2013-2014学年八年级下月考数学试卷
2013-2014学年八年级下联考数学试题及答案

2014年春八年级下数学试题一、亮出你的观点,明智选择!(每小题3分,共30分)1、若式子在实数范围内有意义,则x的取值范围是()A.x ≥B.x >C.x ≥D.x >2、下列二次根式中不能再化简的二次根式的是()A .B .C .D .3、以下列各组数为边的三角形中,是直角三角形的有()(1)3,4,5;(2),,;(3)32,42,52;(4)0.03,0.04,0.05.A.1个B.2个C.3个D.4个4、与直线y=2x+1关于x轴对称的直线是()A.y=-2x+1 B.y=-2x-1 C112y x=-- D112y x=-+5、如图,在边长为2的正方形ABCD 中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A.B.C.D.6、对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0 ④y的值随x值的增大而增大,其中正确的个数是()A 0B 1C 2D 37、如图,已知OP平分∠AOB ,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.C.D.8、八个边长为1的正方形如图摆放在平面直角坐标系中,经过P点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A5182y x=+B7182y x=+C7162y x=+D3142y x=+9、如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是()A.4 B.3 C.2 D.110、小明、小宇从学校出发到青少年宫参加书法比赛,小明步行一段时间后,小宇骑自行车沿相同路线行进,两人均匀速前行.他们的路程差s (米)与小明出发时间t (分)之间的函数关系如图所示.下列说法:①小宇先到达青少年宫;②小宇的速度是小明速度的3倍;③a=20;④b=600.其中正确的是( )A .①②③B .①②④C .①③④D .①②③④二、写出你的结论,完美填空!(每小题3分,共18分)11、对于正比例函数23m y mx -=,y 的值随x 的值减小而减小,则m 的值为 。
2013学年八年级第二次月考数学试卷

2013学年第二学期月考考试(数学)学科(八)年级时间:60分钟 闭卷 满分:100分(禁用计算器)班级: 姓名: 学号:1、一次函数43y x =-的截距是____________;2、___0,____0y kx b k b =+直线不经过第三象限,则3、直线32y x =+可以由直线13-=x y 沿着y 轴向______(填“上”或“下”平移_______个单位得到。
4、方程221332025x y xy x y +--++=中, 是方程的二次项, 是方程的一次项, 是方程的常数项.5、⎩⎨⎧-==21y x 方程⎩⎨⎧=-=-54222y x y x 的解。
(填“是”或“不是”) 6、某单位在两个月内将开支从25000元降到16000元,如果设每月可降低开支的百分率均为()0x x >,则由题意列出的方程应是 7、十二边形的内角和是8、如果过多边形的一个顶点共有12条对角线,那这个多边形的边数是 9、已知一个多边形的每个外角是36,那这个多边形的边数是10、在ABCD 中,如果:1:5A B ∠∠=,那么C ∠的度数是 ,D ∠的度数是 11、已知:点O是ABCD 的对角线A B C 与的交点,24,38,28,AC cm BD cm AD cm OBC ===则的周长等于12、已知:菱形的两条对角线的长分别是6和8,那么它的周长是 ,它的面积是13、填写“平行四边形、矩形、菱形、正方形” 1)四条边都相等的四边形是2)一组对边平行且相等的四边形是 3)有一个内角是直角的 是正方形 4)对角线相等的平行四边形是 5) 的四个角都是直角,四条边都相等二、选择题(每题3分,共15分)1、下列函数中,是一次函数的是( )A 、2y =+ B 、12y x=-C 、1y x =-+D 、 (y kx b k b =+、是常数) 2、方程410x +=的实数根的个数是( ) A 、无数个 B 、4个 C 、2 D 、0 3、下列方程中,是分式方程的是( ) A 、x x 1=B 、32=xC 、x x 21=D 、1)6)(83(-=++x x 4、下列命题中,真命题是( ) A 、菱形的对角线互相平分且相等 B 、菱形的两条对角线把菱形分成四个直角三角形 C 、矩形的对角线互相垂直且相等D 、矩形的两条对角线把矩形分成四个直角三角形 5、下列说法正确的是( )A 、平行四边形的对角线相等B 、夹在平行线间的平行线相等C 、平行四边形是轴对称图形D 、平行四边形的对角分别相等三、解方程或方程组(每题4分,共16分) 1、 ()31270x +-= 2、2613x x x -=+-3、.12=-+x x4、22113y x x y =+⎧⎨+=⎩四、解答题(共23分)1、已知直线y kx b =+经过点(3,-4),且平行于直线y=-2x+1,求该直线的表达式。
2013-2014年八年级数学12月月考试题(有答案)

( 2) a2 16( a b)2 .
解:( 1)原式= ( x y)( x y 2)
( 2)原式= (5a 4b)(4b 3a)
18. 先化简,再求值:( 7 分)
y( x y) ( x y) ( x y) 2 ,x其中 x = - 2,y = 1 . 2
解:原式= xy,当 x = - 2, y = 1 时,原式=- 1 2
22. 解下列方程与不等式( (1)3x(7-x)=18-x(3x-15) ; 解:( 1) x= 3 ( 2) x<- 1
8 分) ( 2) (x+3)(x-7)+8
> (x+5)(x-1).
23. ( 7 分)如图, OC是∠ AOB的角平分线, P 是 OC上
一点. PD⊥ OA交 OA于 D, PE⊥ OB交 OB于 E, F 是
24. ( 8 分) D 是 AB 上一点, DF 交 AC 于点 E, DE=EF ,AE=CE ,求证: A B∥CF。
证明:
A
∵∠ AED 与∠ CEF 是对顶角, ∴∠ AED= ∠ CEF, 在△ ABC 和△ CFE 中, ∵DE=FE ,∠ AED= ∠CEF, AE=CE ,
E
F
D
B 第 24 题 C
答案: D 2. 23 表示(★★★★★) .
A. 2 ×2× 2
B. 2 × 3
C. 3× 3 答案: A
D. 2+2+2
3. 在平面直角坐标系中。点 P( - 2, 3)关于 x 轴的对称点在(★★★★★) .
