(完整版)图像分割-数字图像处理
图像数字处理图像分割

图像数字处理图像分割图像分割是图像数字处理中的一项重要技术,它将图像中的像素点划分成多个区域,以便更好地理解和分析图像。
在本文中,我将介绍图像分割的原理、常用方法及其应用领域。
一、图像分割的原理图像分割的目标是将图像划分成一系列具有相似特征的区域,使得每个区域内的像素点具有相同或相似的属性。
它的基本原理是通过寻找像素点之间的差异来确定区域边界。
常用的图像分割方法包括阈值分割、边缘检测和区域生长等。
阈值分割是最简单的分割方法,它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
边缘检测通过检测图像中的边缘信息来进行分割,常用的方法有Sobel算子和Canny算子。
区域生长是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
二、常用的图像分割方法1. 基于阈值的分割方法:阈值分割是最简单且常用的分割方法之一。
它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。
常用的阈值分割方法有全局阈值分割和自适应阈值分割。
2. 基于边缘检测的分割方法:边缘检测是一种常用的图像分割方法,它通过检测图像中的边缘信息来进行分割。
常用的边缘检测方法有Sobel算子、Canny算子等。
3. 基于区域生长的分割方法:区域生长方法是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。
它常用于分割具有明显纹理特征的图像。
三、图像分割的应用领域图像分割在计算机视觉、医学影像处理、遥感图像分析等领域具有广泛的应用。
以下列举几个典型的应用领域:1. 目标检测与识别:图像分割可以帮助检测和识别图像中的目标物体,如人脸识别、车辆检测等。
2. 医学影像处理:在医学影像中,图像分割可以帮助医生准确地定位和分析病变区域,如肿瘤检测、血管分割等。
3. 遥感图像分析:遥感图像通常包含大量的地物信息,通过图像分割可以将不同类型的地物区分开来,如土地利用分类、城市区域划分等。
4. 视频分析:图像分割在视频分析中扮演重要角色,可以提取视频中的运动目标,如行人检测、行为分析等。
数字图像处理图像分割课件

基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。
数字图像处理之图像分割

直方图阈值法matlab实现
• 函数:im2bw,全局阈值函数 • BW=im2bw(I ,level); • BW=im2bw(I ,map ,level); • BW=im2bw(RGB ,level); • 分别将灰度图像、索引图像、彩色图像转
化为二值图像, • level,为归一化阈值
例子
6.2.4 自适应阈值
自适应阈值是由Chow和Kaneko提出,它是一种基于区域统计特征 的分块域值方法。其算法原理是:将一幅图像划分为3535或6565的 互不重叠的图像块,求出每个子图像块的直方图及阈值,子图像的中心 像素点就使用求出的阈值,而区域内的其它像素点的阈值通过插值的方 法“自适应”地确定。
在利用阈值方法来分割灰度图像时一般都对图像有一定的假设。基于 一定的图像模型的。最常用的模型:
假设图像由具有单峰灰度分布的目标和背景组成,处于目标或背景内 部相邻象素间的灰度值是高度相关的,但处于目标和背景交界处两边的象 素在灰度值上有很大的差别。
如果一幅图像满足这些条件,它的灰度直方图基本上可看作是由分别 对应目标和背景的两个单峰直方图混合构成的。
• 一般的图像很难获得灰度的概率密度函数以及 先验概率,在一些特殊的应用场合,如文字、乐 谱等图像,可以从大量图像得到一个统计规律, 获得符号部分在全图像中的百分比,以此为基础, 结合直方图谷点分析,可以得到近似最优
• 的结果
