拉氏变换基本性质解析
7.2拉氏变换的性质

高等数学
主讲人 宋从芝
7.2 拉氏变换的性质
本讲概要
➢拉氏变换的性质 ➢例题
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] =a1L [f1(t) ] + a2L[f2(t)] = a1F1(p) + a2F2(p)
可以先求各函数的象函数再进行计算。
性质2(平移性质) 若L[ f (t)]=F(p) ,则 L[eat f (t)] = F(p-a)
此性质说明,像原函数乘以 eat 等于其像函数做位移a。
例2 求
性质3(延滞性质) 若L[ f (t)]=F(p) ,则 L[f (t-a)] = e-at F(p)
常用函数的拉氏变换
例1 求函数 解
的拉氏变换 .
一.拉氏变换的性质
性质1(线性性质) 若a1 , a2是常数,并设L[f1(t)]=F1(p) , L[f2(t)]=F2(p) ,则
L[a1f1(t)+ a2f2(t)] = a1F1(p) + a2F2(p)
根据拉氏变换的线性性质,求函数乘以常数的 象函数以及求几个函数相加减的结果的象函数时,
L f (n) (t) pn F( p) pn1 f (0) pn2 f (0) L f (n1) (0)
零初始条件下:f (0) f (0) L f (n1) (0) 0
L f (n) (t) pn F( p)
性质5(积分性质) 若L[ f (t)]=F(p)(p≠0) , 且f (t)连续,则
t0 t
L
拉氏变换详细解读

s+a
(二)、拉氏变换的主要定理 )、拉氏变换的主要定理 1.线性定理
L[ f1(t ) + f2 (t )] = L[ f1(t )] + L[ f2 (t )] = F1(s) + F2 (s)
L[kf (t )] = kL[ f (t )] = kF(s)
2.微分定理
df (t ) L = sF(s) − f (0+ ) dt
n −at
s 2 2 s +ω n! sn+1 n!
( s + a)
1
n+1
( s + a) ( s + b)
1 s ( s + a) ( s + b)
( s + a) ( s + b)
s
序号
−at
f(t)
F(s)
13
e sinωt e cosωt
− at
( s + a ) + ω2
2
ω
14
s + a ) + ω2 (
) 式中 f (−1) (0+ ) 为 ∫ f (t dt 在t时间坐标轴的右端 趋于零时的f 的值,相当于初始条件。 趋于零时的f(t)的值,相当于初始条件。
f (t )(dt )2 = 1 F(s) + 1 f (−1) (0+ ) + 1 f (−2) (0+ ) L ∫∫ s2 s2 s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0
电路元件 拉氏变换

电路元件拉氏变换拉氏变换是电路分析中常用的数学工具,用于描述电路元件在时域和频域之间的转换关系。
本文将介绍拉氏变换的基本概念、性质和应用,以及在电路分析中的具体应用案例。
一、拉氏变换的基本概念和性质1. 拉氏变换的定义拉氏变换是一种将时域函数转换为复频域函数的数学工具。
对于一个时域函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞) e^(-st) f(t) dt其中,s是复变量,表示频域的频率。
2. 拉氏变换的性质拉氏变换具有线性性质,即对于任意常数a和b,有:L{af(t) + bg(t)} = aF(s) + bG(s)其中,F(s)和G(s)分别是f(t)和g(t)的拉氏变换。
拉氏变换还具有平移性质、尺度性质、微分性质、积分性质等。
这些性质使得我们可以通过拉氏变换来简化复杂的电路分析问题。
二、拉氏变换在电路分析中的应用1. 线性电路分析拉氏变换在线性电路的分析中起到了至关重要的作用。
通过将电路中的电压和电流信号进行拉氏变换,可以将微分方程转化为代数方程,从而简化电路分析的过程。
例如,对于一个RC电路,可以通过拉氏变换将微分方程转化为代数方程,进而求解电路的响应。
2. 信号处理拉氏变换在信号处理领域也有广泛的应用。
通过将信号进行拉氏变换,可以将时域的信号转化为频域的信号,从而分析信号的频谱特性。
例如,在音频处理中,可以通过拉氏变换将声音信号转化为频域信号,进而进行音频滤波、降噪等处理。
3. 控制系统分析拉氏变换在控制系统的分析与设计中也起到了重要的作用。
通过将控制系统的微分方程进行拉氏变换,可以得到系统的传递函数,进而分析系统的稳定性、频率响应等特性。
例如,在机器人控制系统中,可以通过拉氏变换分析系统的动态响应,从而设计合适的控制策略。
三、拉氏变换的应用案例以一个简单的RL电路为例,分析其拉氏变换在电路分析中的应用。
假设电路中的电压源为v(t),电感为L,电阻为R。
拉氏变换