A. 第一象限 C. 第三象限 答案: C
B. 第二象限 D. 第四象限
4. 等腰但不等边的三角形的角平分线、高线、中线的总条数是(★★★★★)
八年级下册 第一次月考(1-2章)数学试卷(含答案解析) (17)

八年级(下)第一次月考数学试卷(1-2章)一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是.9.如图所示的不等式的解集是.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是.11.当代数式﹣3x的值大于10时,x的取值范围是.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是.三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?八年级(下)第一次月考数学试卷(1-2章)参考答案与试题解析一、选择题(本大题共6小题,共18分)1.若等腰三角形的顶角为70°,则它的底角度数为()A.45°B.55°C.65 D.70°【考点】等腰三角形的性质.【分析】由已知顶角为70°,根据等腰三角形的两底角相等的性质及三角形内角和定理,即可求出它的一个底角的值.【解答】解:∵等腰三角形的顶角为70°,∴它的一个底角为÷2=55°.故选:B.2.若a>b,则下列不等式中成立的是()A.a﹣5>b﹣5 B.<C.a+5>b+6 D.﹣a>﹣b【考点】不等式的性质.【分析】根据不等式的性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.可得答案.【解答】解:A、两边都减5,不等号的方向不变,故A符合题意;B、两边都除以5,不等号的方向不变,故B不符合题意;C、两边加不同的数,故C不符合题意;D、两边都乘以负数,不等号的方向改变,故D不符合题意;故选:A3.下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式x>﹣5的负整数解集有限个C.不等式﹣2x<8的解集是x<﹣4D.﹣40是不等式2x<﹣8的一个解【考点】不等式的解集.【分析】正确解出不等式的解集,就可以进行判断.【解答】解:A、正确;B、不等式x>﹣5的负整数解集有﹣4,﹣3,﹣2,﹣1.C、不等式﹣2x<8的解集是x>﹣4D、不等式2x<﹣8的解集是x<﹣4包括﹣40,故正确;故选C.4.不等式ax+b>0(a<0)的解集是()A.x>﹣B.x<﹣C.x>D.x<【考点】解一元一次不等式.【分析】移项、系数化成1即可求解.【解答】解:移项,得ax>﹣b,系数化成1得x<﹣.故选B.5.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE 等于()A.2cm B.3cm C.4cm D.5cm【考点】角平分线的性质.【分析】根据角平分线的性质得到ED=EC,计算即可.【解答】解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE+DE=AE+EC=AC=3cm,故选B.6.如图是一次函数y=kx+b的图象,当y<﹣2时,x的取值范围是()A.x<3 B.x>3 C.x<﹣1 D.x>﹣1【考点】一次函数的性质.【分析】直接利用函数图象结合一次函数增减性得出答案.【解答】解:如图所示:当y=﹣2时,x=﹣1,则当y<﹣2时,x的取值范围是:x<﹣1.故选:C.二、填空题(本大题共6小题,共18分)7.如图,将两个完全相同的含有30°角的三角板拼接在一起,则拼接后的△ABD的形状是等边三角形.【考点】等边三角形的判定.【分析】根据等边三角形的判定定理(有一内角为60°的等腰三角形为等边三角形)进行答题.【解答】解:∵AB=AD,∴△ABD是等腰三角形;又∵∠BAC=∠CAD=30°,∴∠BAD=60°,∴△ABD是等边三角形;故答案是:等边三角形.8.在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3.【考点】角平分线的性质.【分析】根据角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3,故答案为4:3.9.如图所示的不等式的解集是x≤2.【考点】在数轴上表示不等式的解集.【分析】该不等式的解集是指2及其左边的数,即小于等于2的数.【解答】解:由图示可看出,从2出发向左画出的线,且2处是实心圆,表示x≤2.所以这个不等式的解集为x≤2.故答案为:x≤2.10.如图,在△ABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则△ABC的周长是20.【考点】等腰三角形的性质.【分析】运用等腰三角形的性质,可得BD=CD,再求出△ABC的周长.【解答】解:∵在△ABC中,AB=AC,∴△ABC是等腰三角形,又∵AD⊥BC于点D∴BD=CD∵AB=6,CD=4∴△ABC的周长=6+4+4+6=20.故答案为:20.11.当代数式﹣3x的值大于10时,x的取值范围是x<﹣4.【考点】解一元一次不等式.【分析】根据题意列出不等式,再依据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得.【解答】解:根据题意得:﹣3x>10,合并同类项,得:﹣x>10,系数化为1,得:x<﹣4,故答案为:x<﹣4.12.如图,△ABC的边AB、AC的垂直平分线相交于点P.连接PB、PC,若∠A=70°,则∠PBC的度数是20°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】连接AP,由MP为线段AB的垂直平分线,根据垂直平分线的性质可得AP=BP,同理可得AP=CP,等量代换可得AP=BP=CP,然后根据等边对等角可得∠ABP=∠BAP,∠PAC=∠ACP及∠PBC=∠PCB,由已知的∠BAC的度数求出∠BAP+∠CAP的度数,等量代换可得∠ABP+∠ACP的度数,同时根据三角形的内角和定理可得∠ABP+∠PBC+∠PCB+∠ACP,进而得到∠PBC+∠PCB的度数,再根据两角相等,即可求出所求角的度数.【解答】解:连接AP,如图所示:∵MP为线段AB的垂直平分线,∴AP=BP,∴∠ABP=∠BAP,又PN为线段AC的垂直平分线,∴AP=CP,∴∠PAC=∠ACP,∴BP=CP,∴∠PBC=∠PCB,又∠BAC=∠BAP+∠CAP=70°,∴∠ABP+∠ACP=70°,且∠ABP+∠PBC+∠PCB+∠ACP=110°,∴∠PBC+∠PCB=40°,则∠PBC=∠PCB=20°.故答案为:20°三、计算题(本大题共5小题,共30分)13.解不等式15﹣9x<10﹣4x,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:移项,得:﹣9x+4x<10﹣15,合并同类项,得:﹣5x<﹣5,系数化为1,得:x>1,这个不等式的解集在数轴上表示如下:.14.已知:如图,点D是△ABC内一点,AB=AC,∠1=∠2.求证:AD平分∠BAC.【考点】全等三角形的判定与性质.【分析】先根据∠1=∠2得出BD=CD,再由SSS定理得出△ABD≌△ACD,由全等三角形的性质即可得出结论.【解答】证明:∵∠1=∠2,∴BD=CD,在△ABD与△ACD中,∵,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠BAC.15.已知不等式5﹣3x≤1的最小整数解是关于x的方程(a+9)x=4(x+1)的解,求a的值.【考点】一元一次不等式的整数解.【分析】解不等式求得不等式的解集,然后把最小的整数代入方程,解方程即可求得.【解答】解:解不等式5﹣3x≤1,得x≥,所以不等式的最小整数解是2.把x=2代入方程(a+9)x=4(x+1)得,(a+9)×2=4×(2+1),解得a=﹣3.16.已知y1=2x+4,y2=5x+10,当x取哪些值时,y1<y2?【考点】一次函数与一元一次不等式.【分析】先根据题意得出关于x的不等式,求出x的取值范围即可.【解答】解:y1=2x+4,y2=5x+10,当y1<y2时,2x+4<5x+10,解得x>﹣2,当x>﹣2时,y1<y2.17.已知等腰三角形△ABC,AB=AC,一腰上的中线把这个三角形的周长分成12和15两部分,求这个三角形的三边长.【考点】等腰三角形的性质;三角形三边关系.【分析】如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,根据题意列方程即可得到结论.【解答】解:如图,在△ABC中,AB=AC,且AD=BD.设AB=x,BC=y,(1)当AC+AD=15,BD+BC=12时,则+x=15,y=12,解得x=10,y=7.(2)当AC+AD=12,BC+BD=15时,则+x=12, +y=15,解得x=8,y=11,故得这个三角形的三边长分别为10,10,7或8,8,11.四、解答题(本大题共4小题,共32分)18.在某校班际篮球联赛中,每场比赛都要分出胜负,每队胜一场得3分,负一场得1分,如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?【考点】一元一次不等式的应用.【分析】设这个班要胜x场,则负(28﹣x)场,根据题意列出不等式,解不等式即可求出至少要胜几场.