若选为Zt分割门限,则将背景象素错认为是目标象素的概率
是:
E1 Zt
• 对i =1,2,…,N,Ri是连通的区域。
• 其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空 集。
图像分割—引言
图像分割的基本策略:
• 把像素按灰度划分到各个物体对应的 区域中去;
[课件]数字图像处理 第八讲 图像分割PPT
![[课件]数字图像处理 第八讲 图像分割PPT](https://img.taocdn.com/s3/m/6a1cf84b7e21af45b307a87a.png)
图像分割
拉普拉斯(Laplacian)算子是不依赖于边缘方向的 二阶微分算子。它是一个标量而不是向量,具有旋 转不变即各向同性的性质,在图像处理中经常被用 来提取图像的边缘。其表示式为
f x ,y f x ,y f x ,y 2 2 x y
2 2 2
f(x-1,y-1) f(x-1,y)
f(x,y-1) f(x,y-1) f(x,y) f(x,y) f(x,y+1)
f(x+1,y-1) f(x+1,y) f(x+1,y+1)
图像分割
选取适当的门限TH,作如下判断:G[f(x,y)]>TH, (x,y)为阶跃状边缘点。
二、Sobel梯度算子(3×3个像素) 先做加权平均,再作微分,即
2
图像增强
f(x-1,y)
f(x,y-1)
f(x,y)
f(x,y+1)
f(x+1,y)
图像分割
当拉普拉斯算子输出出现过零点时就表明有边 缘存在。该算子有两个缺点:其一就是边缘方向信 息的丢失,其二它是二阶差分,双倍加强了图像中 噪声的影响。
改进的LOG算法:
在进行拉普拉斯运算前先进行平滑去噪,然后 再提取边缘。平滑去噪采用高斯滤波器,然后与拉 普拉斯边缘检测合并在一起,形成LOG(Laplacian Of Gaussian)。
图像分割
对于数字图像,可用一阶差分替代一阶微分:
f f x,yf x x ,y 1 ,y x f x f f x,yf x,y x ,y 1 y f y
此时梯度的幅度可表示为:
G f x , y f x , y f x , y x y
数字图像处理与分析图像分割(课堂PPT)

13
梯度算子
一幅数字图像的一阶导数是基于各种二维梯度的近似值。图像f(x,y)在位
置(x,y)的梯度定义为下列向量:
f
F
G x
G
y
x
f
y
(10.1.3)
向量的大小:
图10.7中第一列的图 像分割显示了分割左 右黑白区域的4个斜 坡边缘的特写图。分 别被均值为0且 σ=0.0,0.1,1.0,10.0 的随机高斯噪声污染。 第二列是一阶导数图 像和灰度级剖面线。 第三列为二阶导数图 像和灰度级剖面线。
图10.7
12
这个例子很好的说明了导数对于噪声的敏感性。 那么为了对于有意义的边缘点进行分类,必须使得与 这个点相联系的灰度级变换比在这一点的背景上的变 换更为有效才行。即所作的变换应该更有利于区分边 缘点。比如,如果噪声严重的话,就要慎用导数变换。
的特征,那么特征值的分界点就是一个门限。
3
8.1 间断检测
间断检测技术包括点检测,线检测和边界检测三种。寻找间断最 一般的方法是模板检测。计算模板所包围区域的灰度级与模板系 数的乘积之和。
图像中任意点的模板响应公式(3×3模板):
Rw1z1w2z2 w9z9
9
wizi i1 图10.1 3*3模板
可以看到,
(a)
(1)图中水平和垂直的部
分都被去掉了,并且在(b)
中所有原图中接近-450的部
分产生了最强响应。
(2)加了门限之后,在(c) 中有孤立点,可以使用点检 测模板检测,然后删除,或 者使用下一章的形态学腐蚀 法删除。
数字图像处理图像分割

如果检测结果小于给定的阈值,就把两个区域合并。
5.3 区域分割
2 分裂合并法 实际中常先把图像分成任意大小且不重叠的区域,然后再
合并或分裂这些区域以满足分割的要求,即分裂合并法.一致 性测度可以选择基于灰度统计特征(如同质区域中的方差),假
