道路勘测设计 第三章 纵断面设计

合集下载

道路勘测设计第三章-纵断面设计

道路勘测设计第三章-纵断面设计

理想线形 6
4 道路纵断面图构成
7
4 道路纵断面图构成
4.1 道路纵断面 沿中线竖直剖切再行展开的断面 一条有起伏的空间线
4.2 地面线 根据中线上各桩点的高程而点绘的一条不规则的
折线
反映沿着中线地面地形的起伏变化情况线 8
4 道路纵断面图构成
4.3 设计线 经过技术上、经济上以及美学上等多方面比较后
情况的过程
3
3 纵断面设计
1)依据 道路的性质
道路的等级
地形
地质
水文
路基稳定
排水工程经济性源自汽车的动力特性 43 纵断面设计
2)任务
纵坡的大小
纵坡的长短
前后纵坡情况
竖曲线半径大小
与平面线形的组合关系
纵断面线形的几何构成
5
3 纵断面设计
3)结果 纵坡合理
线形平顺圆滑
行车安全
行车快速
舒适
工程费较省
运营费较少
2) 《规范》规定
位于海拔3000m以上的高原地区,各级公路的最
大纵坡值应按表3-3的规定予以折减。折减后若小
于4%,则仍采用4%
21
6 最大纵坡
6.6各级公路最大纵坡
设计速度 (km/h)
120 100 80 60 40 30 20
最大纵坡(%)
345
6
7
8
9
设计速度为120km/h、l00km/h、80km/h 的高速公路受地形条件或其他特殊情况限制时,
道路勘测设计
1
第三章 纵断面设计
第一节 概述 第二节 汽车动力特性与纵坡 第三节 竖曲线 第四节 爬坡车道 第五节 避险车道 第六节 纵断面设计方法及纵断面图

《道路勘测设计》纵断面设计

《道路勘测设计》纵断面设计
r r V V
式中:——汽车牵引力(N); ——变速器的变速比; ——汽车发动机的转矩(N· m); ——传动系统的机械效率,载货汽车一般为0.8~0.85,小汽 车一般为0.85~0.95; ——计入轮胎变形后的车轮工作半径,一般为车轮几何半 径(m)的0.93~0.96倍。
T
Mk M T n N 0.377 MT 3600 T r r V V
二、汽车在坡道上的行驶要求
1.纵坡度力求平缓; 2.陡坡宜短,长坡道的纵坡度应加以严格限 制; 3.纵坡度的变化不宜太多,尤其应避免急剧 起伏变化,力求纵坡均匀。
T
M T r
三、汽车行驶的牵引力及运动方程
1.牵引力计算: 牵引力的大小可按下式计算: M M T n N T k 0.377 MT 3600 T ( N) (4-1)
5、汽车行驶条件分析
从汽车行驶的两个条件可以看出,要提高汽车的效 率,主要应从提高汽车牵引力和路面轮胎间的附 着力以及减小行驶阻力三方面着手。 (1)提高牵引力可以采取增加发功机扭矩、加大传 动比和提高发动机机械效率等措施。 (2)提高附着力主要是从增加路面表面粗糙度,加 强路面排水,使路面具有较大的附着系数,以及 改进汽车轮胎和粗糙度等几方面着手。 (3)减小行车阻力主要从提高路面质量,使路面平 整,减小滚动阻力,降低路线纵坡,减小坡度阻 力,改进车型,减小空气阻力等几方面着手。
T=R RW RR RI
如果节流阀部分开启,要对驱动力T进行修正。修正系数 用U表示,称为负荷率。即:
MT T U r
式中:U―――负荷率,取U=80~90%。 将有关公式代入式(2-12),则汽车的运动方程 为:
MT KAV G U G f i a r 21.15 g

《道路勘测设计》章课后习题及答案

《道路勘测设计》章课后习题及答案

第二章 平面设计2-5.设某二级公路设计速度为80km/h ,路拱横坡为2%。

⑴试求不设超高的圆曲线半径及设置超高(% 8 i h =)的极限最小半径(μ值分别取0.035和0.15)。

⑵当采用极限最小半径时,缓和曲线长度应为多少(路面宽 B = 9 m ,超高渐变率取1/150)?解:⑴不设超高时:)(h V R i 1272+=μ=0.02)]-(0.035[127802⨯=3359.58 m , 教材P36表2-1中,规定取2500m 。