【解答】解:设这个班要胜x场,则负(28﹣x)场,由题意得,3x+(28﹣x)≥43,2x≥15,解得:x≥7.5,∵场次x为正整数,∴x≥8.答:这个班至少要胜8场.19.如图,在△ABC中∠ABC=∠ACB,BO平分∠ABC,CO平分∠ACB.若过点O作直线EF和边BC 平行,与AB交于点E,与AC交于点F,则线段EF和EB,FC之间有怎样的数量关系并证明?【考点】等腰三角形的判定与性质;平行线的性质.【分析】由BD为角平分线,利用角平分线的性质得到一对角相等,再由EF与BC平行,利用两直线平行内错角相等得到一对角相等,等量代换可得出∠EBD=∠EDB,利用等角对等边得到EB=ED,同理得到FC=FD,再由EF=ED+DF,等量代换可得证.【解答】解:EF=EB+FC.理由:∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠EBO=∠OBC,∠FCO=∠OCB.又∵EF∥BC,∴∠OBC=∠BOE,∠OCB=∠COF,∴∠BOE=∠EBO,∠COF=∠FCO,即EB=EO,FC=FO,∴EF=EO+FO=EB+FC.20.如图,在Rt△ABC的斜边AB上取两点D,E,使AD=AC,BE=BC.当∠B=60°时,求∠DCE的度数.【考点】等腰三角形的性质.【分析】根据三角形的内角和得到∠A=30°.根据等腰三角形的性质得到∠ACD=∠ADC==75°.推出△BCE是等边三角形,于是得到结论.【解答】解:∵∠ACB=90°,∠B=60°,∴∠A=30°.∵AD=AC,∴∠ACD=∠ADC==75°.∵BC=BE,∠B=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠DCE=∠ACD+∠BCE﹣∠ACB=75°+60°﹣90°=45°.21.如图,C为线段AB上的任意一点(不与点A,B重合),分别以AC,BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:△ACE≌△DCB.【考点】全等三角形的判定与性质.【分析】由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB【解答】证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,又∵CA=CD,CE=CB,在△ACE和△DCB中,,∴△ACE≌△DCB(SAS).五、解答题(本大题共1小题,共10分)22.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【考点】线段垂直平分线的性质.【分析】连接BD,延长BF交DE于点G,根据线段的垂直平分线的性质得到AD=BD,求出∠CBD=45°,证明△ECD≌△FCB,根据全等三角形的性质解答即可.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.六、解答题(本大题共1小题,共12分)23.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型2530乙型4560(1)如何进货,进货款恰好为46000元?(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?【考点】一次函数的应用;一元一次方程的应用.【分析】(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由销售问题的数量关系建立y与a的解析式就可以求出结论.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯只,由题意,得25x+45=46000,解得:x=400.∴购进乙型节能灯1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元;(2)设商场购进甲型节能灯a只,则购进乙型节能灯只,商场的获利为y元,由题意,得y=(30﹣25)a+(60﹣45),y=﹣10a+18000.∵商场销售完节能灯时获利最多且不超过进货价的30%,∴﹣10a+18000≤[25a+45]×30%,∴a≥450.∵y=﹣10a+18000,∴k=﹣10<0,∴y随a的增大而减小,∴a=450时,y最大=13500元.∴商场购进甲型节能灯450只,购进乙型节能灯750只时的最大利润为13500元.。
八年级数学(下册)第一次月考数学试卷(含答案解析) (4)

八年级(下)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.2016-2017学年江苏省淮安市盱眙县八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等【考点】全等图形.【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,以及全等三角形的判定定理可得答案.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块【考点】全等三角形的应用.【分析】根据题意应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠2【考点】全等三角形的判定.【分析】根据全等三角形的判定可以添加条件∠1=∠2.【解答】解:条件是∠1=∠2,∴∠ABE=∠DBC,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),故选D5.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行逐个验证,做题时要找准对应边,对应角.【解答】解:A图有两边相等,而夹角不一定相等,二者不一定全等;B图与三角形ABC有两边及其夹边相等,二者全等;C图有两边相等,而夹角不一定相等,二者不一定全等;D图与三角形ABC有两角相等,二者不一定全等;故选B6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长【考点】全等三角形的判定.【分析】根据全等三角形的判定(三组对应边分别相等的两个三角形全等(简称SSS))可得当AB=DE,BC=EF,AC=DF可判定△ABC≌△DEF,做题时要对选项逐个验证.【解答】解:A、满足SSA,不能判定全等;B、不是一组对应边相等,不能判定全等;C、满足AAA,不能判定全等;D、符合SSS,能判定全等.故选D.7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD【考点】全等三角形的性质.【分析】根据全等三角形的性质得出DF=AC,∠E=∠B,∠EDF=∠ACB,FD=AC,推出EF∥AB,AC ∥DF,EC=BD,即可得出答案.【解答】解:∵△ABC≌△EFD,∴DF=AC,∠E=∠B,∠EDF=∠ACB,ED=BC;∴EF∥AB,AC∥DF,FD﹣CD=BC﹣DC,∴EC=BD,故选项A、B、D正确,选项C错误;故选C.8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°【考点】全等三角形的性质.【分析】先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB即可得出∠BAD的度数.【解答】解:∵△ABC≌△ADE,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°﹣28°﹣95°=57°,∴∠BAD=∠DAE+∠EAB=77°.故选D.二、填空题题(3分×10=30分)9.我国国旗上的五角星有5条对称轴.【考点】轴对称的性质.【分析】根据轴对称图形的定义,可直接求得结果.【解答】解:过五角星的五个顶点中任意一个,与所对的两边的交点可作一条对称轴,∴五角星有5条对称轴.故答案为:5.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=25°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠D和∠F,再根据三角形的内角和定理求出即可.【解答】解:∵△ABC≌△DEF,∠A=80°,∠C=75°,∴∠D=∠A=80°,∠F=∠C=75°,∴∠E=180°﹣∠D﹣∠F=25°.故答案为:25.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y= 11.【考点】全等三角形的性质.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故填11.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:AB=DC.【考点】全等三角形的判定.【分析】条件是AB=DC,根据SAS推出即可.【解答】解:添加的条件是:AB=DC,理由是:∵在△ABC和△DCB中∴△ABC≌△DCB(SAS),故答案为:AB=DC.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为5厘米.【考点】全等三角形的应用.【分析】首先利用SAS定理判定△AOB≌△A′OB′,然后再根据全等三角形对应边相等可得A′B′=AB=5cm.