全等三角形证明100题(经典)

合集下载

三角形全等经典题型

三角形全等经典题型

P F
M
B
E
C
A
D
O
F
G B
E C
A
D
4
B
C
三角形全等 方法技巧篇
与中点有关的全等
1.如图,△ABC 中,AD 为 BC 边上的中线,求证:AD< 1 (AB 2
+AC)
B
A
D
C
2.已知在△ABC 中,AD 是 BC 边上的中线,E 是 AD 上的一点, 且 BE=AC,延长 BE 交 AC 于 F,求证:AF=EF.
B
②求证:DE 平分∠ADC; A
③求证:AE 平分∠BAD.
E C
D
7.已知:如图,DE 为过等腰 Rt △ ABC 直角顶点 C 的任意直线,
AD⊥DE 于 D,BE⊥DE 于 E.求证:AD+BE=DE.
D
E C
8.已知:如图,DE 为过等腰 Rt △ ABC 直角顶点 C 的任意直线, A
B
B
D
C N
6.已知:E 是正方形 ABCD 的边长 AD 上一点,BF 平分∠EBC,
交 CD 于 F,求证 BE=AE+CF.(提示:旋转构造等腰)
A
B
ED F C
8
三角形全等 方法技巧篇
基本图形
1.已知:如图 C 为线段 AB 上一点,分别以 AC 和 BC 为边作等边△ACD 和等边△BCE, 连结 AE、BD,交于 F,AE 交 CD 于 G,BD 交 CE 于 H,连 FC、GH.
4.如图:AB、CD 相交于点 O,AC∥DB,E,F 为 AB 上的两点,
且 AE=BF ,OC=OD,求证:CE=DF
A

全等三角形证明题【精选试题】

全等三角形证明题【精选试题】

全等三角形证明题1已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且角B+角D=180度,求证:AE=AD+BEABDCE 122已知,如图,AB=CD ,DF ⊥AC 于F ,BE ⊥AC 于E ,DF=BE 。

求证:AF=CE 。

3已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。

求证:BE =CD 。

4如图,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,请你从下面三个条件中任选出两个作为已知条件,另一个为结论,推出一个正确的命题。

① AB=AC ② BD=CD ③ BE=CF5、如图,△ABC 中,AB=AC ,过A 作GE ∥BC ,角平分线BD 、CF 交于点H ,它们的延长线分别交GE 于E 、G ,试在图中找出三对全等三角形,并对其中一对给出证明。

6、如图,在△ABC中,点D在AB上,点E在BC上,BD=BE。

(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明。

FE A C D BA E D CB F E DC A B F ED C A BGH你添加的条件是:________ ___(2)根据你添加的条件,再写出图中的一对全等三角形:______________(不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)7、已知:如图,AB ⊥BC ,AD ⊥DC ,AB=AD ,若E 是AC 上一点。

求证:EB=ED 。

DA E CB8、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。

求证:∠ACE=∠BDF 。

9. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。

求证:BF ⊥AC 。

10. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

全等三角形习题精粹(经典)

全等三角形习题精粹(经典)

三角形全等习题荟萃(经典)1、如图,ABC ∆是等腰直角三角形,∠C =900,点M,N 分别是边AC 和BC 的中点,点D 在射线BM 上,且BD =2BM, 点E 在射线NA 上,且NE =2NA.求证:BD ⊥DE.2、如图,设P 为等腰直角三角形ABC 斜边AB 上任意一点,PE 垂直AC 于点E, PF 垂直BC 于点F, PG 垂直EF 于点G,延长GP 并在其延长线上取一点D,使得PD =PC.求证:BC ⊥BD, 且BC =BD.3、已知在ABC ∆中,=∠ACB 于F ,求证:AC EF 21=。

MNEDCBA4、如图,已知在ABC ∆︒=∠90ACB ︒=∠30CAB ACD ∆ABE ∆角形D E 交AB 于5、已知在ABC ∆6、已知ABC ∆和∆7、已知ABC ∆中,BDC ∠,求证:8、 等腰ABC ∆9、如图已知ABC ∆中,10、 如图,已知ABC ∆以D 为顶点作一个求证:AMN ∆11、AT 为ABC ∆的内角A 求证:BD=EC12、已知在ABC ∆中,作13、如图,已知在ABC 中,AD 是角平分线,CF ⊥AD 交AB 于F ,垂足为M ,CE ∥AD 交BA的延长线于E ,求证:AC=AE=AF 。

14、如图,△ABC 是等腰三角形,D 、E 分别是AB 及AC 延长线上的点,且BD=CE , 连结DE 交BC 于点G ,求证:GD=GE15、如图,在△ABC 中,AB=5,AC=3,则边BC 上的中线AD 的取值范围是多少?16、如图,在△ABC 内一点,DB=DA ,BF=AB,∠DBF=∠DBC,求∠F 的度数。