设超高时:)(h V R i 1272+=μ=0.8)](0.15[127802+⨯=219.1 m , 教材P36表2-1中,规定取250m 。

⑵当采用极限最小半径时,以内侧边缘为旋转轴,由公式计算可得:缓和曲线长度:=∆=p i B L '150/1%2%89)(+⨯=135 m 2-6 某丘陵区公路,设计速度为40km/h ,路线转角"38'04954︒=α,4JD 到5JD 的距离D=267.71m 。

由于地形限制,选定=4R 110m ,4s L =70m ,试定5JD 的圆曲线半径5R 和缓和曲线长5s L 。

解:由测量的公式可计算出各曲线要素:πδπβ︒•=︒•=-==1806,18022402m ,240000200032R l R l R l l R l p , 解得:p=1.86 m , q = 35 m , =4T 157.24 m , 则=5T 267.71-157.24 = 110.49 m考虑5JD 可能的曲线长以及相邻两个曲线指标平衡的因素,拟定5s L =60 m ,则有:522460p R = ,30260m ==,"28'20695︒=α 解得=5R 115.227m2-7、某山岭区公路,设计速度为40km/h ,路线转角"00'54322︒=右α ,"00'3043︒=右α ,1JD 至2JD 、2JD 到3JD 距离分别为458.96m 、560.54 m 。

道路勘测设计 纵断面设计(新)课件

道路勘测设计      纵断面设计(新)课件

纵断面设计的基本原则
满足行车安全与舒适性要求
合理设置坡度、坡长和竖曲线半径,确保车 辆安全、顺畅行驶。
经济性原则
在满足使用功能的前提下,尽量减少工程量 ,降低工程造价。
考虑排水要求
根据地形和气候条件,合理设置坡度,确保 排水顺畅。
协调性原则
纵断面设计与道路线形其他要素相协调,如 平面线形、横断面设计等。
在城市道路纵断面设计中,要特别注 意避免陡坡、急弯等不利因素,保证 行车安全和舒适度。
高速公路纵断面设计实例
高速公路纵断面设计要满足高速 行车的要求,合理设置纵坡、竖 曲线半径等参数,提高道路的线
形指标。
高速公路的纵断面设计还需要考 虑地形、地质、水文等自然条件 ,充分利用地形地势,减少工程
量,降低工程造价。
基于景观要求的纵断面设计优化
总结词:注意事项
详细描述:在基于景观要求的纵断面设计时,应注意避免对周围环境的破坏和影响。同时,应充分考 虑当地的文化特色和历史遗产,尊重和保护当地的风俗习惯和传统建筑。此外,应加强景观规划和设 计的管理和监督,确保设计的可行性和实施效果。
THANKS
感谢观看
控制高程的校核
在确定控制高程后,应进行校核, 检查是否满足规范要求和实际情况 ,如有需要可进行适当调整。
纵断面图的绘制与调整
纵断面图绘制
根据设计标高、控制点和控制高 程等数据,绘制道路的纵断面图 ,清晰地表示出道路的起伏变化

纵断面图调整
在绘制纵断面图的过程中,应结 合实际情况和设计要求,对图进 行必要的调整,以使设计更加合
隧道进出口
隧道进出口是道路勘测设计的难点之一,需要考虑地形、地质、气象等因素, 同时要满足行车视距、通风、照明等方面的要求。在进出口处应设置缓冲段, 以减少车辆进出隧道时的明暗适应时间。