控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表 序号 F(s) f(t) 序号 F(s) f(t)11 1121(t) 123t13414511+Ts Tte T-1 156)(1a s s +ate --1167)1(1+Ts sTt e--117)1sin(122ϕξωξωξω----t e n t nn8189191020三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s),则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
积分变换第6讲拉氏变换的性质

s
d
t
0
f (t) e-std t t
L
f (t) t
即
L
f
(t) t
F(s)d s
s
一般地,有L
f (t) t n
d 1s
sd s
s
s
F(s)d s
n次
12
例4 求函数
积分变换
第6讲
1
拉氏变换的性质
本讲介绍拉氏变换的几个性质, 它们在拉氏变换 的实际应用中都是很有用的. 为方便起见, 假定在 这些性质中, 凡是要求拉氏变换的函数都满足拉 氏变换存在定理中的条件, 并且把这些函数的增 长指数都统一地取为c. 在证明性质时不再重述这 些条件
2
1. 线性性质
若a,b是常数
f1(t)
f(t)
E
E
OT
T
t
2
O
Tt
f2(t) E
2
O
TT
t
2
24
由前图可知, f(t)=f1(t)+f2(t), 所以
L [ f (t)] L [ f1 (t )] L [ f2 (t)]
EL
si n
2
T
t u(t )
EL
2
sin
T
t
-
T 2
2s2 (s2 k 2 )2
-
s2
1
k
2
2s2 - s2 - k 2 (s2 k 2 )2
s2 - k2 (s2 k 2 )2
拉氏变换与Z变换的基本公式及性质

拉氏变换与Z变换的基本公式及性质拉氏变换(Laplace Transform)是一种重要的信号分析工具,它将时域函数转换为复域函数,使得分析和处理复杂的差分方程、微分方程、线性时不变系统等问题变得更加简单。
拉氏变换的定义如下:对于一个定义在半轴t≥0上的实值函数f(t),它的拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] e^(-st) f(t) dt其中s是一个复变量,e^(-st)是一个复数系数。
拉氏变换的基本公式:1.映射常数L{1}=1/s2. $L{e^{at}}=\frac{1}{s-a}, Re(s)>a$3.时间平移L{f(t-a)u(t-a)} = e^(-as)F(s)4.频域平移L{e^(as)f(t)} = F(s-a)5.合并函数L{f(t)+g(t)}=F(s)+G(s)6.乘法L{f(t)g(t)}=F(s)*G(s)7.单位冲激函数L{δ(t-a)} = e^(-as)拉氏变换的性质:1.线性性质L{af(t) + bg(t)} = aF(s) + bG(s)2.积分性质L{∫[0,t]f(τ)dτ}=1/s*F(s)3.拉氏变换的导数性质L{f'(t)}=sF(s)-f(0)4.初始值定理f(0+) = lim(s->∞) sF(s)5.最终值定理lim(t->∞) f(t) = lim(s->0) sF(s)Z变换是一种由离散信号而来的变换,它将离散序列变换到复平面上。
Z变换的定义如下:对于一个离散序列x[n],它的Z变换X(z)定义为:X(z)=Z{x[n]}=∑[-∞,∞]x[n]z^(-n)其中z是一个复变量。
Z变换的基本公式:1.映射常数Z{1}=12.单位序列Z{δ[n]}=13.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)4.平移Z{x[n-a]}=z^(-a)X(z)5.单位冲激响应函数Z{h[n]}=H(z)6.时域乘法Z{x[n]y[n]}=X(z)Y(z)Z变换的性质:1.线性性质Z{ax[n] + by[n]} = aX(z) + bY(z)2.移位性质Z{x[n-k]}=z^(-k)X(z)3.初始值定理x[0] = lim(z->∞) X(z)4.最终值定理lim(n->∞) x[n] = lim(z->1) (1-z^(-1))*X(z)5.时域卷积性质Z{x[n]*y[n]}=X(z)Y(z)6.时域乘法性质Z{x[n]y[n]}=X(z)Y(z)总结:拉氏变换和Z变换都是用于信号分析和处理的重要工具。
拉氏变换详解课件