【解答】解:连接AB,∵把两根钢条A′B、AB′的中点连在一起,∴AO=A′O,BO=B′O,在△ABO和△A′B′O中,∴△AOB≌△A′OB′(SAS),∴A′B′=AB=5cm,故答案为:5.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有3对全等三角形.【考点】全等三角形的判定.【分析】由已知易得△ABD≌△ACD,从而运用全等三角形性质及判定方法证明△BDE≌△CDE,△ABE≌△ACE.【解答】解:图中的全等三角形共有3对.∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD与Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠BAD=∠CAD,在△BDE与△CDE中,,∴△BDE≌△CDE(SAS),∴BE=CE,在△ABE与△ACE中,,∴△ABE≌△ACE(SSS).故答案为:3.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=10°.【考点】全等三角形的判定与性质.【分析】根据∠C=90°AD=AC,求证△CAE≌△DAE,∠CAE=∠DAE=∠CAB,再由∠C=90°,∠B=40°,求出∠EAC的度数,然后即可求出∠AEC的度数.【解答】解:∵在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,在Rt△CAE与△RtDAE中,,∴Rt△CAE≌Rt△DAE(HL),∴∠CAE=∠DAE=∠CAB,∵∠B+∠CAB=90°,∠B=40°,∴∠CAB=90°﹣40°=50°,∴∠EAC=10°.故答案为:10.16.如图:作∠AOB的角平分线OP的依据是SSS.(填全等三角形的一种判定方法)【考点】作图—基本作图;全等三角形的判定.【分析】根据作法可知OC=OD,PC=PD,OP=OP,故可得出△OPC≌△OPD,进而可得出结论.【解答】解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出4个.【考点】作图—复杂作图.【分析】能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个【解答】解:如图,可以作出这样的三角形4个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.【考点】作图-轴对称变换.【分析】(1)根据轴对称的性质画出图形即可;(2)利用矩形的面积减去四个顶点上三角形的面积即可.【解答】解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.【考点】作图—应用与设计作图;全等图形.【分析】观察图形发现:这个正方形网格的总面积为16,因此只要将面积分为8,即占8个方格,并且图形要保证为相同即可.【解答】解:如下图所示:21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC的长.【考点】全等三角形的性质.【分析】根据已知条件,△ABC≌△DEF,可知∠E=∠B=65°,BF=BC,可证EC=BF=3cm,做题时要正确找出对应边,对应角.【解答】解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠D=∠A,全等三角形对应边相等可得DO=AO,再根据三角形的内角和定理列式计算即可求出∠DCO,BD=BO+DO计算即可得解.【解答】解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.【考点】全等三角形的判定与性质.【分析】由已知两对边相等,加上公共边AB=AB,利用SSS得到三角形ABC与三角形ABD全等,利用全等三角形对应角相等得到∠CAB=∠DAB,即可得证.【解答】证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.【考点】全等三角形的判定与性质.【分析】欲证明AD=BC,只要证明△ACB≌△CAD即可.【解答】证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.【考点】全等三角形的判定与性质;平行线的判定.【分析】欲证明AB∥DE,只需证得∠B=∠FED.由Rt△ABC≌Rt△DEF,根据全等三角形的性质推知该结论即可.【解答】证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)根据两个等腰直角三角形的性质得:AB=AC,AD=AE,∠BAC=∠EAD=90°,由等式性质得:∠BAE=∠CAD,根据SAS证明两三角形全等;(2)由等腰直角三角形得两锐角为45°,再由全等三角形的性质得:∠ACD=∠B=45°,所以∠BCD=90°,则CD⊥BE.【解答】证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定与性质.【分析】直接利用全等三角形的判定与性质分别得出△MOE≌△NOD(SAS),△MDC≌△NEC(AAS),△DOC≌△EOC(SSS),进而得出答案.【解答】解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC绕点P按逆时针方向旋转180°到△PFD 的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是矩形;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.【考点】四边形综合题;全等三角形的判定与性质;平行四边形的判定;矩形的判定;旋转的性质.【分析】思考与实践:(1)根据矩形的定义:有一个角是直角的平行四边形是矩形进行判断即可;(2)取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,根据旋转后三角形的一条边与四边形的一边在同一条直线上,构成平行四边形.发现与运用:=S□ABGH即可;(1)过点E作AB的平行线,交BC于点G,交AD的延长线于点H,得出S梯形ABCD(2)分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.【解答】解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),∴S△DEH =S△CEG,∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH 一起拼接到△FBH位置即可.。
2014~2015学年八年级下第三次月考数学试卷含答案解析

2014~2015学年八年级下第三次月考数学试卷含答案解析一、选择题(每题3分,共30分)1.函数y=中,自变x的取值范畴是()A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠22.在下列式子中:①②③④⑤⑥⑦,分式有()A.2个B.3个C.4个D.5个3.若点A(﹣3,a)与点B(b,4)关于原点对称,则()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣24.在同一直角坐标系内,函数y=3x和的图象大致是()A.B.C. D.5.若正方形的对角线长为2cm,则那个正方形的面积为()A.4cm2 B.2cm2 C.D.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B. C. D.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.58.下列讲法正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线平分且相等的四边形是正方形9.若函数y=(2m﹣1)+m+3是一次函数,且y随x的增大而减小,则m的值为()A.±1 B.1 C.﹣1 D.﹣310.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0二、填空题(每小题3分,共30分)11.已知正方形的边长为5,其周长为.12.用科学记数法表示0.000000125,结果为.13.若点P(3m﹣1,﹣4)在第四象限,则m的取值范畴是.14.关于函数y=,当y=2时,x=.15.直线y=﹣x+1向下平移2个单位,得直线.16.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.17.已知一菱形的两对角线长分不为12cm、16cm,则此菱形的面积是.18.若关于x的方程产生增根,则m=.19.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则按照图象可得二元一次方程组的解是.20.平行四边形的两条邻边的比为2:1,周长为60cm,则那个四边形较短的边长为.三、解答题(共8小题,满分60分)21.运算:(﹣1)3+0﹣()﹣2.22.解方程:23.化简:24.如图,∠1=∠2,AB=CD,求证:BC=AD.25.在▱ABCD中,E、F分不在DC、AB上,且DE=BF,四边形AF CE是平行四边形吗?