第2章 神经元模型和网络结构
神经网络模型的教程及使用方法

神经网络模型的教程及使用方法神经网络模型是一种模仿人脑神经系统工作原理的计算模型。
随着人工智能和深度学习的发展,神经网络模型已经成为一种重要的工具,被广泛应用于图像识别、自然语言处理、推荐系统等领域。
本文将介绍神经网络模型的基本原理、常见的网络结构以及使用方法。
一、神经网络模型的基本原理神经网络模型受到人脑神经系统的启发,由神经元、权重和激活函数组成。
神经网络模型的基本思想是通过学习对输入数据进行逐层抽象和组合,最终得到对输入数据的预测输出。
1. 神经元(Neuron)神经元是神经网络的基本单元,接收来自上一层神经元的输入,并将其加权求和后经过激活函数得到输出。
神经元的输入可以来自于其他神经元的输出,也可以来自于外部的输入数据。
2. 权重(Weight)权重是连接神经元之间的参数,用于调节输入信号的重要性。
神经网络的训练过程就是通过不断调整权重的值来优化网络的性能。
3. 激活函数(Activation Function)激活函数决定了神经元的输出。
常用的激活函数包括Sigmoid函数、ReLU函数等。
激活函数的作用是引入非线性因素,提高神经网络模型的表达能力。
二、常见的神经网络模型结构1. 前馈神经网络(Feedforward Neural Network)前馈神经网络是最简单的神经网络结构,信号从输入层经过一层一层的传递到输出层,没有反馈连接。
前馈神经网络可以通过增加隐藏层的数量和神经元的个数来提高模型的表达能力。
2. 卷积神经网络(Convolutional Neural Network)卷积神经网络是一种专门用于图像识别的神经网络模型。
它通过局部感知和参数共享来提取图像的特征。
卷积神经网络一般由卷积层、池化层和全连接层组成。
3. 循环神经网络(Recurrent Neural Network)循环神经网络是一种具有记忆功能的神经网络模型。
它通过循环连接实现对序列数据的建模,可以处理时序数据和语言模型等任务。
神经网络专题ppt课件

(4)Connections Science
(5)Neurocomputing
(6)Neural Computation
(7)International Journal of Neural Systems
7
3.2 神经元与网络结构
人脑大约由1012个神经元组成,而其中的每个神经元又与约102~ 104个其他神经元相连接,如此构成一个庞大而复杂的神经元网络。 神经元是大脑处理信息的基本单元,它的结构如图所示。它是以细胞 体为主体,由许多向周围延伸的不规则树枝状纤维构成的神经细胞, 其形状很像一棵枯树的枝干。它主要由细胞体、树突、轴突和突触 (Synapse,又称神经键)组成。
15
4.互连网络
互连网络有局部互连和全互连 两种。 全互连网络中的每个神经元都 与其他神经元相连。 局部互连是指互连只是局部的, 有些神经元之间没有连接关系。 Hopfield 网 络 和 Boltzmann 机 属于互连网络的类型。
16
人工神经网络的学习
学习方法就是网络连接权的调整方法。 人工神经网络连接权的确定通常有两种方法:
4
5. 20世纪70年代 代表人物有Amari, Anderson, Fukushima, Grossberg, Kohonen
经过一段时间的沉寂后,研究继续进行
▪ 1972年,芬兰的T.Kohonen提出了一个与感知机等神经 网络不同的自组织映射理论(SOM)。 ▪ 1975年,福岛提出了一个自组织识别神经网络模型。 ▪ 1976年C.V.Malsburg et al发表了“地形图”的自形成
6
关于神经网络的国际交流
第一届神经网络国际会议于1987年6月21至24日在美国加州圣地亚哥 召开,标志着神经网络研究在世界范围内已形成了新的热点。
神经网络第2章神经网络控制的基本概念

正则化
正则化是一种防止模型过拟合 的技术,通过在损失函数中增 加惩罚项来约束模型复杂度。
常见的正则化方法包括L1正则 化、L2正则化和dropout等。
正则化可以帮助模型在训练过 程中更加关注数据的统计规律, 而不是单纯地记忆训练数据。
推荐系统
总结词
推荐系统是利用神经网络对用户的行为和兴趣进行分 析和预测,为其推荐相关内容或产品的系统。
详细描述
推荐系统是利用神经网络对用户的行为和兴趣进行分析 和预测,为其推荐相关内容或产品的过程。通过训练神 经网络,可以使其学习到用户的兴趣和行为模式,进而 实现个性化的推荐。在电子商务领域,推荐系统可以根 据用户的购物历史和浏览行为为其推荐相关商品或服务 ,提高用户的购买率和满意度。在新闻推荐领域,推荐 系统可以根据用户的阅读历史和兴趣为其推荐相关的新 闻文章或视频,提高用户的阅读体验和粘性。
早停法
早停法是一种防止模型过拟合的 技术,通过提前终止训练来避免
模型在验证集上的性能下降。
在训练过程中,当模型在验证集 上的性能开始下降时,就应该停
止训练,以避免过拟合。
