高一数学常用公式及知识点总结
高一数学公式及知识点总结

高一数学公式及知识点总结对于高一学生来说, 想要学好中学数学就要先驾驭好数学公式。
下面是我给大家带来的高一数学公式, 盼望能协助到大家!高一数学公式1【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))高一数学公式2等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且随意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}假设m,n,p,q∈N_,且m+n=p+q,那么有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且随意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、假设m,n,p,q∈N_,那么有:ap·aq=am·an,等比中项:aq·ap=2arar那么为ap,aq等比中项.记πn=a1·a2…an,那么有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,那么是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①假设m、n、p、q∈N,且m+n=p+q,那么am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高一数学公式3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高一数学公式及学问点总结。
高一数学知识点总结及公式大全

高一数学知识点总结及公式大全数学是一门让很多学生头痛的学科,不过只要我们掌握了一些基础知识和常用的公式,就能在数学学习上更加游刃有余。
以下是高一数学中一些重要的知识点总结及公式大全,希望对大家的学习有所帮助。
一、代数基础知识1. 整式的加减乘除运算- 括号法则:先算括号里的,再算指数,再算乘除,最后算加减。
- 合并同类项:将同类项合并,即将相同字母的幂相同的项合并。
2. 因式分解- 公因式提取法:将多项式中各项的公因式提取出来。
- 完全平方公式:将二次三项式进行因式分解,可用公式(a+b)²=a²+2ab+b²,以及(a-b)²=a²-2ab+b²。
- 公式法:根据特定公式进行因式分解,如二次三项式的平方差公式以及二次三项式的和差公式。
3. 分式的加减乘除运算- 通分:将分数的分母化为相同的最简形式,通分后再进行运算。
- 约分:将分数的分子与分母同时除以一个相同的数。
二、平面几何1. 直线和角度- 直线的倾斜度:一般表示为y=kx+b的形式,k即为直线的倾斜度,b为截距。
- 同位角、同旁内角、同旁外角等角度关系。
- 垂直、平行线的性质。
2. 三角形- 三角形的内角和定理:三角形内角的和为180°。
- 外角和定理:三角形的外角等于不相邻的两个内角的和。
- 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 同心圆和相似- 同心圆的性质:同心圆的圆心相同,但半径不同。
- 相似三角形:两个三角形对应角相等,对应边成比例。
三、函数与方程1. 一次函数- 函数的概念:函数是一种具有特定输入与输出关系的数学对象。
- 一次函数的一般式:y=ax+b,其中a为斜率,b为截距。
2. 二次函数- 二次函数的一般式:y=ax²+bx+c,其中a、b、c为常数,a≠0。
- 二次函数的顶、凹性:若a>0,则函数开口向上,为正列抛物线;若a<0,则函数开口向下,为负列抛物线。
高一数学公式和知识点

高一数学公式和知识点数学是一门既抽象又具体的学科,数学公式和知识点是学习数学的基础。
高中数学涉及的公式和知识点更为复杂,需要我们掌握扎实的基础知识和灵活运用的能力。
本文将为大家总结高一数学中常用的公式和知识点,希望能对大家的学习有所帮助。
一、函数与方程1. 二次函数的顶点公式:对于二次函数 y=ax²+bx+c,顶点坐标为(-b/2a, f(-b/2a))。
2. 一元二次方程求根公式:对于一元二次方程 ax²+bx+c=0,其根的公式为 x=(-b±√(b²-4ac))/(2a)。
3. 一次函数的斜率公式:对于一次函数 y=ax+b,斜率为 a。
4. 一次函数的截距公式:对于一次函数 y=ax+b,截距为 b。
二、几何与三角1. 直角三角函数:正弦定理、余弦定理和正切定理是求解三角形边长和角度的基本工具。
2. 直角三角函数的关系:正弦函数sinθ=对边/斜边,余弦函数cosθ=邻边/斜边,正切函数tanθ=对边/邻边。
3. 利用勾股定理求解三角形:对于直角三角形abc,斜边c的平方等于直角两边a和b的平方和,即 c²=a²+b²。
4. 高中几何常见的面积公式:直角三角形面积公式 S=1/2 * 底 * 高,等腰三角形面积公式 S=1/2 * 底 * 高,平行四边形面积公式 S=底 * 高,圆面积公式S=πr²。
三、数列与数学归纳法1. 等差数列:公差为 d 的等差数列的通项公式为 an=a1+(n-1)d,其中 a1 为首项,an 为第 n 项。
2. 等差数列求和:对于公差为 d 的等差数列,前 n 项和公式为Sn=n/2(a1+an)。
3. 等比数列:公比为 q 的等比数列的通项公式为 an=a1*q^(n-1),其中 a1 为首项,an 为第 n 项。
4. 等比数列求和:对于公比为 q 的等比数列,无穷项和公式为 S=a1 / (1-q),其中 a1 为首项。
高一数学知识点归纳总结公式