讲讲你的理由.26.甲、乙二人分不加工1500个零件.由于乙采纳新技术,在同一时刻内,乙加工的零件数是甲加工零件数的3倍,因此,乙比甲少用20小时加工完,咨询他们每小时各加工多少个零件?27.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.28.已知:如图,在矩形ABCD中,M,N分不是边AD,BC的中点,E,F分不是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判定四边形MENF是什么专门四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明).2014~2015学年度八年级下学期第三次月考数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.函数y=中,自变x的取值范畴是()A.x≥﹣1 B.x>2 C.x>﹣1且x≠2 D.x≠2【考点】函数自变量的取值范畴.【分析】按照分式的意义,分母不等于0,能够求出x的范畴.【解答】解:按照题题意得:x﹣2≠0,解得:x≠2.故选D.【点评】函数自变量的范畴一样从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.在下列式子中:①②③④⑤⑥⑦,分式有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判定分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:①④⑤的分母中均不含有字母,因此它们是整式,而不是分式.②③⑥⑦分母中含有字母,因此是分式.故选C.【点评】本题要紧考查分式的定义,注意π不是字母,是常数,因此不是分式,是整式.3.若点A(﹣3,a)与点B(b,4)关于原点对称,则()A.a=4,b=3 B.a=﹣4,b=﹣3 C.a=﹣4,b=3 D.a=4,b=﹣2【考点】关于原点对称的点的坐标.【分析】直截了当利用两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),进而得出答案.【解答】解:∵点A(﹣3,a)与点B(b,4)关于原点对称,∴b=3,a=﹣4,故选:C.【点评】此题要紧考查了关于原点对称点的性质,正确经历横纵坐标的关系是解题关键.4.在同一直角坐标系内,函数y=3x和的图象大致是()A.B.C. D.【考点】反比例函数的图象;一次函数的图象.【分析】已知一次函数、反比例函数解析式,可按照图象的差不多性质,直截了当判定.【解答】解:∵一次函数解析式y=3x中的3>0,∴该直线通过第一、三象限.故C、D选项错误;∵反比例函数中的﹣2<0,∴该双曲线位于第二、四象限.故B选项错误.故选A.【点评】本题考查了一次函数的图象、反比例函数的图象.解题时,需要熟记各种函数中比例系数k的几何意义,难易程度适中.5.若正方形的对角线长为2cm,则那个正方形的面积为()A.4cm2 B.2cm2 C.D.【考点】正方形的性质.【分析】由正方形是菱形的专门情形,按照菱形的面积等于对角线积的一半求解即可求得答案.【解答】解:∵正方形的对角线长为2cm,∴那个正方形的面积为:×2×2=2(cm2).故选B.【点评】此题考查了正方形的性质.注意明白得正方形是菱形的专门情形,结合菱形的性质求解是关键.6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是()A.B. C. D.【考点】剪纸咨询题.【分析】严格按照图中的方法亲自动手操作一下,即可专门直观地出现出来.【解答】解:按照题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点评】本题要紧考查学生的动手能力及空间想象能力.关于此类咨询题,学生只要亲自动手操作,答案就会专门直观地出现.7.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】按照菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.8.下列讲法正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线平分且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】利用平行四边形的判定定理、菱形的判定定理、矩形的判定定理、正方形的判定定理逐一判定后即可确定本题的答案.【解答】解:A、两条对角线相等的四边形是平行四边形,错误,不符合题意;B、两条对角线相等且互相垂直的四边形是矩形,错误,不符合题意;C、两条对角线互相垂直平分的四边形是菱形,正确,符合题意;D、两条对角线平分且相等的四边形是正方形,错误,不符合题意;故选C.【点评】本题考查了平行四边形的判定定理、菱形的判定定理、矩形的判定定理、正方形的判定定理,属于基础题,难度不大.9.若函数y=(2m﹣1)+m+3是一次函数,且y随x的增大而减小,则m的值为()A.±1 B.1 C.﹣1 D.﹣3【考点】一次函数的定义.【分析】依据一次函数的定义可知:2m﹣1≠0,2﹣m2=1,从而可求得m的值,然后按照一次函数的性质可知确定出m的值.【解答】解:∵函数y=(2m﹣1)+m+3是一次函数,∴2m﹣1≠0,2﹣m2=1.解得:m=±1.∵y随x的增大而减小,∴k<0.∴m=﹣1.故选:C.【点评】本题要紧考查的是一元一次方程的定义和性质,由一元一次方程的定义求得m=±1是解题的关键.10.一次函数y=kx+b(k,b是常数,k≠0)的图象如图所示,则不等式kx+b>0的解集是()A.x>﹣2 B.x>0 C.x<﹣2 D.x<0【考点】一次函数与一元一次不等式.【专题】压轴题;数形结合.【分析】由图象可知kx+b=0的解为x=﹣2,因此kx+b>0的解集也可观看出来.【解答】解:从图象得知一次函数y=kx+b(k,b是常数,k≠0)的图象通过点(﹣2,0),同时函数值y随x的增大而增大,因而则不等式kx+ b>0的解集是x>﹣2.故选A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类咨询题关键是认真观看图形,注意几个关键点(交点、原点等),做到数形结合.二、填空题(每小题3分,共30分)11.已知正方形的边长为5,其周长为20.【考点】正方形的性质.【分析】利用正方形的性质:四条边都相等直截了当列式运算即可.【解答】解:5×4=20因此正方形的边长为5,其周长为20.故答案为:20.【点评】此题考查正方形的性质,把握正方形的四条边都相等以及周长的运算方法是解决咨询题的关键.12.用科学记数法表示0.000000125,结果为 1.25×10﹣7.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一样形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000125=1.25×10﹣7.故答案为:1.25×10﹣7.【点评】本题考查用科学记数法表示较小的数,一样形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.若点P(3m﹣1,﹣4)在第四象限,则m的取值范畴是m>.【考点】点的坐标.【分析】按照第四象限的点的横坐标是正数,列出不等式求解即可.【解答】解:∵点P(3m﹣1,﹣4)在第四象限,∴3m﹣1>0,解得m>.故答案为:m>.【点评】本题考查了各象限内点的坐标的符号特点以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分不是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.关于函数y=,当y=2时,x= 1.5.【考点】函数值.【分析】将y=2代入函数的解析式得:=2,然后解那个分式方程即可.【解答】解:将y=2代入得:=2,方程两边同时乘以(x+3)得:6x=2x+6.解得:x=1.5.当x=1.5时,最简公分母不为0,∴x=1.5是分式方程的解.∴当y=2时,x=1.5.故答案为:1.5.【点评】本题要紧考查的是函数值、解分式的方程的应用,按照函数值y=2得到关于x的分式方程是解题的关键.15.直线y=﹣x+1向下平移2个单位,得直线y=x﹣1.【考点】一次函数图象与几何变换.【专题】运算题.【分析】原常数项为1,上下平移直线解析式只改变常数项,让常数项减2即可得到平移后的常数项,也就得到平移后的直线解析式.【解答】解:∵向下平移2个单位,∴新函数的k=﹣1,b=1﹣2=﹣1,∴得到的直线所对应的函数解析式是:y=x﹣1.故答案为:y=x﹣1.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后k不变这一性质.16.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【考点】平移的性质.【专题】运算题.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.【点评】本题考查了平移的性质的运用.关键是运用平移的观点,将小矩形的四边平移,与大矩形的周长进行比较.17.已知一菱形的两对角线长分不为12cm、16cm,则此菱形的面积是96cm2.