F(s)
1 s2
f (1) (0) 1 f (2) (0) s
若原函数f(t)及其各重积分的初始值都等于0
则有
L[
f
(t)dtn ]
1 sn
F (s)
即原函数 f(t)的n重积分的拉氏变换等于其
象
sn
函数除以
。
6
(4)终值定理 lim f (t) lim sF(s)
t
直接按上式求原函数太复杂,一般都用 查拉氏变换表的方法求拉氏反变换,但F(s)12 必须是一种能直接查到的原函数的形式。
若F(s)不能在表中直接找到原函数,则需 要将F(s)展开成若干部分分式之和,而这 些部分分式的拉氏变换在表中可以查到。
例1: F(s)
1
1 (1 1)
(s a)(s b) b a s a s b
F(s)
M (s) D(s)
b0sm b1sm1 bm1s bm sn a1sn1 an1s an
(m
n)
(1)情况一:F(s) 有不同极点,这时,F(s)
总能展开成如下简单的部分分式之和
F (s) c1 c2 cn
s p1 s p2
2.常用函数的拉氏变换
数学知识回顾
(1)例1.求阶跃函数f(t)=A·1(t)的拉氏变换。
F (s) Ae st dt
A e st
A
0
s
0
s
1
单位阶跃函数f(t)=1(t)的拉氏变换为 s 。
(2)例2.求单位脉冲函数f(t)=δ(t)的拉氏变换。
lim lim
02第二章拉氏变换的数学方法