高一数学知识点归纳总结公式数学是一门基础学科,对于高中学生来说,掌握好数学知识点和公式是非常重要的。
以下是高一数学知识点的归纳总结公式:1. 代数部分1.1 一元一次方程:ax + b = 0解的公式:x = -b/a1.2 一元二次方程:ax^2 + bx + c = 0解的公式:x = (-b ± √(b^2 - 4ac))/2a1.3 因式分解公式:- 平方差公式:a^2 - b^2 = (a + b)(a - b)- 二次三项式公式:x^2 + (a + b)x + ab = (x + a)(x + b)1.4 指数与对数公式:- a^m * a^n = a^(m+n)- a^m / a^n = a^(m-n)- (a^m)^n = a^(mn)- loga(m * n) = loga(m) + loga(n)2. 几何部分2.1 直线方程:- 点斜式:y - y1 = k(x - x1)- 两点式:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1) - 截距式:y = kx + b2.2 圆的方程:- 一般式:(x - a)^2 + (y - b)^2 = r^2- 标准式:(x - h)^2 + (y - k)^2 = r^22.3 三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc * cosA- 正切定理:tanA = a/b2.4 三角函数的和差化积公式:- sin(A ± B) = sinA * cosB ± cosA * sinB- cos(A ± B) = cosA * cosB ∓ sinA * sinB- tan(A ± B) = (tanA ± tanB) / (1∓ tanA * tanB) 3. 概率与统计部分3.1 排列与组合公式:- 排列公式:A(n, m) = n! / (n - m)!- 组合公式:C(n, m) = n! / (m! * (n - m)!)3.2 乘法原理与加法原理:- 乘法原理:若一个事件可分成k个独立的步骤,则该事件发生的总数为这k个步骤发生事件次数的乘积。
高一数学全册公式和知识点

高一数学全册公式和知识点一、代数基础知识1.1 二次方程及求根公式对于二次方程ax^2 + bx + c = 0,其中a≠0,其求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.2 因式分解因式分解是将一个多项式表示为几个因子相乘的形式。
常见的因式分解公式有:1.2.1 平方法公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^21.2.2 差平方公式:a^2 - b^2 = (a + b)(a - b)1.2.3 三项平方差公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a - b)(a^2 + ab + b^2)1.2.4 公因式提取法:将多项式中的公因子提取出来。
1.3 二次函数的图像和性质二次函数的一般形式为y = ax^2 + bx + c,其中a≠0。
其图像为抛物线,开口方向由a的正负决定。
二次函数的顶点坐标为(h, k),其中h = -b / (2a),k = f(h) = f(-b / (2a))。
二次函数的对称轴为x = h。
二、平面几何知识与坐标系2.1 相交线及其性质2.1.1 垂直线性质:相交的两条线段垂直,则它们的斜率互为倒数,即k1 * k2 = -1。
2.1.2 平行线性质:平行线的斜率相等。
2.1.3 直线方程求解:可利用两点坐标、点斜式、斜截式等方法求解直线方程。
2.2 向量的加法与数量积2.2.1 向量的加法:两个向量的加法满足平行四边形法则,即向量A + 向量B = 向量C。
2.2.2 向量的数量积:向量A与向量B的数量积为A·B =|A||B|cosθ,其中θ为两向量夹角。
2.3 坐标系中的几何问题在直角坐标系中,可通过坐标计算点、线、多边形等的性质和关系。
三、函数与导数3.1 函数的概念及性质3.1.1 定义域与值域:函数f的定义域为其自变量的取值范围,值域为其因变量的取值范围。
高一数学必背公式及知识点汇总