早停法可以帮助节省计算资源和 时间,同时提高模型的泛化能力。
Dropout技术
Dropout是一种正则化技术,通过随 机关闭网络中的一部分神经元来防止 过拟合。
THANKS FOR WATCHING
感谢您的观看
Dropout可以帮助模型更加泛化地学 习数据分布,提高模型的鲁棒性和泛 化能力。
在训练过程中,每个神经元有一定的 概率被随机关闭,这样在每次前向传 播和反向传播时,网络的连接结构都 会有所不同。
神经网络数学的原理

神经网络数学的原理神经网络是一种计算模型,基于人工神经元之间的相互连接和信息传递的原理。
神经网络在模拟人类大脑的信息处理过程方面具有独特的优势,已经成功应用于图像识别、语音识别、自然语言处理等领域。
神经网络的数学原理是其能够高效处理和学习复杂数据的基础,下面将从神经元模型、网络结构、前向传播和反向传播算法等方面进行详细阐述。
一、人工神经元模型神经网络的基本组成单元是人工神经元,它是对生物神经元的抽象和简化。
神经元接收来自其他神经元的输入,并根据输入信号的加权和进行处理,然后将处理结果传递给下一层的神经元。
神经元的数学模型如下所示:1. 输入(Input):神经元接收一个或多个来自其他神经元的输入信号。
2. 权重(Weight):每个输入信号都有一个对应的权重,用于表示这个输入信号对神经元的影响程度。
权重可以是正数或负数,通过调整权重的大小,可以调节神经元的敏感性。
3. 激活函数(Activation Function):神经元接收到所有输入信号后,将它们与对应的权重相乘并相加,得到一个加权和。
然后将加权和输入到激活函数中,激活函数可以是sigmoid、ReLU等形式,用于将输入信号转换为输出信号。
4. 阈值(Threshold):神经元的输出信号需要超过一个特定的阈值才能激活。
阈值可以理解为神经元的活跃性水平,通过调整阈值的大小,可以调节神经元的活跃程度。
二、神经网络结构神经网络是由多个神经元按照一定的层次结构组成的,通常包括输入层、隐藏层和输出层。
不同层的神经元之间存在连接,其中输入层和输出层是必须的,而隐藏层可以根据任务的需要来设置。
1. 输入层(Input Layer):接收输入数据,并将数据传递给下一层。
2. 隐藏层(Hidden Layer):隐藏层是位于输入层和输出层之间的一层或多层神经元,用于增加模型的复杂度和表达能力。
3. 输出层(Output Layer):输出层根据网络的任务,产生对应的输出结果。
人工神经元模型

nh
二、前向神经网络模型
假设每一层的神经元激励函数相同,则对于L+1层 前向传播网络,其网络输出的数学表示关系方程式 一律采用:
Γ l为各层神经元的激励函数, Wl 为l-1层到l层的连接权矩阵, l=1,2,...,L θ l 为l层的阀值矢量 其中:
二、前向神经网络模型
有导师学习的基本思想
y
1k
x
1k
x 2k
y2k
1) oj ( w ( jl x l j )
ni
l 1
j=1,2,...,nh
xn k
i
yn k
o
w(1)
ij
w (2)
ij
Oj为隐含层的激励
i=1,2,...,no
示意图
图3—1—14(a) 含一个隐含层前向传播网络结构示意图 (2) y
1k j 1
y i ( w ij oj i )
i 1
第r+1个隐含层:
Net
( r 1) pj r) wrjl1o(pl jr 1 l 1 nr
r 0,1,2...L 1
输出层
L ( L 1) L y pj L ( Net pj ) L ( wL o ji pi j ) i 1 n L 1
二、前向神经网络模型
BP学习算法的推导:
对于N个样本集,性能指标为
E E p ( t pi y pi )
p 1 p 1 i 1
N
N
no
φ(·)是一个正定的、可微的凸函数 ,常取
1 no E p ( t pj y pj ) 2 2 i 1
神经网络ppt课件

通常,人们较多地考虑神经网络的互连结构。本 节将按照神经网络连接模式,对神经网络的几种 典型结构分别进行介绍
12
2.2.1 单层感知器网络
单层感知器是最早使用的,也是最简单的神经 网络结构,由一个或多个线性阈值单元组成
这种神经网络的输入层不仅 接受外界的输入信号,同时 接受网络自身的输出信号。 输出反馈信号可以是原始输 出信号,也可以是经过转化 的输出信号;可以是本时刻 的输出信号,也可以是经过 一定延迟的输出信号
此种网络经常用于系统控制、 实时信号处理等需要根据系 统当前状态进行调节的场合
x1
…… …… ……
…… yi …… …… …… …… xi
再励学习
再励学习是介于上述两者之间的一种学习方法
19
2.3.2 学习规则
Hebb学习规则
这个规则是由Donald Hebb在1949年提出的 他的基本规则可以简单归纳为:如果处理单元从另一个处
理单元接受到一个输入,并且如果两个单元都处于高度活 动状态,这时两单元间的连接权重就要被加强 Hebb学习规则是一种没有指导的学习方法,它只根据神经 元连接间的激活水平改变权重,因此这种方法又称为相关 学习或并联学习