02第二章拉氏变换的数学方法拉氏变换是一种重要的数学工具,广泛应用于信号与系统、控制理论、电路分析、通信工程等领域。
本文将介绍拉氏变换的数学方法,包括拉氏变换的定义、性质和常见的拉氏变换对列表。
一、拉氏变换的定义拉氏变换是一种将时间域函数转换为频率域函数的数学工具。
对于一个连续时间函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt其中s是复变量,通常为一个复平面上的点。
拉氏变换可以将一个函数从时间域表示转换为频率域表示,提供了一种更便于分析和处理的数学工具。
二、拉氏变换的性质拉氏变换具有一些重要的性质,如线性性质、平移性质、尺度性质等。
下面简要介绍几个常用的性质:1.线性性质:如果f(t)和g(t)的拉氏变换分别为F(s)和G(s),那么对于任意常数a和b,有a*f(t)+b*g(t)的拉氏变换为a*F(s)+b*G(s)。
2. 平移性质:如果f(t)的拉氏变换为F(s),那么e^(-at)f(t)的拉氏变换为F(s+a)。
3. 尺度性质:如果f(t)的拉氏变换为F(s),那么f(at)的拉氏变换为(1/a)F(s/a)。
这些性质使得我们能够利用拉氏变换进行函数的变换和计算,简化了分析过程。
三、常见的拉氏变换对列表拉氏变换对列表是一些常见的函数及其在拉氏变换下的变换对。
常见的拉氏变换对列表如下:1.常数函数:L{1}=1/s2.单位阶跃函数:L{u(t)}=1/s3.单位冲激函数:L{δ(t)}=14. 指数函数:L{e^(at)} = 1/(s-a),其中a为实数5. 正弦函数:L{sin(ωt)} = ω/(s^2 + ω^2)6. 余弦函数:L{cos(ωt)} = s/(s^2 + ω^2)7. 方波函数:L{rect(t/T)} = (T/s) * sin(Ts/2)8. 指数衰减函数:L{e^(-at)u(t)} = 1/(s+a),其中a为正数这些变换对可以通过拉氏变换的定义进行推导得到,可以用于解决各种信号与系统的分析和计算问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
都为零.那么
L[df ] sF (s) dt
1 (1 e s ) 2 1
s
1 e2s
单对称方波
u(t) 2u(t 1) u(t 2)
1 (1 2es e2s ) s
抽样信号的拉氏变换
抽样序列
T (t) (t nT ) n0
抽样序列的拉氏变换
T (s)
e SnT
n0
1
1 e ST
时域抽样信号
f s (t) f (t) T (t)
设f (t) sint
sin 0t u(t)
t 0
sin0t u(t t0)
t 0 t0
sin0(t t0) u(t)
0 t0
t
sin0(t t0)u(t t0)
t 0 t0
3.时移特性的应用p250.4-2 (1)
sin t 0 t T
1. f (t)
2
0 t为其它值时
解: f (t) sin t[u(t) u(t T )] 2
抽样信号的拉氏变换
Fs (s)
f (nT )eSnT
n0
*抽样信号的拉氏变换
T (t) (t nT )
n0
L[T (t)] 0 (t nt)eStdt n0
1
1 eST
fs (t) f (t)T (t)
f (nT ) (t nT ) f (nT ) (t nT )
拉氏变换的基本性质(2)
尺度变换 初值定理
f (at)
1 F s a a
lim f (t) f (0 ) lim SF(s)
t 0
s
终值 lim f (t) f () lim SF(s)
定理
t
s0
f1(t) * f2 (t)
卷积
定理
f1(t). f2 (t)
F1(s).F2 (s)
1
T s
(1 e 2 )
s2 2
E
*台阶函数
f
(t)
E
u(t)
E
u(t
T
)
E
u(t
T
)
E
u(t
3T
)
Eu(t
T)
4
4 44 24
4
E u(t) 4
E 4s
f (t)
E
sT
[1 e 4
4s
sT
e 2
3sT
e 4
4esT ]
*单边周期函数的拉氏变换定理:若接通的 周期函数f(t)的第一个周期的拉氏变换为F1 (s) 则函数f(t)的拉氏变换为
(t)sest dt
limest f (t) f (o ) sF (s) t
f (t)是指数阶函数lim est f (t) 0 t
L[ df (t) ] sF (s) f (0 )可以推广到高阶 dt
(见p183,4 - 29和4-31式)
*几点说明
a.如果所处理里的函数为有始函数 即 f (t) 0 t 0 则f (0 ), f ' (0 ), f (n1) (0 )
2j F1(s) * F2 (s)
P189.表4.2 拉氏变换的性质
4.时域平移 2.对t微分
f (t) f (t t0 )
3.对t积分 7.初值
重点讨论
8.终值
0
(一).时域平移特性和应用
t0
t
1.时移性
设 f (t) F(s)
则 f (t to )u(t to) est0 F (s) to o
n1
sn F (s) snr1 f (r) (0 ) r0
证明:
L[
f
' (t)]
df
(t) est dt
est df
(t )
0 dt
0
令 : u est dv df (t) v f (t) du sest
udv uv vdu
L[
f
' (t)]
est
f
(t ) 0
0
f
n0
n0
L[ fS (t)]
0
f (nT ) (t nT )eStdt
n0
f (nT )ensT
n0
抽样信号的拉氏变换可表示为S域级数
(二).时域微分积分特性
1.若f (t) F (s),则df sF (s) f (0 ) dt
Res 0
和 d n f sn F (s) sn1 f (0 ) sn2 f ' (0 ) f n1(0 ) dt n
F(s) F1(s) 1 esT 0
例:周期信号的拉氏变换
LT
f1(t) F1(s)
第一周期的拉氏变换
LT
利用时移特性
f1(t nT ) esnT F1(s)
LT
f (t nT ) F1(s) eSnT
n0
n0
1
F1(s) eST
利用无穷递减等比 级数求和 s a1
1- q
例1:求全波整流周期信号的拉氏变换
四.拉氏变换的基本性质(1)
线性 微分 积分 时移
n
ki fi (t)
i1
df (t) dt
t
f ( )d
f (t t0 )u(t t0 )
n
ki.LT [ f (t)]
i 1
SF(s) f (0 )
F (s) f '(0 )
s
s
est0 F (s)
频移
f (t)eat
F(s a)
f (t)
1
0 TT
2
f0 (t)
1
t
0T
2
(1
e
T 2
)
1
S2 2
S T
t
1 e 2
sin t[u(t) u(t T )]
T
2
LT
信号加窗 第一周期
2
T
(1
e
T 2
)
S2 2
求图示信号的拉氏变换.
f (t) 包络函数 et
12
乘衰减指数 周期对称方波
1 1 es s 1 es
1 (1 e(S 1) ) (s 1) (1 e(S 1) )
=sin tu(t) - sin tu(t - T ) 2
利用 sin( B) sin cos cossin
和T 2 sin (t T ) sin t
2
f (t) sin tu(t) sin( (t T )u(t T ) 22
L[ f (t)] L[sin tu(t) sin (t T )u(t T )] 22
设f (t) sin 0t f (t)u(t) sin 0 (t)u(t) f (t t0 )u(t) sin 0 (t t0 )u(t) f (t)u(t t0 ) sin 0tu(t t0 ) f (t t0 )u(t t0 ) sin 0 (t t0 )u(t t0 )
傅立叶变换的时移性质
若: f (t) F( j) 则: f (t t0) F( j)e jt0
这个性质表明信号在时域中的延时和频域中 的移相是相对应的.
2.四个不同的函数
a. f (t)u(t) b. f (t t0)u(t) c. f (t)u(t t0) d. f (t t0)u(t t0)