道路勘测设计纵断面设计

道路勘测设计纵断面设计

设计
速度 (km/
120
100
80
60
40
30
20
h)
3 900 1000 1100 1200
纵 4 700 800 900 1000 1100 1100 1200
坡5
600 700 800 900 900 1000
坡6
500 600 700 700 800
度7 (%) 8
500 500 600 300 400
汽车的驱动力来自其内燃发动机。在发动机里 热能转化为机械能,产生有效功率P,驱使曲轴以每
分钟n的转速旋转,发生M的扭矩,再经过离合器、
变速器、传动轴等变速和传动,将曲轴的扭矩传给 驱动轮,产生Mk的扭矩驱动汽车行驶。
1、发动机曲轴扭矩
发动机特性曲线:表示发动机的功率P、 扭矩M以及燃油消耗率ge与发动机曲轴转速n 之间函数关系的曲线。
(3)最大纵坡的确定
《标准》采用的代表车型是载重8t的东风重型货车(功率/重
量比为9.3W/kg)。
根据D-V曲线和公式
,就可以确定最大纵坡。
各级公路最大纵坡
(4)高原纵坡折减
1)在高海拔地区,因空气密度下降而使汽车发动机功率、 汽车的驱动力以及空气阻力降低,导致汽车的爬坡能力下降。
2)汽车水箱中的水易于沸腾而破坏冷却系统。
②相邻变坡点之间的距离不宜过短,便插入
适当的竖曲线来缓和纵坡的要求,同时也便于平 纵面线形的合理组合与布置。
②下坡时,则因坡度过陡,坡段过长频繁刹 车,导致制动器发热失效,影响行车安全。
2)最大坡长限制计算与规定
纵坡长度限制主要是依据8t 载重车(功率/ 重量比是9.3W/kg) 的爬坡性能曲线,同时考虑 坡底的入口速度与允许速度差确定的。

道路勘测设计 第3章 纵断面设计

道路勘测设计 第3章 纵断面设计
B
1 2 y x ix 2k
A
任一点斜率
B

dy x = +i dx k

当x=0时, 当x=L时,
i1 = i
L i 2 = + i1 k
A
= i2 i1
L = k
x R = k [1 +( + i ) 2 ]3 / 2 k
k=
L
抛物线上任一点的曲率半径为R,
dy 2 R = [1 +( ) dx d2y ]3 / 2 / 2 dx
2
2
五、坡长限制
• • • •
坡长:纵断面相邻变坡点的桩号之差 最大坡长限制 最小坡长限制 缓和坡段
缓和坡段
六.纵坡设计一般要求
1.纵坡设计必须符合坡度及坡长最小及最大值要求,各级公路的 最大纵坡值及陡坡限制坡长,一般不轻易使用,应留有余地。 2.平原、微丘地形的纵坡应均匀、平缓;丘陵地形的纵坡应避免 过分迁就地形而起伏过大;山岭重丘地形的沿河线,应尽量采 用平缓的纵坡,坡度不宜大于6%;越岭线的纵坡应力求均匀, 应尽量不采用极限或接近极限的坡度,更不宜连续采用极限长 度的陡坡夹短距离缓坡的纵坡线形,越岭线不应设置反坡。 3.纵坡线形应与地形相适应。 4.纵坡设计应结合自然条件综合考虑。 5.应尽量减少深路堑和高填方,以保证路基的稳定性。 6.纵坡设计应结合道路沿线的实际情况和具体条件进行设计,并 适当照顾农业机械、农田水利等方面的要求。
四、纵 坡
高原纵坡折减
• 1.高原为什么纵坡要折减?
• 在高海拔地区,困空气密度下降而使汽车发动机的功率、汽车的驱 动力以及空气阻力降低,导致汽车的爬坡能力下降。另外,汽车水 箱中的水易于沸腾而破坏冷却系统。

《公路勘测设计》---3纵断面--34页

《公路勘测设计》---3纵断面--34页

五、纵断面设计方法
(2)纵坡设计应注意的问题
1)在回头曲线地段不宜设竖曲线。 2)大中桥上不宜设置竖曲线, 3)尽量避免在小桥涵处出现驼峰式纵坡。 4)注意平面交叉口纵坡及两端接线要求 5)拉坡时如受“控制点”或“经济点”制 约,可用纸上移线的方法修改原定纵坡线。 6)连接段纵坡,纵坡应平缓,避免产生突变。
R —为竖曲线的半径,m。
三、竖曲线及竖曲线设计
2、竖曲线的最小半径
(1)竖曲线最小半径的确定 1)凸形竖曲线极限最小半径确定考虑因素
①缓和冲击 ②经行时间不宜过短 ③满足视距要求
2)凹形竖曲线极限最小半径确定考虑因素
①缓和冲击:
②视距及前灯照射距离要求 ③经行时间不宜过短
三、竖曲线及竖曲线设计
三、竖曲线及竖曲线设计
(2)竖曲线计算 1)计算竖曲线基本要素: 变坡角:ω、曲线长:L、切线长:T、外距:E 2)计算竖曲线的起、终点桩号 竖曲线的起点桩号 = 变坡点桩号-T 竖曲线的终点桩号 = 变坡点桩号+T 3)计算竖曲线上任意点对应切线标高及改正值 切线标高 = 变坡点的标高±h i ;改正值:y= 4)计算竖曲线上任意点设计标高 某桩号在凸形竖曲线的设计标高 = 该桩号在切 线上的设计标高 - y 某桩号在凹形竖曲线的设计标高 = 该桩号在切 线上的设计标高 + y
5、平均纵坡
平均纵坡是指连续上坡或连续下坡路段的 总高差与该路段总平距的比值。
二、纵坡及纵坡设计
6、合成坡度
公路在平曲线地段,若纵向有纵坡并横向 有超高时,则最大坡度在纵坡和超高的合成方 向上,这个坡度称之为合成坡度.
图3-4 合成坡度
二、纵坡及纵坡设计
7、爬坡车道
所谓爬坡车道,是在陡坡路段正线行车道 右侧增设的供载重汽车或慢速车行驶的专用车道。 (1)设置爬坡车道的条件