17、如图,△ABC 是等边三角形,AE=CD,BQ ⊥AD,垂足为Q,BE 交AD 于点P,求证:BP=2PQ.A BE B CC BC B A18、如图,△ABC,△BDE 都是等边三角形,求证:∠BAD=∠BCE19、如图,在等腰直角三角形ABC 中,∠BAC 是直角,D 是AC 上一个点,AE ⊥BD,AE 的延长线交BC 与F,若∠ADB=∠FDC ,求证:D 是AC 的中点。

三角形全等的判定(含例题)

三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。

全等三角形证明培优题

全等三角形证明培优题

模块一:根本辅助线1.如图,AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.2.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点,〔1〕求证:AF⊥CD.〔2〕在你连接BE后,还能得出什么新的结论?请写出三个〔不要求证明〕3.如图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.4.如图,平面上有一边长为2的正方形ABCD,O为对角线的交点,正方形OEFG的顶点与O 重合,OE、OG分别与正方形ABCD的边交于M、N两点.①如图〔1〕,当OE⊥AB时,四边形OMBN的面积为___;②如图〔2〕,当正方形OEFG绕点O旋转时,四边形OMBN的面积会发生变化吗?试证明你的结论.5.如下图,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。

6.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.〔1〕假设∠A=50°,∠D=30°,求∠GEF的度数;〔2〕假设BD=CE,求证:FG=BF+CG.模块二:母子型1:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM 交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形2.如图,,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。

求证:〔1〕AE=BF;〔2〕AE⊥BF。

3.如图1,假设四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;〔1〕当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?假设成立,请给出证明;假设不成立,请说明理由;〔2〕当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=2时,求CH的长.4.如图,△ABD、△AEC都是等边三角形,AF⊥CD于点F,AH⊥BE于点H,问:〔1〕BE与CD 有何数量关系?为什么?〔2〕AF、AH有何数量关系?为什么?5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.〔2021•丰台区一模〕如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.〔1〕如果AB=AC,∠BAC=90°,①当点D在线段BC上时〔与点B不重合〕,如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC〔点C、F不重合〕,并说明理由.模块三倍长中线(1)倍长中线〔2〕倍长类中线1.:如图,△ABC中,AD平分∠BAC,且BD=CD,求证:AB=AC.2.,如图△ABC 中,AC>AB,AM 是BC 边上的中线,求证:21〔AC-AB 〕<AM <21(AB+AC).3. 如下图,△ABC 中,AD 平分∠BAC,E,F 分别在BD,AD 上,DE=CD,EF=AC,求证:EF//AB.4.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF 求证:BE+CF >EF .4. 如图,在△ABC 中,AB=AC ,CE 是AB 边上的中线,延长AB 到D ,使BD=AB ,连接CD .求证:CE=21CD.5. 证明:直角三角形斜边上的中线等于斜边上的一半。

初二全等三角形经典练习题及答案

初二全等三角形经典练习题及答案

初二全等三角形经典练习题及答案一、选择题1. 设ABC和DEF是两个全等三角形,已知∠A=∠D=63°,∠B=∠E=75°,则∠C=_____。

A. 63°B. 75°C. 105°D. 123°2. 若△ABC≌△PQR,已知AB=7.5cm,BC=9cm,PR=6cm,令P是B的重点,则AP的长度是_____。

A. 6.75cmB. 5.25cmC. 3.75cmD. 3cm3. 在△ABC和△PQR中,已知∠A=80°,∠C=60°,∠Q=80°。

如果BC=PQ=4cm,则BQ的长度是_____。

A. 4cmB. 5cmC. 6cmD. 8cm4. 设ABC和DEF是两个全等三角形,已知AB=DE=12cm,BC=EF=16cm,AC=DF=20cm,则△ABC和△DEF的周长之比是_____。

A. 3:4B. 4:3C. 5:6D. 6:5二、填空题1. 在△ABC中,已知AB=AC,∠B=30°,BD为边AB的中线,DE⊥AC交BC于点E,则∠DEB=_____。

2. 在△ABC与△DEF中,AB=DE,AC=DF,∠A=∠D,若AD平行于BF,则BC平行于_____。

3. 在△ABC和△DEF中,BC=EF,AB=2DE,∠B=∠E=90°,∠C=∠F=60°,则BC的长度是_____。

4. 在△ABC中,AB=AC,∠A=40°,点D是边BC的中点,则∠ACD的度数是_____。

三、综合题1. 在△ABC中,AB=AC,∠B=40°。

点D和点E分别在线段AB和AC上,且AD=CE。

若∠CDE=80°,求∠DBE的度数。

解答:已知∠B=40°,AB=AC,AD=CE,且∠CDE=80°。

利用全等三角形的性质,我们可以得到以下等式:∠BAC = ∠CAB (等腰三角形的性质)∠ADE = 180° - ∠D = 180° - 80° = 100°∠AED = 180° - ∠A - ∠ADE = 180° - 40° - 100° = 40°由∠ADE = ∠AED,得到△ADE是一个等腰三角形。