【考点】菱形的性质.【分析】由菱形的两对角线长分不为12cm、16cm,按照菱形的面积等于对角线积的一半,即可求得答案.【解答】解:∵菱形的两对角线长分不为12cm、16cm,∴此菱形的面积是:×12×16=96(cm2).故答案为:96cm2.【点评】此题考查了菱形的性质.注意熟记定理是解此题的关键.18.若关于x的方程产生增根,则m=2.【考点】分式方程的增根.【专题】运算题.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣1=0,因此增根是x=1,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣1),得x+2=m+1∵原方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.【点评】增根咨询题可按如下步骤进行:①按照最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得有关字母的值.19.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交于点P,则按照图象可得二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】按照一次函数y=ax+b和正比例y=kx的图象可知,点P确实是一次函数y=ax+b和正比例y=kx的交点,即二元一次方程组的解.【解答】解:按照题意可知,二元一次方程组的解确实是一次函数y=ax+b和正比例y=kx的图象的交点P的坐标,由一次函数y=ax+b和正比例y=kx的图象,得二元一次方程组的解是.故答案为:.【点评】此题专门简单,解答此题的关键是熟知方程组的解与一次函数y=ax+b和正比例y=kx的图象交点P之间的联系,考查了学生对题意的明白得能力.20.平行四边形的两条邻边的比为2:1,周长为60cm,则那个四边形较短的边长为10cm.【考点】平行四边形的性质.【分析】设平行四边形的两条邻边的分不为2x,x,再由周长为60cm 求出x的值即可.【解答】解:设平行四边形的两条邻边的分不为2x,x,∵平行四边形的周长为60cm,∴2(2x+x)=60cm,解得x=10cm.故答案为:10cm.【点评】本题考查的是平行四边形的性质,熟知行四边形的对边相等是解答此题的关键.三、解答题(共8小题,满分60分)21.运算:(﹣1)3+0﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直截了当利用零指数幂的性质以及负整数指数幂的性质化简进而求出答案.【解答】解:(﹣1)3+0﹣()﹣2=﹣1+1﹣=﹣4.【点评】此题要紧考查了实数有关运算,正确按照有关性质化简各数是解题关键.22.解方程:【考点】解分式方程.【专题】运算题.【分析】本题的最简公分母是(x﹣3)(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.注意检验.【解答】解:方程两边都乘(x﹣3)(x﹣2),得2(x﹣2)=3(x﹣3),2x﹣4=3x﹣9,解得x=5.经检验x=5是原方程的根.∴原方程的解是x=5.【点评】(1)解分式方程的差不多思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.23.化简:【考点】分式的乘除法.【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【解答】解:原式=÷=•=x.【点评】分式的乘除混合运算一样是统一为乘法运算,分子分母因式分解,进行约分.24.如图,∠1=∠2,AB=CD,求证:BC=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】欲证BC=AD,可利用“两边和它们的夹角对应相等的两个三角形全等”证△BAC≌△DCA,然后由全等三角形对应边相等得出.【解答】证明:在△BAC和△DCA中∴△BAC≌△DCA(SAS).∴BC=AD.【点评】考查了全等三角形的判定与性质;这是判定两个三角形全等的“边角边”方法的简单运用.25.在▱ABCD中,E、F分不在DC、AB上,且DE=BF,四边形AF CE是平行四边形吗?讲讲你的理由.【考点】平行四边形的判定与性质.【分析】可由已知求证AF=CE,又有AF∥CE,按照一组对边平行且相等的四边形是平行四边形,可得四边形AFCE是平行四边形.【解答】答:四边形AFCE是平行四边形.证明如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BF=DE,∴AF=CE.∵在四边形AFCE中,AF∥CE,∴四边形AFCE是平行四边形.【点评】本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区不,同时要按照条件合理、灵活地选择方法.26.甲、乙二人分不加工1500个零件.由于乙采纳新技术,在同一时刻内,乙加工的零件数是甲加工零件数的3倍,因此,乙比甲少用20小时加工完,咨询他们每小时各加工多少个零件?【考点】分式方程的应用.【专题】应用题.【分析】设甲每小时加工x个,则乙每小时加工3x个,分不表示出甲乙二人完成1500个零件所用的时刻,然后以时刻为等量关系,甲所用时刻=乙所用时刻+20,列出方程,解出x的值即可.【解答】解:设甲每小时加工x个,则乙每小时加工3x个,由题意得,,解得,x=50,检验:当x=50时,3x=3×50≠0,因此x=50是原分式方程的根,同时符合题意,答:甲每小时加工50个,乙每小时加工150个.【点评】列分式方程解应用题与列一元一次方程解应用题的方法与步骤差不多相同,不同点是,解分式方程必须要验根.一方面要看原方程是否有增根,另一方面还要看解出的根是否符合题意.原方程的增根和不符合题意的根都应舍去.27.如图,直线y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(﹣2,4),点B的横坐标为﹣4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.【考点】反比例函数与一次函数的交点咨询题.【专题】数形结合;待定系数法.【分析】按照A的坐标为(﹣2,4),先求出k′=﹣8,再按照反比例函数求出B点坐标,从而利用待定系数法求一次函数的解析式为y=x+6,求出直线与x轴的交点坐标后,即可求出S△AOC=CO•yA=×6×4=12.【解答】解:(1)∵点A(﹣2,4)在反比例函数图象上∴4=∴k′=﹣8,∴反比例函数解析式为y=;(2)∵B点的横坐标为﹣4,∴y=﹣,∴y=2,∴B(﹣4,2)∵点A(﹣2,4)、点B(﹣4,2)在直线y=kx+b上∴4=﹣2k+b2=﹣4k+b解得k=1b=6∴直线AB为y=x+6与x轴的交点坐标C(﹣6,0)∴S△AOC=CO•yA=×6×4=12.【点评】要紧考查了用待定系数法求函数解析式和反比例函数中k 的几何意义,那个地点体现了数形结合的思想,做此类题一定要正确明白得k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.28.已知:如图,在矩形ABCD中,M,N分不是边AD,BC的中点,E,F分不是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判定四边形MENF是什么专门四边形,并证明你的结论;(3)当AD:AB=2:1时,四边形MENF是正方形(只写结论,不需证明).【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的判定.【分析】(1)按照矩形的性质可得AB=CD,∠A=∠D=90°,再按照M是AD的中点,可得AM=DM,然后再利用SAS证明△ABM≌△DCM;(2)四边形MENF是菱形.第一按照中位线的性质可证明NE∥MF,NE=MF,可得四边形MENF是平行四边形,再按照△ABM≌△DCM可得BM=CM进而得ME=MF,从而得到四边形MENF是菱形;(3)当AD:AB=2:1时,四边形MENF是正方形,证明∠EMF=90°按照有一个角为直角的菱形是正方形得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°,又∵M是AD的中点,∴AM=DM.在△ABM和△DCM中,,∴△ABM≌△DCM(SAS).(2)解:四边形MENF是菱形.证明如下:∵E,F,N分不是BM,CM,CB的中点,∴NE∥MF,NE=MF.∴四边形MENF是平行四边形.由(1),得BM=CM,∴ME=MF.∴四边形MENF是菱形.(3)解:当AD:AB=2:1时,四边形MENF是正方形.理由:∵M为AD中点,∴AD=2AM.∵AD:AB=2:1,∴AM=AB.∵∠A=90,∴∠ABM=∠AMB=45°.同理∠DMC=45°,∴∠EMF=180°﹣45°﹣45°=90°.∵四边形MENF是菱形,∴菱形MENF是正方形.故答案为:2:1.【点评】此题要紧考查了矩形的性质,以及菱形的判定和正方形的判定,关键是把握菱形和正方形的判定方法.。
2013-2014学年度第一学期12月月考八年级数学试卷及答案
∥AC.
(1)试判定△ODE 的形状。并说明你的理由.
A
(2)线段 BD、DE、EC 三者有什么关系?写出你理由.