9
2.1.2 研究进展
重要学术会议
International Joint Conference on Neural Networks
IEEE International Conference on Systems, Man, and Cybernetics
World Congress on Computational Intelligence
复兴发展时期 1980s至1990s
神经网络设计课程教学大纲(可编辑修改word版)

《神经网络设计》课程教学大纲一、课程基本信息课程代码:110437课程名称:神经网络设计英文名称:Neural Network Design课程类别:专业课学时:总学时72 (其中含实验学时:7)学分:3.5适用对象:信息与计算科学、计算机、信息管理、机电工程专业本科考核方式:考试(闭卷)先修课程:高等数学、离散数学、数据结构、计算方法、线性代数二、课程简介人工神经网络模型只是生物神经系统的一种高度简化后的近似。
它是用大量的简单神经元广泛互连成的一种计算结构,属于非线性动力学系统.人工神经网络模型最初是为了探索和复制人脑处理日常事务的能力,例如说话、视觉、信息处理等,同时也有对实际相似的问题的分类且进行比较好的解释。
近一、二十年来,掀起了一次研究人工神经网络的新高潮以来,引起了许多领域科学家的高度重视,由于积极开展了大量研究工作,取得了不少突破性进展, 例如系统控制、数据压缩、模式识别、系统鉴别等方面。
本课程主要介绍人工神经网络原理及其应用,同时给出了大量的实例来加以解释。
Artificial neural networks are computational paradigms which implement simplified models of their biological counterparts,biological neural networks. Artificial neural networks are the local assemblages of neurons and their dendritic connections that form the human brain.It is classified nonlinear dynamic system by mathematics. Although the initial intent of artificial neural networks was to explore and reproduce human information processing tasks such as speech,vision,and knowledge processing,artificial neural networks also demonstrated their superior capability for classification and function approximation problems.During the last two decades artificial neural networks have been studied intensively.Some results are obtained in many demains. This has great potential for solving complex problems such as systems control,data compression,optimization problems,pattern recognition,and system identification. Artificial neural networks theory and its application was introduced in the books and many example are given to explain it theory.三、课程性质与教学目的本课程基于简明易懂、便于软件实现、鼓励探索的原则介绍人工神经网络的基本模型、拓扑结构和特性等。
《神经网络电子教案》课件