全等三角形易错证明题大全 新课标人教版八年级上册 (16)

全等三角形易错证明题大全 新课标人教版八年级上册 (16)

全等三角形易错证明题大全新课标人教版八年级上册1. 已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.2. 如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且DB=DC,求证:EB=FC3. 已知:如图,A、C、F、D在同一直线上,AF=D C,AB=DE,BC=EF,求证:△ABC≌△DEF.4. 如图,已知:AD是BC上的中线,且DF=DE.求证:BE∥CF.5. 已知:如图,PM =PN ,∠M =∠N .求证:AM =BN .分析:∵PM =PN ,∴ 要证AM =BN ,只要证PA =______,只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ).∴PA =______ ( ).∵PM =PN ( ),∴PM -______=PN -______,即AM =______.6. 已知:如图,∠ABC=∠DCB,BD 、CA 分别是∠ABC、∠DCB的平分线.求证:AB=DC .7. 如图,C F 、在BE 上,A D AC DF BF EC ∠=∠=,∥,.求证:AB DE =.8. 如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.9. 已知:如图,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.10. 已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;11. 如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.12. 如图,已知四边形ABCD 是梯形,AD∥BC,∠A=90°,BC=BD ,CE⊥BD,垂足为E .(1)求证:△ABD≌ECB;(2)若∠DBC=50°,求∠DCE 的度数.13. 如图,OC 平分AOB ∠,OA CA ⊥于A ,OB CB ⊥于B ,连接AB交OC 于D .求证:AB OD ⊥14. 已知:四边形ABCD 是正方形,M 为BC 上任意一点,MN ⊥AM ,且MN 交∠ECD 的平分线于N.求证:AM=MN15. 如图,在△ABC 中,∠ACB =90°,AC =BC ,直线l 经过顶点C ,过A 、B 两点分别作l 的垂线AE 、BF ,E 、F 为垂足.(1)当直线l 不与底边AB 相交时,求证:EF =AE +BF .(2)如图,将直线l 绕点C 顺时针旋转,使l 与底边AB 交于点D ,请你探究直线l 在如下位置时,EF 、AE 、BF 之间的关系. ①AD >BD ;②AD =BD ;③AD <BD .16. 如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。

七年级数学下___全等三角形证明题精选

七年级数学下___全等三角形证明题精选

七年级数学下---全等三角形证明题精选1、已知:如图,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180°,求证:AE=AD+BEABDCE 122、已知:如图,AB 、CD 交于O 点,CE//DF ,CE=DF ,AE=BF 。

求证:∠ACE=∠BDF 。

3. 已知:如图,△ABC 中,AD ⊥BC 于D ,E 是AD 上一点,BE 的延长线交AC 于F ,若BD=AD ,DE=DC 。

求证:BF ⊥AC 。

4. 已知:如图,△ABC 和△A 'B 'C '中,∠BAC=∠B 'A 'C ',∠B=∠B ',AD 、A 'D '分别是∠BAC 、∠B 'A 'C '的平分线,且AD=A 'D '。

求证:△ABC ≌△A ’B ’C ’。

5、已知:如图,AB=CD ,AD=BC ,O 是AC 中点,OE ⊥AB 于E ,OF ⊥D 于F 。

求证:OE=OF 。

ABCDEFOAB CDEFABC D A' B'C'D' 1 23 4A BCDE F O6.已知:如图,AC ⊥OB ,BD ⊥OA ,AC 与BD 交于E 点,若OA=OB ,求证:AE=BE 。

OB ACDE7.已知:如图,AB//DE ,AE//BD ,AF=DC ,EF=BC 。

求证:△AEF ≌△DBC 。

A BCDEF8.如图,B ,E 分别是CD 、AC 的中点,AB ⊥CD ,DE ⊥AC 求证:AC=CD (连接AD )9.已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.10、如图,已知AD 是∠BAC 的平分线, DE ⊥AB 于E , DF ⊥AC 于F , 且BE=CF , 求证: (1)AD 是△ABC 的中线;(2)AB=AC .11.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.12、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E . 求证∠CDA =∠EDB .(作CF ⊥AB )CBE D图1NMABC DEMN图2ACBEDN M图3A1 2 EF CDB13、在Rt △ABC 中,∠B AC =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G , 求证:AE =BG (平行四边形对边相等).14、如图,已知△ABC 是等边三角形,∠BDC =120º,说明AD=BD+CD 的理由15、如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1:已知:AB=4,AC=2,D 是BC 中点, AD 是整数,求AD 长。

