高中数学选修1-2教案1:1.2 独立性检验的基本思想及其初步应用教学设计

合集下载

高二数学选修1-2教案 独立性检验的基本思想及其应用第2课时

高二数学选修1-2教案   独立性检验的基本思想及其应用第2课时
浅色
合计
A
24
6
30
B
32
38
70
合计
56
44
100
由调查得到的结果,能否证实居民的发色与他们的居地有关?
解:由公式得: ,所以有99 %的把握认为居民的发色与他们的居地有关。
6、研究某特殊药物有无副作用(比如恶心),给50个患者服用此药,给另外50个患者服用安慰剂,记录每类样本中出现恶心的数目如下表,试问此药有无恶心副作用?
3、甲乙两个班进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得出班级与成绩列联表:
优秀
不优秀
总计
甲班
10
35
45
乙班
7
38
45
总计
17
73
90
画出列联表的条形图,并通过图形判断成绩与班级是否有关,利用列联表的独立性检验估计,认为“成绩是否优秀与班级有关系”犯错误的概率是多少?
解:(图略)由图及表直观判断好象“成绩与班级有关系”
答案:选A
2、在500人身上实验某种血清预防感冒的作用,把记录与500个未用血清的人作比较,结果如下表所示:
未感冒
感冒
合计
试验过
252
248
500
未用过
224
276
500
合计
476
524
1000
作出二维条形图,通过图形判断这种血清是否能够起到预防感冒的作用,并进行独立性检验。
解:(二维条形图略)由公式得
从条形图看,这种血清对预防感冒有作用,由于 ,我们有90%的把握认为起作用。
3、为了解决初二平面几何入门难的问题,某校在初中一年级代数教学中加强概念和推理教学,并设有对照班,下列是初中二年级平面几何期中测验成绩统计表的一部分,试分析研究实验结果。

1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)

1.2《独立性检验的基本思想及其初步应用》教案(新人教选修1-2)

1.2独立性检验的基本思想及其初步应用(第一课时)。

教学目标:1理解独立性检验的基本思想2、会从列联表、柱形图、条形图直观判断吸烟与患癌有关。

3、了解随机变量K 2的含义。

教学重点:理解独立性检验的基本思想。

教学难点;1、理解独立性检验的基本思想、2、了解随机变量K 2的含义。

教学过程:一、引入:从问题“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表,柱形图,和条形图的展示,使学生直观感觉到吸烟和患肺癌可能会有关系。

但这种结论能否推广到总体呢?要回答这个问题,就必须借助于统计理论来分析。

二、独立性检验就是检验两个分类变量是否有关的一种统计方法:用字母表示吸烟与患肺癌的列联表:不患肺癌 患肺癌 合计不吸烟 a b a+b吸烟 c d c+d合计 a+c b+d a+b+c+d样本容量 n=a+b+c+d假设H 0 : 吸烟与患肺癌没有关系。

则吸烟者中不患肺癌的的比例应该与不吸烟者中相应的比例差不多,即:()()()()()()()220a c a c d c a b ad bc a b c dad bc n ad bc k a b c d a c b d n a b c d ≈⇒+≈+⇒-≈++--=++++=+++因此 : 越小, 说明吸烟与患肺癌之间关系越弱.构造随机变量 其中()()2781721489874916.635⨯⨯≈⨯⨯⨯≥≈≥f 2020220202若H 成立,则K 应该很小. 把表中数据代入公式9965777549-422099K =56.632在H 成立的情况下.统计学家估算出如下概率P K 0.01即在H 成立的情况下,K 的值大于6.635的概率非常小.如果K 6.635,就断定H 不成立,出错的可能性有多大?出现K =56.632 6.635 的概率不超过1% .因此,我们有99%的把握认为"吸烟与患肺癌有关系."三、作业:预习17页。