高一数学必背公式及知识点汇总在高一数学学习中,掌握公式和知识点是非常重要的,它们是我们解题的基础。
下面将为大家总结一些高一数学中必须掌握的公式和知识点。
一、函数与方程1. 一次函数:函数表达式:y = kx + b直线斜率公式:k = (y₂ - y₁) / (x₂ - x₁)斜率与角度的关系: tanθ = k2. 二次函数:函数表达式:y = ax² + bx + c顶点坐标:(h, k)根与系数的关系:x₁ + x₂ = -b / a, x₁ * x₂ = c / a判别式:Δ = b² - 4ac根的个数与判别式的关系:Δ > 0 时,有两个不相等的实根;Δ = 0 时,有两个相等的实根;Δ < 0 时,无实根3. 指数与对数:指数运算法则:aᵇ * aᶜ = a⁽ᵇ⁺ᶜ⁾对数运算法则:log(mn) = logm + logn二、平面几何1. 勾股定理:a² + b² = c²(其中a、b为直角边,c为斜边)2. 直角三角形中的正弦定理、余弦定理:正弦定理:sinA / a = sinB / b = sinC / c余弦定理:c² = a² + b² - 2ab · cosC3. 三角函数的周期性及基本关系:正弦函数:f(x) = sinx余弦函数:f(x) = cosx正切函数:f(x) = tanx三、概率统计1. 事件发生的概率:P(A) = n(A) / n(S) (其中n(A)表示事件A 发生的次数,n(S)表示样本空间S中的元素个数)2. 排列组合:排列:从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排列,有多少种不同的排列方式组合:从n个不同元素中,取出m(m≤n)个元素,不考虑顺序,有多少种不同的组合方式3. 正态分布:正态分布的概率密度函数:f(x) = (1 / (σ * √(2π))) · exp((-1/2) * ((x - μ) / σ)²)正态分布的标准差和方差符号:σ和σ²四、解析几何1. 二维平面坐标系:直线的斜率:k = (y₂ - y₁) / (x₂ - x₁)中点坐标公式:(x,y) = ((x₁ + x₂) / 2, (y₁ + y₂) / 2)2. 空间直角坐标系:三维空间两点间距离公式:AB = √((x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²)以上是高一数学中的一些必背公式和知识点汇总,希望能对大家的学习有所帮助。
高一数学知识点公式大全总结

高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。
5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。
乘法:相乘后约分。
除法:转换为乘法,分子乘以倒数。
10. 根式的运算法则加减法:合并同类项,并进行化简。
乘法:相乘后合并同类项,并进行化简。
除法:转换为乘法,除数的倒数乘以被除数。
二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。
6. 正方形的性质正方形的四条边相等,四个内角都为90度。
7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。
高一数学常用公式及知识点总结