第三章纵断面设计介绍

第三章纵断面设计介绍

(四)汽车的动力因数
T Rw D ( f i) a G g
表征某型汽车在海平面高程上,满载情况下, 每单位车重克服道路阻力和惯性阻力的性能

g
D f i
a

g
a
(五)汽车的行驶状态
g a (D )

f i
汽车的行驶状态有以下三种情况: • 加速行驶 • 等速行驶 • 减速行驶 • 在动力特性图上,等速行驶的速度称为平衡速度。 • 每一排档都存在各自的最大动力因数,与之对应的速度称 作临界速度。
路堤
路堑
第二节 汽车的动力特性与纵坡



保证汽车在道路上行驶的稳定性 尽可能提高车速 保证道路上的行车畅通 尽量满足行车舒适
§ 3.2 汽车的动力特性与纵坡
• 加速最快的汽车:
Dauer 962 Le Mans 产地: 德国 出厂日期:1994年 0-100km/h耗时2.6秒
跑的最快的汽车: 最高荣誉在1987年被奥斯莫 比尔部夺得,他们研制的“航天 技术1号”未来车在德克萨斯汽 车测试场上创下了当今 447km/h的世界最高纪录,享 有“世界第一快车”的美称。

最小纵坡:
各级公路在特殊情况下容许使用的最小坡度值。 最小纵坡值:0.3%,一般情况下0.5%为宜。 适用条件:排水不畅路段:长路堑、桥梁、隧道、 设超高的平曲线等。

当必须设计平坡(0%)或小于0.3%的纵坡时,边 沟应作纵向排水设计。

干旱少雨地区最小纵坡可不受上述限制。
平均纵坡(average gradient) 1)平均纵坡----指一定路线长度范围内,路线两 端点的高差与路线长度的比值。 二、三、四级公路越岭线的平均纵坡: 2)相关规定 ① 相对高差200~500m 不应大于 5.5% ② 相对高差>500m 不应大于 5%
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁东大学土木工程学院
鲁东大学土木工程学院
第三节 竖曲线
纵断面上两个坡段的转折处,为了便于行车用一段曲线来缓和,称为竖曲线。 竖曲线的形式可采用抛物线或圆曲线,在使用范围二者几乎没有差别。
一、竖曲线要素的计算公式
取XOY坐标系如图4-2所示, 设变坡点相临两纵坡坡度分别为 i1和 i2,它们的代数差用 表示,即, i2 i1 当 为“+”时,表示凹形竖曲线; 为“-”时,凸形竖曲线。 1. 用二次抛物线作为竖曲线的基本方程 式 在图示坐标下,二次抛物线一般方程为
⑴.缓和冲击 汽车在竖曲线上行驶时,其离心加速度为
将v(m/s)化成V(km/h)并整理,得
v2 a (m / s 2 ) R V2 R ( m) 13a
根据实验,a 限制在0.5m/s2~0.7m/s2比较合适。但考虑到不因冲击而造成的不 舒适感,以及视觉平顺等的要求,我国《标准》规定的凹形竖曲线最小半径值相当 于a=0.278m/s2。
七. 平均纵坡 平均纵坡是指一定长度的路段纵向所克服的高差与路线长度的比值。
i平
H L
二级、三级、四级公路越岭路线的平均纵坡,一般以接近5.5%(相对高差 200m~500m)和 5%(相对高差大于 500m)为宜,并注意任何相连 3km路 段的平均纵坡不宜于5.5%。
鲁东大学土木工程学院
九、合成坡度
鲁东大学土木工程学院
2. 凸形竖曲线最小半径和最小长度 凸形竖曲线最小长度应以满足视距要求为主,分为两种情况。 ⑴.当L<ST 如图4-3所示
d t 2 h1 1 1 则d1 2 Rh1 t1 2R 2R
2 2
⑵ .当L≥ST
2 2
如图4-4所示
由 t1 d1 l
2 Rh1 t1
第三章 纵断面设计
本章主要介绍纵坡设计和竖曲线设计的基 本方法。学习平、纵线形组合的基本思路, 掌握纵断面设计图的绘制方法。