《神经网络电子教案》PPT课件第一章:神经网络简介1.1 神经网络的定义1.2 神经网络的发展历程1.3 神经网络的应用领域1.4 神经网络的基本组成第二章:人工神经元模型2.1 人工神经元的结构2.2 人工神经元的激活函数2.3 人工神经元的训练方法2.4 人工神经元的应用案例第三章:感知机3.1 感知机的原理3.2 感知机的训练算法3.3 感知机的局限性3.4 感知机的应用案例第四章:多层前馈神经网络4.1 多层前馈神经网络的结构4.2 反向传播算法4.3 多层前馈神经网络的训练过程4.4 多层前馈神经网络的应用案例第五章:卷积神经网络5.1 卷积神经网络的原理5.2 卷积神经网络的结构5.3 卷积神经网络的训练过程5.4 卷积神经网络的应用案例第六章:递归神经网络6.1 递归神经网络的原理6.2 递归神经网络的结构6.3 递归神经网络的训练过程6.4 递归神经网络的应用案例第七章:长短时记忆网络(LSTM)7.1 LSTM的原理7.2 LSTM的结构7.3 LSTM的训练过程7.4 LSTM的应用案例第八章:对抗网络(GAN)8.1 GAN的原理8.2 GAN的结构8.3 GAN的训练过程8.4 GAN的应用案例第九章:强化学习与神经网络9.1 强化学习的原理9.2 强化学习与神经网络的结合9.3 强化学习算法的训练过程9.4 强化学习与神经网络的应用案例第十章:神经网络的优化算法10.1 梯度下降算法10.2 动量梯度下降算法10.3 随机梯度下降算法10.4 批梯度下降算法10.5 其他优化算法简介第十一章:神经网络在自然语言处理中的应用11.1 词嵌入(Word Embedding)11.2 递归神经网络在文本分类中的应用11.3 长短时记忆网络(LSTM)在序列中的应用11.4 对抗网络(GAN)在自然语言中的应用第十二章:神经网络在计算机视觉中的应用12.1 卷积神经网络在图像分类中的应用12.2 递归神经网络在视频分析中的应用12.3 对抗网络(GAN)在图像合成中的应用12.4 强化学习在目标检测中的应用第十三章:神经网络在推荐系统中的应用13.1 基于内容的推荐系统13.2 协同过滤推荐系统13.3 基于神经网络的混合推荐系统13.4 对抗网络(GAN)在推荐系统中的应用第十四章:神经网络在语音识别中的应用14.1 自动语音识别的原理14.2 基于神经网络的语音识别模型14.3 深度学习在语音识别中的应用14.4 语音识别技术的应用案例第十五章:神经网络在生物医学信号处理中的应用15.1 生物医学信号的特点15.2 神经网络在医学影像分析中的应用15.3 神经网络在生理信号处理中的应用15.4 神经网络在其他生物医学信号处理中的应用重点和难点解析重点:1. 神经网络的基本概念、发展历程和应用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
输入 S个神经元的层 下,神经元的输出 a是一个标量。如果网络有多个神经 元,那么网络输出就可能是一个向量。 a1 n1 ƒ ∑
W1,1
P1 b1 请注意,网络的输入是由问题的外部描述决定的。
2.2.3 网络结构 P2
1.神经元的层 P3
1
∑ b2
n2
ƒ
a2
该层包括权值矩阵、累加器、偏置值向量b、传输 函数框和输出向量a。1
输入 P1 P2 P3 . . . pR 多输入神经元
W1,1
∑
...
W1,R b 1
n
ƒ
a
a=ƒ(Wp+b)
图2-5
多输入神经元
该神经元有一个偏置值b,它与所有输入的加权和累 加,从而形成净输入n: n=w1,1p1+w1,2p2+…+w1,RpR+b (2.3)
这个表达式也可以写成矩阵形式: n=Wp+b 其中单个神经元的权值矩阵W只有一行元素。
对数-S形传输函数 a=1/1+e-n
a
+1
a
+1
0 -1
n
-b/w
0 -1
p
a=hardlim(n)
a=hardlim(wp+b)
硬极限传输函数
单输入hardlim神经元
图2-2 硬极限传输函数
a
+1 -b/w 0 -1
a
+b
n
0 -b
p
a=purelin(n) 线性传输函数
a=purelin(wp+b) 单输入purelin神经元
2.1 目的
第1章给除了生物神经元和神经网络的简述。现在 来介绍简化的神经元数学模型,并解释这些人工神经 元如何相互连接形成各种网络结构。另外,本章还将 通过几个简单的实例阐述这些网络如何工作。本书中 将使用本章所引入的概念和符号。
2.2 原理和实例
2.2.1 符号 本书中的图、数字公式以及解释图和数字公式的正 文,将使用一下符号:
图2-3 线性传输函数
a=logsig(n)
Log-Sigmoid 传输函数
a=logsig(wp+b)
单输入logsig神经元
图2-4 对数-S形传输函数
名称 硬极限函数 对称硬极限函数 线性函数 饱和线性函数
输入/输出关系 a=0,n<0 a=1,n≥0 a=-1,n<0 a=+1,n≥0 a=n a=0,n<0 a=n,0≤n≤1 a=1,n>1 a=-1,n<-1 a=n,-1≤n≤1 a=1,n>1 a=1/1+e-n a=en-e-n/en+e-n a=0,n<0 a=n,n ≥ 0 a=1,具有最大n的神经元 a=0,所有其他神经元
(2.6)
S S×1 R 同样,具有 S个神经元、 R个输入的单层网络也能 用简化的符号表示为如图 所示的形式。 a=2-8 ƒ(Wp+b) 图2-8 由S个神经元组成的层的简化表示
权值下标 权值矩阵元素下标的第一个下标表示权值相应 连接所指定的目标神经元编号,第二个下标表示权值相应 连接的源神经元编号。W2,3 ?