三角函数值在各象限的符号
sin a
cos a
tan a
(2)、同三角函数的基本关系
平方关系: sin2 a cos2 a =
商数关系: tan a =
(3)、特殊角的三角函数值表
a 的角度 0o 30o 45o 60o 90o 120o 135o 150o 180o 270o 360o
a 的弧度
函数。(即 f (x1) f (x2 ) 0 ) x1 x2
3、周期性
对于定义域内任意的 x,都有 f (x T ) f (x) ,则 f (x) 的周期为
;
四、三角函数、三角恒等变换和解三角形
1、三角函数
(1)、三角函数的定义:______________________________________________
=
=
T2 : tan 2 =
(9)、辅助角公式
asin x bcos x a2 b2 ( a sin x b cos x)
a2 b2
a2 b2
a2 b2 (sin x cos cos x sin)
a2 b2 sin(x )(tan b ) a
cos(a) = cos( a) = cos( a) =
2
cos( a) =
2
tan( a) = tan(a) =
tan( a) =
(记忆口诀:奇变偶不变,符号看象限。奇偶指 的奇偶数倍,变与不变指三
2 角函数名称的变化,若变则是正弦变余弦,正切变余切;符号是根据角的范围 以及三角函数在四个象限的正负来判断新三角函数的符号(无论 a 是多大的角, 都将 a 看成锐角))
2、对数运算法则及换底公式( a 0且a,M1>0, N>0 )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学常用公式及知识点总结
一、集合
1、N 表示 N+(或N*)表示 Z 表示 R 表示 Q 表示
2、含有n 个元素的集合,其子集有 个,真子集有 个,非空子集 有 个,非空真子集有 个。
二、基本初等函数 1、指数幂的运算法则
m n a a = m n a a ÷=
()m n a = ()m a
b
=
n m
a = m a -= ()m a
b =
2、对数运算法则及换底公式(01
a a >≠且,M>0,N>0) log log a a M N += log log a a M N -= log n a M = log a N a = log a
b = log a a = log log a a a b = 1log a = 3、对数与指数互化:log a M N =⇔
4、基本初等函数图象
(3)幂函数的图像和性质
(1)指数函数(0,1)x a a y a >≠= (2)对数函数(0,1)log a a a x y >≠= (当a e =时,y= ;当10a =时,y= )
a>1时的图像
0<a<1时的图像
a>1时的图像 0<a<1时的图像
图像恒过点 ,且不与 轴相交。
图像恒过点 ,且不与 轴相交。
解析式 y x =
2y x =
3y x =
1y x -=
2y x -=
12
y x =
图像
定义域 值域 奇偶性 单调性
三、函数的性质 1、奇偶性
(1)对于定义域内任意的x ,都有()()f x f x -=,则()f x 为 函数,图
像关于 对称;
(2)对于定义域内任意的x ,都有()()f x f x -=-,则()f x 为 函数,图
像关于 对称; 2、单调性
设1122,[,],x a b x x x <∈,那么
12()()0()[,]f f f x x a b x -<⇔在上是 函数;(即
1212
()()
0f x f x x x ->-)
12()()0()[,]f f f x x a b x ->⇔在上是 函数。
(即
1212()()
0f x f x x x -<-) 3、周期性
对于定义域内任意的x ,都有
()()f x T f x +=,则()f x 的周期为 ;
四、三角函数、三角恒等变换和解三角形 1、三角函数 (1)、三角函数的定义:______________________________________________
三角函数值在各象限的符号
sin a cos a tan a
(2)、同三角函数的基本关系
平方关系: 22sin cos a a += 商数关系:tan a = (3)、特殊角的三角函数值表 公式一:sin(2)a k π+= cos(2)a k π+= tan(2)a k
π+=
公式二:sin()a π+= cos()a π+= tan()a π+= 公式三:sin()a -= cos()a -= tan()a -= 公式四:sin()a π-= cos()a π-= tan()a π-=
公式五:2
sin(
)a π
-= 2
cos()a π
-=
公式六:2sin()a π+= 2
cos()a π
+=
(记忆口诀:奇变偶不变,符号看象限。
奇偶指2
π
的奇偶数倍,变与不变指三角
函数名称的变化,若变则是正弦变余弦,正切变余切;符号是根据角的范围以及三角函数在四个象限的正负来判断新三角函数的符号(无论a 是多大的角,都将a 看成锐角))
a 的角度 0 30 45 60 90 120 135 150 180 270 360
a 的弧度 sina cosa tana
方法途径二:
sin y x = 图像各点横坐标伸长或缩短到原来的1ω
,纵坐标不变,得
到 ,图像上各点向左或向右平移
ϕ
ω
个单位,得到 ,图像各点纵坐标伸长或缩短到原来的A 倍,横坐标不变,得到 ; 2、三角恒等变换 (7)、两角和与差的正弦、余弦和正切
(异名同号)():sin()S αβαβ++= ():sin()S αβαβ--=
(同名异号)():cos()C αβαβ++= ():cos()C αβαβ--=
():tan()T αβαβ++= ():tan()T αβαβ--=
(8)、二倍角公式
2:sin 2S αα=
2:cos2C αα= = = 2:tan 2T αα=
(9)、辅助角公式
222222(
sin cos )sin cos a b
a b x x a b a b
a x
b x +++++=
2222(sin cos cos sin )sin()(tan )
a b x x b
a b x a
ϕϕϕϕ=++=++=
3、解三角形 (10)、正弦定理: = = =2R
(R 为三角形的外接圆半径)
用角表示边:a= ,b= ,c= 用边表示角:sinA=__________,sinB=__________,sinC=__________
(11)、余弦定理:2a = ,2b = ,
2c =
求角:cos A = ,cos B = ,
cos C =
(12)、三角形面积公式:S = = =
五、平面向量
1、平面向量的坐标运算
(1)、设1122(,),(,)A x y B x y ,则AB = ; (2)、设1122,,(),()a x y b
x y ==,则a = ,b = ,
a λ= ;
b a += ,b a -= , b a = ;
2、两向量的夹角公式 设1122,,(),()a x y b
x y ==,则cos θ= = ;
3、向量的平行于垂直
(1)、若b a 与平行⇔=b a λ⇔
(2)、若b a 与垂直⇔0b a =⇔
六、数列
1、数列的通项n a 与前n 项和n S 的关系:
11(1)
(2)n n n S n a S S n -=⎧=⎨
-≥⎩ ;(数列{n a }的前n 项和为n 12n S a a a =++⋅⋅⋅+) 2、等差数列
(1)、定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;
(2)、等差数列通项公式:n a = ,其中首项是 ,公差是 ; (3)、等差数列前n 项和公式:
n 12n S a a a =++⋅⋅⋅+= = ;
(4)、等差中项: A 是a 、b 的等差中项,则有等式 ; (5)、若}{n a 是等差数列,m 、n 、p 、q 为正整数,且m+n=p+q ,则 ; 3、等比数列
(1)、定义若数列q a a a n
n n =+1
}{满足
(常数),则}{n a 称等比数列;
(2)、等比数列通项公式:n a = (n ∈N+),其中首项是 ,公比是 ; (3)、等比数列前n 项和公式:
n 12=n S a a a ⎧
=++⋅⋅⋅+⎨⎩
;
(4)、等比中项: G 称a 、b 的等比中项,则有等式 ; (5)、若}{n a 是等比数列,m 、n 、p 、q 为正整数,且m+n=p+q ,则 ;
七、不等式
1、已知a ,b 都是正数,则有2
a b
ab +≥,当a=b 时,等号成立;
(1)、若积ab 是定值m ,则当a=b 时,和a+b 有最小值 ; (2)、若和a+b 是定值n ,则当a=b 时,积ab 有最大值 ; 2、线性规划
八、统计概率
1、平均数:x = ;
2、样本方差:2S = ;
3、样本标准差:S = ;。