鲁东大学土木工程学院
视觉分析
爬坡车道
合成坡度
竖曲线设计
纵坡设计 平纵组合设计
纵断面设计
本章主要内容
鲁东大学土木工程学院
第一节
第二节
概 竖曲线

纵坡及坡长设计 爬坡车道
第三节
2
由 t d ( L l ) 2 Rh t 2 2 2 2 2
1 2 y x ix 2k
对竖曲线上任一点P,其斜率为 鲁东大学土木工程学院
dy x ip i dx k
当x=0时,i=i1 ;x=L时,
L i i1 i2 k
k L L i2 i1
(2)
,则
2 dy d y 2 3 / 2 抛物线上任一点的曲率半径为 R [1 ( ) ] / dx dx2
Lmin
V V t 3 .6 1 .2
Rmin
L

鲁东大学土木工程学院
二、竖曲线的最小半径
1. 竖曲线半径限制因素 竖曲线最小半径考虑了三方面的要求
⑴.缓和冲击
⑵.时间行程不过短
⑶. 满足视距的要求
⑶. 满足视距的要求 汽车行驶在凸形竖曲线上,如果半径太小,会阻挡司机的视线。为了行车安全 对凸形竖曲线的最小半径或最小长度应加以限制。
E与R相比甚小,忽略不记
L Ra

R R (i2 i1 )
T
x
y
T2 E 2R
竖曲线中个点纵横坐标 计算按照下式:
x2 Y 2R
鲁东大学土木工程学院
二、竖曲线的最小半径
1. 竖曲线半径限制因素 竖曲线最小半径考虑了三方面的要求
⑴.缓和冲击
⑵.时间行程不过短
⑶. 满足视距的要求
2000m
三. 高原纵坡折减
汽车满载情况下,不同海拔高度H对应的海拔荷载修正系数值如表4-4所示。 满载时与的关系 表4-4
海拔高度H(m)
0
1000
2000
3000
4000
5000
海拔荷载修正系数
1.00
0.89
0.78
0.69
0.61
0.53
高原纵坡折减值
海拔高度(m) 3000~4000
表4-5
鲁东大学土木工程学院
二、竖曲线的最小半径
1. 竖曲线半径限制因素 竖曲线最小半径考虑了三方面的要求
⑴.缓和冲击
⑵.时间行程不过短
⑶. 满足视距的要求
⑵.时间行程不过短 汽车从直线坡道行驶到竖曲线上,尽管竖曲线半径较大,如其长过短,汽车 倏然而过旅客会感到不舒适。因此,应限制汽车在竖曲线上的行程时间不过短。 最短应满足3s行程,即
>4000~5000 >5000
折减值(%)
1
2
3
鲁东大学土木工程学院
四. 最小纵坡
为使道路上行车快速、安全和通畅,希望道路纵坡设计的小一些为好。但是,在长 路堑、低填以及其它横向排水不通畅地段,为保证排水要求,防止积水渗入路基而影响 其稳定性,均应设置不小于0.3%的最小纵坡,一般情况下以不小于0.5%为宜。
鲁东大学土木工程学院
2.竖曲线诸要素计算公式 竖曲线长度L或竖曲线半径R: 竖曲线切线长T:因为 T=T1≈T2, 竖曲线上任一点竖距h: 因为
L R或R
L
( 4-4)
L R T 2 2
(4-5)
x2 h PQ y P yQ i1 x i2 x, 2R
鲁东大学土木工程学院
2. 最大纵坡的运用
最① 大。 纵城 坡市 道 路 的
其② 它。 特高 殊速 情公 况路 或
以③ 上。 冰海 冻拔 地 区
头④ 路。 线桥 纵上 坡 及 桥
路⑤ 线。 纵隧 坡道 部 分
通⑥ 比。 例非 较机 大动 路车 段交
⑤ ①. 隧道部分路线纵坡: 城市道路的最大纵坡减小1%。 ②. 高速公路受地形条件或其它特殊情况限制时,最大纵坡可增加1% 隧道内纵坡不应大于 3%,但独立明洞和短于50m的隧道其纵坡不受 ③. 位于海拔 2000m以上或严寒冰冻地区,四级公路山岭、重丘区的最大 纵坡不应大于8%。 此限制; ④. 对桥上及桥头路线的最大纵坡: 紧接隧道洞口的路线纵坡应与隧道内纵坡相同。 大、中桥上纵坡不宜大于4%,桥头引道纵坡不宜大于5%; ⑥. 在非机动车交通比例较大路段,为照顾其交通要求可跟据具体情况将 纵坡适当放缓: 紧接大、中桥桥头两端的引道纵坡应与桥上纵坡相同。 平原、微丘区一般不大于 2% ~ 3% ;山岭、重丘区一般不大于 4% ~ 5%。 鲁东大学土木工程学院