解:(1)△ODE 是等边三角形,
O
其理由是:∵△ABC 是等边三角形,
B
DE
C
∴∠ABC=∠ACB=60°,(2 分)
∵OD∥AB,OE∥AC,
∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°(1 分)
一、精心选一选(本大题共 10 小题。每小题 2 分,共 20 分) 1. 下列运算中,计算结果正确的是(★★★★★).
A. a2 a3 a6
B. (a2 )3 a5
C. (a2b)2 a2b2
D. a3 a3 2a3
答案:D 2. 2 表示(★★★★★).
A.3 2×2×2
∴△ODE 是等边三角形;(4 分)
(2)答:BD=DE=EC, 其理由是:∵OB 平分∠ABC,且∠ABC=60°, ∴∠ABO=∠OBC=30°,(6 分) ∵OD∥AB, ∴∠BOD=∠ABO=30°, ∴∠DBO=∠DOB, ∴DB=DO,(7 分) 同理,EC=EO, ∵DE=OD=OE, ∴BD=DE=EC.(1 分)
20. (8 分)如图,△ABC 是格点三角形。且 A(-3,-2),B(-2,-3),C(1,-1). (1)请在图中画出△ABC 关于 y 轴的对称△A’B’C’. (2)写出△A’B’C’各点坐标。并计算△A’B’C’的面积.
Y
O
X
A
C
B
21. (8 分)如图。在等边△ABC 中,∠ABC 与∠ACB 的平分线相交于点 O,且 OD∥AB,OE
解:原式= xy(x y)2
(数学试卷)2013-2014学年度下学期八年级数学第二次月考试题
八年级数学第二次月考试题(时间120分钟 满分100分)一、选择题(共12小题,每小题2分,共24分)1. 如果分式x-11有意义,那么x 的取值范围是( ). A.x >1 B.x <1 C.x ≠1 D.x =12.下列计算正确的是( ).AB .2=C .(26= D .3.下列各图象中,y 不是x 函数的是( ).4.下列命题中是真命题的是( ).A .两边相等的平行四边形是菱形B .一组对边平行一组对边相等的四边形是平行四边形C .两条对角线相等的平行四边形是矩形D.对角线互相垂直且相等的四边形是正方形5. 计算(-34xy )·(-3xy )2的结果是( ). A .4x 2y 2B .-4x 2y 2C .-12x 3y 3D .12x 3y3 612a -,则( ). A B C DA .12a < B .12a ≤ C .12a > D . 12a ≥ 7. 如果0,<>cb a ,那么下列不等式成立的是( ).A .c b c a +>+B .b c a c ->-C .bc ac >D .cb c a > 8. 如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( ).A .14B .15C .16D .179. 已知a 、b 、c 是三角形的三边长,如果满足(a -9)2c 15-=0,则三角形的形状是( ).A .底与腰不相等的等腰三角形B .等边三角形C .钝角三角形D .直角三角形10. 已知点P坐标(63,2+-a a ),点P到两坐标轴的距离相等,则点P的坐标是( ).A .(3,3)B .(3,-3)C .(6,-6)D .(3,3)或(6,-6)11. 如图,将一张矩形纸片ABCD 沿直线MN 折叠,使点C 落在点A 处,点D 落在点E 处, 直线MN 交BC 于点M ,交AD 于点N ,AB=4, AD=8, 则折痕MN 的长为( ).A .5B .52C .32D .5412. 如图,正方形ABCD 的边长为4,点P 在DC 边上且DP =1,点Q 是AC 上一动点,则DQ +PQ 的最小值为( ).A. 5 B .24 C .10 D .32二、填空题(共6小题,每小题3分,共18分)13.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .14.在方程83=-ay x 中,如果⎩⎨⎧==13y x 是它的一个解,那么a 的值为 .(第8题图)(第11题图 ) ( 第12题图)15. 一个多边形的内角和等于1080°,则这个多边形是 边形.16.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底4米处,那么这棵树折断之前的高度是 米.17. 如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若AC =8,BD =6,则四边形EFGH 的面积为 .18.如图,在平面直角坐标系中,矩形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 .三、解答题(本大题共6题,共58分)19.(6分)计算: 312)2014(1210-++-+-π20.(10分)已知:AC 是平行四边形ABCD的对角线且BE ⊥AC ,DF ⊥AC .求证:四边形BFDE 是平行四边形.(第16题图) (第22题图) (第17题图 ) (第18题图)21.(10分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了哪两个变量之间的关系?超市离家多远?(2)小明到达超市用了多少时间?小明往返用了多少时间?(3)小明离家出发后20分钟到30分钟内可能在哪里?(4)小明从家到超市时的平均速度是多少?返回时的平均速度是多少?(第21题图)22.(10分)已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角 ∠CAM 的平分线,CE ⊥AN ,垂足为点E ,(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.(第22题图)钟)23.(10分)在四边形ABCD中,AD∥BC,∠B=90°,AD=24 cm,BC=26 cm,动点P从点A 出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s 的速度运动。
八年级下第三次月考数学试卷(解析版)
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
江苏省无锡市惠山区堰桥中学2013-2014学年八年级12月月考数学试卷
初二数学(上)第二次阶段性测试卷2013-12-12一、选择题(每题2分,共20分)1.在− π3,3-127 ,7,0.3030030003,− 227,3.14中,无理数的个数是 ( ) A .2个 B .3个 C .4个 D .5个2.一次函数y = −3x − 2的图象不经过 ……………………………………… ( )34.如图所示,数轴上点A 所表示的数为a ,则a 的值是 …………………… ( ) A .5 B .3 C .15-D .13-5.等腰三角形两边长分别为5和12,则这个等腰三角形的第三边为( ) A . 5或12 B . 13 C . 12 D . 56.下列各组数据,能作为直角三角形三边长的是 ………………………… ( ) A .11,15,13 B .1,4,5 C .8,15,17 D .4,5,67.下列运算正确的是 ……………………………………………………… ( ) A .416±=B .312914= C .25)52(2-=-D .()932=-8.若函数y = ⎩⎨⎧x 2 + 2 (x ≤2)2x (x > 2),则当函数值y = 8时,自变量x 的值是 …… ( )A .6±B .4C .6±或4D .4或6-9.如图,一个无盖的正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从盒外的B 点沿正方形的表面爬到盒内的M 点,蚂蚁爬行的最短距离是 ……………… ( ) A .13 B .17 C .1 D .52+10.某仓库调拨一批物资,调进物资共用8小时.调进物资4小时后同时开始调出物资(调进与调出物资的速度均保持不变).该仓库库存物资w (吨)与时间t (小时)之间的函数关系如图所示.则这批物资调出的速度(吨/小时)及从开始调进到全部调出所需要的时间(小时)分别是 …………………………………………………………… ( ) A .10,10 B .25,8.8 C .10,8.8 D .25,9二、填空题(每空2分,共24分))1B 第4题图第9题图第10题图11.3的算术平方根是 ; 的立方根是21-. 