人教版高中数学选修(1-2)-1.2《独立性检验的基本思想及其初步应用(第3课时)》教学设计

人教版高中数学选修(1-2)-1.2《独立性检验的基本思想及其初步应用(第3课时)》教学设计

1.1.2 独立性检验的基本思想及其初步应用第三课时(谷杨华)一、教学目标1.核心素养:通过学习独立性检验的基本思想及其初步应用,初步形成基本的数据分析能力,培养数学运算能力.2.学习目标(1)1.1.3.1 巩固复习利用等高条形图、列联表、独立性检验的基本思想判断分类变量的关系(3)1.1.3.2 总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤.3.学习重点总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤.4.学习难点对独立性检验基本思想的进一步理解二、教学设计(一)课前设计1.预习任务任务1阅读教材P10-P15,回顾本节主要知识点有哪些?任务2 利用独立性检验判断两个分类变量相关关系的一般步骤是什么?2.预习自测1.与表格相比,能更直观地反映出相关数据总体状况的是( )A.列联表B.散点图C.残差图D.等高条形图解: D2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若2K 的观测值为635.6 k ,我们有%99的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病.B.从独立性检验可知有%99的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有%99的可能患有肺病.C.若从统计量中求出有%95的把握认为吸烟与患肺病有关系,是指有%5的可能性使得推判出现错误.D.以上三种说法都不正确.解: C(二)课堂设计1.知识回顾(1)变量的不同“值”表示个体所属的不同类别,像这样的变量成为分类变量.(2)列出两个分类变量的频数表,称为列联表.(3)独立性检验的基本思想类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即0H :两个分类变量没有关系成立,在该假设下我们构造的随机变量2K 应该很小,如果由观测数据计算得到2K 的观测值k 很大,则在一定程度上说明假设不合理,即断言0H 不成立,即认为“两个分类变量有关系”;如果观测值k 很小,则说明在样本数据中没有发现足够证据拒绝0H .2.问题探究问题探究一 我们主要从几个方面来研究两个分类变量之间有无关系?●活动一 回归旧知,巩固复习重点知识例1.为了调查某生产线上,某质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品982件,次品87件;甲不在现场时,510件产品中合格品493件,次品17件.试分别用列联表,等高条形图,独立性检验的方法对数据进行分析.【知识点:分类变量,独立性检验,变量间的关系】详解:(1)2×2列联表如下:由列联表看出|ac -bd |=|982×17-493×8|=12750,即可在某种程度上认为“甲在不在场与产品质量有关”.相应的等高条形图如图所示:。

高中数学人教A版选修(1-2) 1.2 教学设计 《独立性检验的基本思想及其初步应用》(人教A版)

高中数学人教A版选修(1-2) 1.2 教学设计 《独立性检验的基本思想及其初步应用》(人教A版)

《独立性检验的基本思想及其初步应用》通过本节知识的学习,了解独立性检验的基本思想和初步应用,能对两个分类变量的是否有关作出明确的判断,明确对两个分类变量的独立性检验的基本思想和具体步骤,会对具体问题作出独立性检验。

【知识与能力目标】1.了解独立性检验的基本思想、方法及初步应用;2.会从列联表(只要求2×2列联表)、柱形图、条形图直观分析两个分类变量是否有关;3.会用K2公式判断两个分类变量在某种可信程度上的相关性。

【过程与方法目标】运用数形结合的方法,借助对典型案例的探究,了解独立性检验的基本思想,总结独立性检验的基本步骤。

【情感与态度目标】通过教学过程中的师生互动、生生互动,形成学生的体验性认识,提高数学学习兴趣,树立学好数学的信心,逐步形成锲而不舍的钻研精神和合作交流的团队精神。

【教学重点】理解独立性检验的基本思想及实施步骤。

【教学难点】独立性检验的基本思想和随机变量K2的含义。

多媒体课件。

复习导入回归分析的基本步骤:(1) 画出两个变量的散点图;(2) 求回归直线方程;(3) 用回归直线方程进行预报。

新课导入①2K 的出现比较突然,学生可能会提出疑问. 对于文科学生,我认为只要告诉他们这属于大学的研究范畴,在此不必做过多解释;②为什么给出一个临界值0k 呢?那是因为在假设“0H :两个变量无关”下,2K 的观测值k 应该很小,但多小才算小呢?这时需要一个衡量大小的临界值0k 。

教材在这一部分处理上,是先进行某一临界值的讲解,而后再给出卡方临界值表,这对于学生是比较难于理解的。

为了突破这个难点,我采用“先入为主”的思想,把教材后面介绍的卡方临界值表提前讲解,用概率知识解读临界值表的含义,至于小概率事件所对应的临界值,则属于大学的研究范畴,也不必做过多解释;③如何理解独立性检验的基本思想?独立性检验的步骤是固定的,仿照教科书的例题,学生不难完成习题,但独立性检验的思想对学生来说是比较难理解的,它来源于统计上的假设检验思想。

