,可对RAM为“10”11为“指令译码输入CA1、CA2)启动程序(RUN:拨动清零开关CLR对地址、指令寄存器清零后,号“取指”微指令,启动程序运行时,按“单步”键,即可转入到第01 24位,其控制顺序表1.7 本系统的微程序字长共为三个译码字段,分别由三个控制位译出多位,。
为6位后续地址,F1,F2,F3uA5-uA0其中微操作控制信号设计1.3.2微指令中个控制位的含义如下:是写内存的微命令,状是控制运算器的逻辑和算术运算的微命令。
、CNWE、、S2S1、S0、MS3选通控制微命令,分别对应状态选通、输出LED1B”有效。
1A、是输入电路选通、内存RAM1态“为三个译码字段,分别由三个控制位经指令F3F200状态“”为无效。
F1、、”“”“”“11、10、01。
”种状态分别对应一组互斥性微命令中的一个,状态“种状态,前译码输出译码电路74138871116沈阳理工大学课程专用纸为无效。
F3字段包含P1- P4四个测试字位。
其功能是根据机器指令代码及相应微指令代码进行译码测试,使微程序转入相应的微地址入囗,从而实现微程序的顺序、分支、循环运行。
控制操作为P4测试,它以CA1、CA2作为测试条件,出现了写机器指令、读机器指令和运行机器指令3路分支,占用3个固定微地址单元。
当分支微地址单元固定后,剩下的其它地方就可以一条微指令占用控存一个微地址单元随意填写。
机器指令的执行过程如下:首先将指令在外存储器的地址送上地址总线,然后将该地址上的指令传送至指令寄存器,这就是“取指”过程。
之后必须对操作码进行P1测试,根据指令的译码将后续微地址中的某几位强制置位,使下一条微指令指向相应的微程序首地址,这就是“译码”过程。
然后才顺序执行该段微程序,这是真正的指令执行过程。
在所有机器指令的执行过程中,“取指”和“译码”是必不可少的,而且微指令执行的操作也是相同的,这些微指令称为公用微指令。
表1.8F1、F2、F3三个字段的编码方案F1字段F2字段F3字段9 8 选择7 15 14 13 选择选择12 11 10P1 0 0 LDRi RAG 0 0 0 0 0 0 0AR 1 1 0 0 0 0 ALU-G 1 LOAD 0 0P30 1 0 00 0 1 LDR2 01 RCG自定0 0 1 1 1 1 0 自定义1 自定义1 义1.3.3微程序顺序控制方式设计1.微程序控制部件组成原理[1] 运算器单元(ALU UINT)运算器单元由以下部分构成:两片74LS181构成了并-串型8位ALU;两个8位寄存器DR1和DR2为暂存工作寄存器,保存参数或中间运算结果。
ALU的S0~S3为运算控制端,Cn为最低进位输入,M为状态控制端。
ALU的输出通过三态门74LS245连到数据总线上,由ALU-B控制该三态门。
7沈阳理工大学课程专用纸[2] 寄存器堆单元(REG UNIT)该部分由3片8位寄存器R0、R1、R2组成,它们用来保存操作数用中间运算结构等。
三个寄存器的输入输出均以连入数据总线,由LDRi和RS-B根据机器指令进行选通。
[3] 指令寄存器单元(INS UNIT)指令寄存器单元中指令寄存器(IR)构成模型机时用它作为指令译码电路的输入,实现程序的跳转,由LDIR控制其选通。
[4] 时序电路单元(STATE UNIT)用于输出连续或单个方波信号,来控制机器的运行。
[5] 微控器电路单元(MICRO-CONTROLLER UNIT)微控器主要用来完成接受机器指令译码器送来的代码,使控制转向相应机器指令对应的首条微代码程序,对该条机器指令的功能进行解释或执行的工作。
由输入的W/R信号控制微代码的输出锁存。
由程序计数器(PC)和地址寄存器(AR)实现程序的取指功能。
[6] 逻辑译码单元(LOG UNIT)用来根据机器指令及相应微代码进行译码使微程序转入相应的微地址入口,从而实现微程序的顺序、分支、循环运行,及工作寄存器R0、R1、R2的选通译码。
[7] 主存储器单元(MAIN MEM)用于存储实验中的机器指令。
[8] 输入输出单元(INPUT/OUTPUT DEVICE)输入单元使用八个拨动开关作为输入设备,SW-B控制选通信号。
输出单元将输入数据置入锁存器后由两个数码管显示其值。
8沈阳理工大学课程专用纸图1.2微程序控制原理图2.微程序入口地址形成方法由于每条机器指令都需要取指操作,所以将取指操作编制成一段公用微程序,通常安排在控存的0号或特定单元开始的一段控存空间内。
每一条机器指令对应着一段微程序,其入口就是初始微地址。
首先由“取指令”微程序取出一条机器指令到IR中,然后根据机器指令操作码转换成该指令对应的微程序入口地址。
这是一种多分支(或多路转移)的情况,常用三种方式形成微程序入口地址。
(1)一级功能转移如果机器指令操作码字段的位数和位置固定,可以直接使操作码与入口地址码的部分位相对应。