12.若一个正数的两个不同的平方根为2m − 6与m + 3,则这个正数为 . 13.黄金分割比是215-= 0.61803398…,将这个分割比用四舍五入法精确到0.001的近似数是 .14.在平面直角坐标系中,点P (2,−3)关于y 轴对称点坐标为 .15.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(−2,3),嘴唇C 点的坐标为(−1,1),则此“QQ ”笑脸右眼B 的坐标是 . 16.若x 、y 为实数,且|x + y − 4| + y − 2 = 0,则x − y 的值为 .17.已知点P (a ,b )在一次函数y = 4x + 3的图象上,则代数式4a − b − 2的值等于 . 18.=-2)3(π .19.如图,在△ABC 中,AB =AC,AD ⊥BC ,垂足为点D ,点E 是AC 的中点.若DE =5,则AB 的长为 .第15题图 第19题图第21题图20.21.如图,在平面直角坐标系中,长方形OABC 的顶点A 、C 的坐标分别为(10,0),(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为. 三、解答题(共7大题,56分)22.(每题3分,共6分)化简或计算:(1) ()()2222.53⎤----⎦(2)11-23.(本题6分)已知:y + 2与3x 成正比例,且当x = 1时,y 的值为4 .CA B(1)求y与x之间的函数关系式;(2)若点(−1,a)、点( 2,b)是该函数图像上的两点,试比较a、b的大小,并说明理由.24.(本题8分)如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D、E,F 为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)求证:BH=AC;(2)求证:BG2-GE2=EA2.25.(本题8分)问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形BC边上的高.杰杰同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处).借用网格等知识就能计算出这个三角形BC边上的高.(1)请在正方形网格中画出格点△ABC;(2)求出这个三角形BC边上的高.26.(本题共8分)由于大风,山坡上的一棵树甲被从点A 处拦腰折断,如图所示,其树恰好落在另一棵树乙的根部C 处,已知AB = 1米,BC = 5米,两棵树的株距(两棵树的水平距离)为3米,你能通过所学的知识解决这棵树原来的高度吗?试一试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014学年度第二学期学期6月月考八年级
数学试卷(2014年6月6日)
考生注意:
1.考试内容:人教版八年级数学下册
2.本次考试时间90分钟,满分100分,共三大题,24小题;
3.把答案写在答卷规定位置上,在试卷上答题不得分;
4.考试结束后,按顺序上交答卷,自己保管好试卷,以便老师评讲;
第Ⅰ卷(选择题,20分)
一、选择题(本题有10个小题,每小题2分,满分20分,下面每小题给出的四个选项中,只有一个是正确的)
1. 下列根式中,为最简二次根式的是(※)
A .45
B .
3
1
C .25a
D .10 2. 下列各式中,正确的是(※) A .()
-=-7
72
B .
()
-=07072
.. C .()
-=7
72
2
D .
(
)
-=07
072
..
3. 下列函数(1)y=πx (2)y=2x-1 (3)y=1x
(4)y=2-1
-3x 中,是一次函数的
有(※)
(A )4个 (B )3个 (C )2个 (D )1个 4. 下列各组线段中,能构成直角三角形的是(※)
A .2,3,4
B .3,4,6
C . 5,12,13
D . 4,6,7 5. 在□ABCD 中,∠A =80°,∠B=100°,则∠C 等于(※) A. 60°
B. 80°
C. 100°
D.120°
6. 下列运算中正确的是(※)
A .103722=+
B .632⋅⋅=6
C .666362=⋅
D .202516)25()16(=-⋅-=-⋅- 7. 下列四边形中,对角线相等且互相垂直平分的是(※) A .平行四边形 B .正方形 C .等腰梯形 D .矩形 8. 一组数据 -1,-2,3,4,5,则该组数据的极差是(※) A. 7
B. 6
C. 4
D. 3
9. 下列命题的逆命题是假命题的是(※)
A.两直线平行,同位角相等
B.平行四边形的对角线互相平分
C.菱形的四条边相等
D.正方形的四个角都是直角
10. 下图中表示一次函数y =mx+n 与正比例函数y =mnx(m ,n 是常数,且mn<0)图像的
是(※)
第Ⅱ卷(非选择题,80分)
二、填空题(本题有6个小题,每小题2分,共12分)
11.要使代数式
2x
x 的取值范围是 ※※※※ .
13.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果
为:13=甲x ,13=乙x ,6.3S 2=甲,8.15S 2=乙,则小麦长势比较整齐的试验田是※※※※.(填“甲”或者“乙”)
14
0a b +<,则点P (,a b )在第※※※※.象限. 15.如图3:矩形ABCD 的对角线相交于点O ,AB = 4cm ,∠AOB=60°,则AD=※※※※.cm.
16.写出同时具备下列两个条件的一次函数表达式(写出一个即可)※※※※.
(1)y 随着x 的增大而减小, (2)图象经过点(1,-3)。
三、解答题(本题有8个小题,共68分,解答要求写出文字说明、证明过程或计算步骤)
17.(本小题满分6分)先化简再求值,2121
(1)1a a a a
++-∙+,其中 a
1.
18.(本题满分7分)下图5是某篮球队队员年
龄结构直方图,根据图中信息解答下列问题:
(1)该队队员年龄的平均数; (2)该队队员年龄的众数和中位数.
19.(本题满分8分)如图所示有一块四边形草地ABCD ,∠B =90°, AB=4m ,BC=3m ,CD=12m ,DA=13m ,求该四边形菜地ABCD 的面积.
20.(本题满分8分)
如图所示的Rt △ABC 中,∠B=90°,点P 从点B
开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)
图
3
图5
B
A
C Q P
C
图9
21.(本题满分9分)如图,△ABC中,已知∠BAC=45°,AD⊥BC于D.
(1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图
形,D点的关于AB、AC对称点分别为E、F,延长EB、FC相交
于点G;
(2)求证四边形AEGF是正方形.
22.(本题满分7分)重庆市2013年7月1日开始实行电价阶
梯收费,如果某居民每月应交电费y(元)与用
电量x(度)的函数图象是一条折线(如图所示),
根据图象解下列问题:
(1)分别写出当0≤x≤200、200<x≤400、400
<x时,y与x的函数解析式;
(2)利用函数解析式说明电力公司采用的收费
标准;
(3)若某用户7月用电300度,则应缴费多少
元?若该用户8月缴费479元,则该用户该月
用了多少度电?
23.(本题满分11分)如图9,等腰梯形ABCD
中,AD∥BC,点E是线段AD上的一个动点(E与
A、D不重合),G、F、H分别是BE、BC、CE的
中点.
(1)试探索四边形EGFH的形状,并说明理由;
(2)当点E运动到什么位置时,四边形EGFH是菱形?并加
以证明;
(3)若(2)中的菱形EGFH是正方形,请探索线段EF与线段
BC的关系,并证明你的结论.
24.(本题满分12分)如图,直线L:2
2
1
+
-
=x
y与x
轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),
动点M从A点以每秒1个单位的速度沿x轴向左移动。
(1)求A、B两点的坐标;
(2)求△COM的面积S与M的移动时间
t之间的函数关系
式;
(3)当t何值时△COM≌△AOB,并求此时M点的坐标.。