设阈值为T ,则算法步骤为: ① 对于任一Ri,如果 V (Ri ) T ,则将其分裂成互不重叠的四
3 影响因素
多特征阈值分割
a 灰度及平均灰度(3×3区)二维直方图
--若集中于对角线区则表示灰度均匀 平均灰度
区。
边界
--若远离对角线者(灰度与平均灰度 不同)是区域边界。
背景
(近对角线构成直方图有明显峰值及阈 值,远离对角线者可用灰度平均值作为 阈值,用于区分两个区)。
目标 边界
灰度
3 影响因素 多特征阈值分割 b 灰度与灰度梯度图
5.4 Hough变换
Hough变换是一种检测、定位直线和解析曲线的有效 方法。它是把二值图变换到Hough参数空间,在参数空间 用极值点的检测来完成目标的检测。下面以直线检测为例, 说明Hough变换的原理。
域,直到区域不能进一步扩张; Step4:返回到步骤1,继续扫描直到所有像素都有归属,则结束整
个生长过程。
5.3 区域分割
1 区域生长法 区域生长法生长准则
基于区域灰度差方法
讨论:生长准则与欠分割或过分割现象
10477 10477 01555 20565 22564
11577 11577 11555 21555 22555
C1的平均值:1
m
ipi
iT 1 w1
(T )
1 w(T )
m
其中, ipi w00 w11 是整体图像的灰度平均值
第8章 图象分割(08) 数字图像处理课件

第8章 图像分割
Log算子边缘检测
第8章 图像分割
8.2.3 算法的特点 • Roberts算子采用对角线方向相邻像素之差近似 检测边缘,定位精度高,在水平和垂直方向效果较 好,但对噪声敏感。 • Sobel算子利用像素的上、下、左、右邻域的灰 度加权算法进行边缘检测。该方法提供较为精确的 边缘方向信息,而且对噪声具有平滑作用,能产生 较好的检测效果。但是增加了计算量,而且也会检 测伪边缘。
所以分割算法可据此分为2大类: 利用区域间灰度不连续性的基于边界的算法; 利用区域内灰度相似性的基于区域的算法。
第8章 图像分割
图像分割方法的分类: 现今,对一些经典方法和新出现的方法进行总
结,可将图像分割方法分为四类: 边缘检测方法 阈值分割方法 区域提取方法 结合特定理论工具的分割方法。
第8章 图像分割
(1)基于边缘的分割方法: 图像最基本的特征是边缘,它是图像局部特性不
连续(或突变)的结果。例如,灰度值的突变、颜色的 突变、纹理的突变等。
边缘检测方法是利用图像一阶导数的极值或二 阶导数的过零点信息来提供判断边缘点的基本依据, 经典的边缘检测方法是构造对图像灰度阶跃变化敏感 的差分算子来进行图像分割,如Robert算子、Sobel算 子、Prewitt算子、Laplacian算子等。
另外,还没有制定出选择适用分割算法的标准。
第8章 图像分割
8.2 边 缘 检 测 的 分 割 方 法
8.2.1 原理及算法
目的:检测出局部特性的不连续性,再将它们连成 边界,这些边界把图像分成不同的区域。
图像边缘对图像识别和计算机分析十分有用,边缘 能勾画出目标物体,使观察者一目了然;边缘蕴含了 丰富的内在信息(如方向、阶跃性质、形状等),是 图像识别中重要的图像特征之一。
(完整版)数字图像处理简答题及答案

(完整版)数字图像处理简答题及答案1、数字图像处理的主要研究内容包含很多⽅⾯,请列出并简述其中的4种。
①图像数字化:将⼀幅图像以数字的形式表⽰。
主要包括采样和量化两个过程。
②图像增强:将⼀幅图像中的有⽤信息进⾏增强,同时对其⽆⽤信息进⾏抑制,提⾼图像的可观察性。
③图像的⼏何变换:改变图像的⼤⼩或形状。
④图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⑤图像识别与理解:通过对图像中各种不同的物体特征进⾏定量化描述后,将其所期望获得的⽬标物进⾏提取,并且对所提取的⽬标物进⾏⼀定的定量分析。