竖曲线外距E:
x h 2R
T2 R 2 L T E 或E 2R 8 8 4
2
(4-6)
(4-7)
鲁东大学土木工程学院
竖曲线(圆曲线)要素计算
180 a L R T Rtg Rtg (i2 i1 ) 2 2 2 2
(R E)2 T 2 R 2 T2 E 2R E
五. 坡长限制
1.最短坡长限制 最短坡长的限制主要是从汽车 行驶平顺的要求考虑的。 ①如果坡长过短,使变坡点增 多,汽车行驶在连续起伏地段产生 的增重与减中的变化频繁,导致乘 客感觉不舒适,车速越高越感突出 ②从路容美观、相临两竖曲线 的设置和纵面视距等也要求坡长应 有一定最短长度。 2.最大坡长限制 最大坡长限制是指控制汽车在坡道 上行驶,当车速下降到最低允许速度 时所行驶的距离。 纵坡大,坡长较长的时候对行车表 现在: ①使行车速度显著下降,甚至要换 较抵挡位克服坡度阻力; ②易使水箱“开锅”,导致汽车爬 坡无力,甚至熄火; ③下坡行驶制动次数频繁,易使制 动器发热而失效,甚至造成车祸
通常取9-10秒的行程距离。
鲁东大学土木工程学院
不同纵坡最大坡长(m)
设计速度(km/h) 120 100 80 60 40 30 20
纵 坡 坡 度 (%)
3
4 5 6 7 8 9
900
700 - - - - -
1 000
800 600 - - - -
1 100
900 700 500 - - -
1 200
1 000 800 600 - - -

1 100 900 700 500 300 -

1 100 900 700 500 300 200

1 200 1 000 800 600 400 300
10






200
鲁东大学土木工程学院
六. 缓和坡段 在纵断面设计中,当陡坡的长度达到限制坡长时应安排一段缓坡,用以 恢复在陡坡上降低的速度。同时考虑下坡安全的需要。 在缓坡上汽车将以加速行驶,因此缓坡的长度应适应加速的需要。但实际设 计中很难满足这个要求。 《标准》规定缓和坡段的纵坡应不大于3%,其长度应不小于最短坡长。
第四节
第五节
第六节 第七节
合成坡度
视觉分析及道路平、纵线形组合设计 纵断面设计方法及纵断面图
鲁东大学土木工程学院
第一节 概
一. 基本概念

1. 地面线:根据中线上各桩点的高程而点绘的一条不规则的折线,反映了沿着 中线地面的起伏变化情况
2. 设计线:经过技术上、经济上以及美学上等多方面比较后定出的一条具有规 则形状的几何线,反映了道路路线的起伏变化情况
2.合成坡度指标

(1)最大允许合成坡度值:

(2)最小合成坡度: 最小合成坡度不宜小于0.5%。 当合成坡度小于 0.5时,应采取综合排水措施,以保证 路面排水畅通。
鲁东大学土木工程学院
3. 合成坡度指标的控制作用 : 控制陡坡与急弯的重合; 平坡与设超高平曲线的配合问题。
相关文档
最新文档