2
p3
…
∑
1
2
ƒ1
2
pR w1S1,R
b12 n1S1
2.多层神经元 输入 第1层
第2层
第3层
层上标 现在考虑具有几层神经元的网络。每个 3 2 w a31 n11 1 a11 w21,1 n21 n31 1,1 a 1 1 ∑ ƒ ∑ ƒ2 ƒ3 ∑ w 1,1 变量都附加一个上标来表示其所处层次。图 2-9所示 2 b 1 3 1 b1 b1 p1 1 1 1 的三层网络就使用了这种标记方法。 2 a3 n1 n2 a1 n3 p
a=ƒ(Wp+b) 图2-7 S个神经元组成的层
… 1 层 图 2-7 是由 S 个神经元组成的单层网络。 pR aS nS ∑ ƒ WS,R bS
输入向量p的每个元素均通过权值矩阵W和每个神 经元相连。
输入 S个神经元的层
输入向量通过如下权矩阵W进入网络: ,1 w1, 2 w1, R w1p a W w R× 1 S×1 2,1 w 2, 2 w 2, R n S×R W + S×1 ƒ , 2 wS , R 1,1 wSb wS
ƒ
1
1 R
b
1×1 a=ƒ(Wp+b)
图2-6 具有R个输入的神经元的简化符号
在图2-6中,左边垂直的实心条表示输入向量p,p 下面的变量R×1表示p的维数,也即输入是由R个元素 组成的一维向量。这些输入被送人权值矩阵W,W有1 行R列。常量1则作为输入与标量偏置值b相乘。传输函 数f的净输入是n,它是偏置值b与积Wp的和。在这种情
图标
MATLAB函数 hardlim hardlims purelin satlin
对称饱和线性函数
satlins
对数-S形函数 双曲正切S形函数 正线性函数 竞争函数
logsig tansig poslin compet
3.多输入神经元 权值矩阵 通常,一个神经元有不止一个输入。具 有R个输入的神经元如图2-5所示。其输入p1,p2,…,pR 分别对应权值矩阵W的元素w1,1,w1,2,…,w1,R 。
神经元输出按下式计算:
a=f(wp+b)
注:还有多阈值、多权值神经元
实际输出取决与所选择的待定传输函数。
2. 传输函数
图2-1中的传输函数可以是n的线性或者非线性函数。 可以用特定的传输函数满足神经元要解决的特定问题。 本书包括了各个不同的传输函数。下面将讨论其中 最常用的三种。 硬极限传输函数 线性传输函数 a=n (2.1) (2.2)
神经元的输出可以写成:a=f(Wp+b)
(2.4)
(2.5)
权值下标 权值矩阵元素下标的第一个下标表示 权值相应连接所指定的目标神经元编号,第二个下 标表示权值相应连接的源神经元编号。 简化符号 图2-6为利用这种符号所表示的多输入 神经元。
输入 p R×1
多输入神经元 a 1×1
W
1×R
+
n 1×1
● 标量:小写的斜体字母,如a,b,c。 ● 向量:小写的黑正体字母,如a,b,c。 ● 矩阵:大写的黑整体字母,如A,B,C。
2.2.2 神经元模型
1. 单输入神经元 权值 偏置(值)
输入
净输入 传输函数
通用神经元
p
w
∑
b 1
n
f
a
a=f(wp+b)
图2-1 单输入神经元
若将这个简单模型和前面第1章所讨论的生物神经 元相对照,则权值w对应于突触的连接强度,细胞体 对应于累加器和传输函数,神经元输出a代表轴突的 信号。