如要从⼀幅照⽚上确定是否包含某个犯罪分⼦的⼈脸信息,就需要先将照⽚上的⼈脸检测出来,进⽽将检测出来的⼈脸区域进⾏分析,确定其是否是该犯罪分⼦。
4、简述数字图像处理的⾄少4种应⽤。
①在遥感中,⽐如⼟地测绘、⽓象监测、资源调查、环境污染监测等⽅⾯。
②在医学中,⽐如B超、CT机等⽅⾯。
③在通信中,⽐如可视电话、会议电视、传真等⽅⾯。
④在⼯业⽣产的质量检测中,⽐如对⾷品包装出⼚前的质量检查、对机械制品质量的监控和筛选等⽅⾯。
⑤在安全保障、公安⽅⾯,⽐如出⼊⼝控制、指纹档案、交通管理等。
5、简述图像⼏何变换与图像变换的区别。
①图像的⼏何变换:改变图像的⼤⼩或形状。
⽐如图像的平移、旋转、放⼤、缩⼩等,这些⽅法在图像配准中使⽤较多。
②图像变换:通过数学映射的⽅法,将空域的图像信息转换到频域、时频域等空间上进⾏分析。
⽐如傅⾥叶变换、⼩波变换等。
6、图像的数字化包含哪些步骤?简述这些步骤。
图像的数字化主要包含采样、量化两个过程。
采样是将空域上连续的图像变换成离散采样点集合,是对空间的离散化。
经过采样之后得到的⼆维离散信号的最⼩单位是像素。
量化就是把采样点上表⽰亮暗信息的连续量离散化后,⽤数值表⽰出来,是对亮度⼤⼩的离散化。
经过采样和量化后,数字图像可以⽤整数阵列的形式来描述。
7、图像量化时,如果量化级⽐较⼩会出现什么现象?为什么?如果量化级数过⼩,会出现伪轮廓现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型的图像分析和理解的系统: 系统分为图像输入、预处理、图像分割(image segment)、图像识别、结构句法分析。
图7.1 图像分析系统
分割结果中同一个子区域内的像素应当是连通的
同一个子区域内的任两个像素在该子区域内互相连通。 图像分割
不连续性检测
相似性检测
边界分割 边缘检测 边缘跟踪 Hough变换
BW = [1 1 1 0 0 0 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 1 1 0 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 0 1 0; 1 1 1 0 0 1 1 0; 1 1 1 0 0 0 0 0];
L4 = bwlabel(BW,4) L8 = bwlabel(BW,8)
区域分割 阈值分割
区域分裂与合并
自适应
图7.2 图像分割算法
7.2 像素的邻域和连通性
1. 4邻域
对一个坐标为 (x, 的y)像素p,它可以有两个水平和两个垂
直的近邻像素。它们的坐标分别是
(x 1, y),(x 1, y),(x, y 1),(x, y 1)
这四个像素称为p 的4邻域。
互为4邻域的像素又称为4连通的。
%给定的二值图像矩阵 %根据4连通准则判定目标 %根据8连通准则判定目标
➢根据4连通准则,得到的目标 是3个: L4 = 1 1 1 0 0 0 0 0 11102200 11102200 11100030 11100030 11100030 11100330 11100000
➢ 根据8连通准则,得到目标 是2个: L8 =1 1 1 0 0 0 0 0 11102200 11102200 11100020 11100020 11100020 11100220 11100000
2. 8邻域
取像素p四周的8个点作为相链接的邻域点,除掉 p本身外,剩下的8个点就是p的8邻域。
互为8邻域的像素又称为8连通的 。
目标和背景的连通性定义必须取不同,否 则会引起矛盾。
00000 01100 01010 01110 00000 图7.3 目标和背景连通性
根据连通性定义图像特征点
• 边界点:如果目标点集S中的点p有邻点在S的补集
• S 中,则p称为S的边界点。边界点集称为边界,
记为S’。 • 边界的内点:目标点集S与边界S’的差S-S’称为S