2:已知:D 是AB 中点,∠ACB=90°,求证:12CD AB:3:已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2:4:已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=ACADB CBA CDF2 1 E5:已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE :6:.:如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

7:P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB8:已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BEP D ACB9:已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10:如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .11:如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA :FA ED C B12:如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.13:已知:如图,DC∥AB,且DC=AE,E为AB的中点,(1)求证:△AED≌△EBC.(2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明):14:如图:DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

OEDC BAFED CBA15:如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

16:AB=AC,DB=DC,F是AD的延长线上的一点。

求证:BF=CF17:已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF.MFECBAFDC BA18:如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.19:如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。

求证:MB=MC20:在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.654321E DCBAB C M AF E21:如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证:(1)EC=BF ;(2)EC ⊥BF22.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

23:如图,已知∠1=∠2,∠3=∠4,求证:AB=CD :ABM CF.3421DCBA24:如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .25:如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.26:点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。

求证:(1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。

ABC DE F图9EAB AB NC N27:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.28:如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD=BE ; ② PQ ∥AE ; ③ AP=BQ ;④ DE=DP ; ⑤ ∠AOB=60° ⑥CP=CQ ⑦△CPQ 为等边三角形.⑧共有2对全等三角形 ⑨CO 平分∠AOP ⑩CO 平分∠BCD 恒成立的结论有______________(把你认为正确的序号都填上).A B C E D O P Q29:如图1,四边形ABCD 是正方形,M 是AB 延长线上一点。

直角三角尺的一条直角边 经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A ,B 重合),另一条直角边与∠CBM 的平分线BF 相交于点F.⑴ 如图14―1,当点E 在AB 边的中点位置时:① 通过测量DE ,EF 的长度,猜想DE 与EF 满足的数量关系是 ; ② 连接点E 与AD 边的中点N ,猜想NE 与BF 满足的数量关系是 ; ③ 请证明你的上述两猜想.⑵ 如图14―2,当点E 在AB 边上的任意位置时,请你在AD 边上找到一点N, 使得NE=BF ,进而猜想此时DE 与EF 有怎样的数量关系并证明 :30:已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEFS △、CEFS △、ABC S△又有怎样的数量关系?请写出你的猜想,不需证明.A E CF B D图1 图3ADFECBA DBC E图2FDCBA31:等边△ABC ,D 为△ABC 外一点,∠BDC=120°,BD=DC .∠MDN=60°射线DM 与直线AB 相交于点M ,射线DN 与直线AC 相交于点N ,①当点M 、N 在边AB 、AC 上,且DM=DN 时,直接写出BM 、NC 、MN 之间的数量关系. ②当点M 、N 在边AB 、AC 上,且DM ≠DN 时,猜想①中的结论还成立吗?若成立,请证明.③当点M 、N 在边AB 、CA 的延长线上时,请画出图形,并写出BM 、NC 、MN 之间的数量关系.32:如图,BD 是等腰ABC Rt Δ的角平分线,90=∠BAC .求证BC=AB+AD ;33:如图,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD=2CE ;:ABCD FECBA34:如图在四边形ABCD 中,AC 平分∠BAD ,∠ADC +∠ABC =180度,CE ⊥AD 于E ,猜想AD 、AE 、AB 之间的数量关系,并证明你的猜想,35:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O ,求证:OE=OD:36:如图所示,已知在△AEC 中,∠E=90°,AD 平分∠EAC ,DF ⊥AC ,垂足为F ,DB=DC ,求证:BE=CF37:如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F 。

请你判断并写出FE 与FD 之间的数量关系; (2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

38:已知:如图,BF ⊥AC 于点F ,CE ⊥AB 于点E ,且BD=CD ,求证:(1)△BDE ≌△O P AM NE B CDF ACE F BD图①图②图③EBA CDP2 1D CB ACDF (2)点D在∠A的平分线上39:如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC40:已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。

(!)求证:BF=AC;(2)求证:CE=12BF;(3)CE与BC的大小关系如何?试证明你的结论。

41:数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平分线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.42:△ABC 中,∠BAC=60°,∠C=40°,AP 平分∠BAC 交BC 于P ,BQ 平分∠ABC 交AC 于Q ,求证:AB+BP=BQ+AQ 。

相关文档
最新文档