的内(部)点 • 孤点:没有邻接点的点。 • 封闭曲线:连通域S中所有点都有两个邻点,则称
此连通域为封闭曲线。
【例7.1】根据4/8连通准则在二值图像中判断目标。
解:应用函数bwlabel可以根据4连通或8连通准则,在给定 的二值图像矩阵BW中寻找目标。MATLAB程序:
(a) 原图像
(b) Roberts算子检测
(c) Prewitt算子检测
(d) Sobel算子检测
I = imread('blood1.tif'); • imshow(I); • BW1 = edge(I,'roberts'); • %进行Roberts算子边缘检测,门限值采用默认值 • BW2 = edge(I,'prewitt'); • %进行Prewitt算子边缘检测,门限值采用默认值 • BW3 = edge(I,'sobel'); • %进行Sobel算子边缘检测,门限值采用默认值 • figure,imshow(BW1,[]); • figure,imshow(BW2,[]); • figure,imshow(BW3,[]);
梯度对应于一阶导数,相应的梯度算子就对 应于一阶导数算子。
对于一个连续函数f (x,y),其在(x,y)处的梯度:
f
f
Gx G y
x f
y
(7.2)
常采用小型模板,然后利用卷积运算来近似,
Gx 和 Gy 各自使用一个模板。
1. Roberts算子
1 0 0 1
0 1 1 0
这类算法的时间复杂度和空间复杂度比较大,但是 抗噪声的能力比较强 。
任何一种分割方法都有其局限性。
实际的算法只能根据实际情况选择方法和阈值。
7.4 图像的边缘检测
基于灰度不连续性进行的分割方法。 用差分、梯度、拉普拉斯算子及各种高通滤
波处理方法对图像边缘进行增强,只要再进 行一次门限化的处理,便可以将边缘增强的 方法用于边缘检测。 7.4.1 梯度算子
1 g(x, y) 0
f (x, y) T f (x, y) T
这样得到的是一幅二值图像。
图7.4给出了利用阈值分割图像的实例。
(a)是原图 (b)是对应的直方图 (c)是选择分割阈值为110的结果图。
(a)原图像
110点
(b)直方图
(c)已分割的图
图7.4 阈值分割
7.3.1 全局阈值分割 全局阈值是最简单的图像分割方法。根据不同
的目标,选用最佳的阈值。 1.实验法
需要知道图像的某些特征
2.直方图法
适用于目标和背景的灰度差较大,直方图有明显谷 底的情况。
3.最小误差的方法
要求已知图像像素的概率密度函数和目标像素占整 个图像的百分比(PP138)。
7.3.2 自适应阈值的选取
当照明不均匀、有突发噪声或者背景灰度变化 比较大的时候,可以对图像进行分块处理,对 每一块分别选定一个阈值进行分割,这种与坐 标相关的阈值称为自适应阈值的方法。
2. Prewitt算子
1 0 1 1 0 1 1 0 1
1 1 1
0
0
0
1 1 1
3. Sobel算子
1 0 1 2 0 2 1 0 1
1 2 1
0
0
0
1 2 1
通过算子检测后,还需作二值处理从而找到边界模板中,Sobel算子的检测效果最好。
7.3 图像的阈值分割技术
灰度阈值分割方法。 若图像中目标和背景具有不同的灰度集合, 且两个灰度集合可用一个灰度级阈值T进行分 割,在图像中分割出目标区域与背景区域。
设图像为 f (x, y) ,其灰度集范围是[0,L],在0 和L之间选择一个合适的灰度阈值T。
图像分割方法可由下式描述:
(7.1)
第七章 图像分割
7.1 概 述
图像处理的重要任务就是对图像中的对象进行分析和 理解。
在图像分析中,输出的结果是对图像的描述、分类或其 他的某种结论 。
图像分析主要包括以下几部分内容:
(1)把图像分割成不同的区域,或把不同的目标分开(分 割)。即把图像分成互不重叠的区域并提取出感兴趣目标。
(2)找出各个区域的特征(特征提取)。 (3)识别图像中的内容,或对图像进行分类(识别与分类)。 (4)给出结论(描述、分类或其他的结论)。