人教课标版高中数学选修1-2《独立性检验的基本思想及其初步应用(第3课时)》教案-新版

人教课标版高中数学选修1-2《独立性检验的基本思想及其初步应用(第3课时)》教案-新版

1.1.2 独立性检验的基本思想及其初步应用第三课时一、教学目标 1.核心素养:通过学习独立性检验的基本思想及其初步应用,初步形成基本的数据分析能力, 培养数学运算能力. 2.学习目标(1)1.1.3.1 巩固复习利用等高条形图、列联表、独立性检验的基本思想判断分类变量的关系(3)1.1.3.2 总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 3.学习重点总结归纳利用独立性检验判断两个分类变量相关关系的一般步骤. 4.学习难点对独立性检验基本思想的进一步理解 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P10-P15,回顾本节主要知识点有哪些? 任务2利用独立性检验判断两个分类变量相关关系的一般步骤是什么?2.预习自测1.与表格相比,能更直观地反映出相关数据总体状况的是( ) A.列联表 B.散点图 C.残差图D.等高条形图解: D2.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A.若2K 的观测值为635.6 k ,我们有%99的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病.B.从独立性检验可知有%99的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有%99的可能患有肺病.C.若从统计量中求出有%95的把握认为吸烟与患肺病有关系,是指有%5的可能性使得推判出现错误.D.以上三种说法都不正确. 解: C (二)课堂设计 1.知识回顾(1)变量的不同“值”表示个体所属的不同类别,像这样的变量成为分类变量. (2)列出两个分类变量的频数表,称为列联表.(3)独立性检验的基本思想类似于数学中的反证法,要确认两个分类变量有关系这一结论成立的可信程度,首先假设该结论不成立,即0H :两个分类变量没有关系成立,在该假设下我们构造的随机变量2K 应该很小,如果由观测数据计算得到2K 的观测值k 很大,则在一定程度上说明假设不合理,即断言0H 不成立,即认为“两个分类变量有关系”;如果观测值k 很小,则说明在样本数据中没有发现足够证据拒绝0H . 2.问题探究问题探究一 我们主要从几个方面来研究两个分类变量之间有无关系?●活动一 回归旧知,巩固复习重点知识例1.为了调查某生产线上,某质量监督员甲对产品质量好坏有无影响,现统计数据如下:质量监督员甲在现场时,990件产品中合格品982件,次品87件;甲不在现场时,510件产品中合格品493件,次品17件.试分别用列联表,等高条形图,独立性检验的方法对数据进行分析. 【知识点:分类变量,独立性检验,变量间的关系】 详解:(1)2×2列联表如下:由列联表看出|ac -bd |=|982×17-493×8|=12750,即可在某种程度上认为“甲在不在场与产品质量有关”.相应的等高条形图如图所示:●活动二对比学习,巩固重点(2)在解答独立性检验题目过程中.数据有时比较多,一定不要混淆,要分辨清楚,否则会影响解题的下一步,同时计算不能失误.问题探究二利用独立性检验判断两个分类变量是否有关系的一般步骤是什么?●活动一实际操作例2.为考察某种药物预防禽流感的效果,进行动物家禽试验,调查了100个样本,统计结果为:服用药的共有60个样本,服用药但患病的仍有20个样本,没有服用药且未患病的有20个样本. (1)根据所给样本数据完成下面2×2列联表;(2)请问能有多大把握认为药物有效?【知识点:分类变量,独立性检验,变量间的关系】详解:(1)(2)由列联表得:706.2778.260404060)20202040(10022>≈⨯⨯⨯⨯-⨯=K所以大概90%认为药物有效. ●活动二 深层思考,得出一般步骤通过上述解答过程,利用独立性检验判断两个分类变量是否有关系的一般步骤是什么? 1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率. 3.课堂总结【知识梳理】1.独立性检验的基本步骤①根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查临界值表确定临界值0k .②利用公式))()()(()(22d b c a d c b a bd ac n K ++++-=计算随机变量2K 的观测值0k .③如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过α;否则,就认为在犯错误的概率不超过α的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y 有关系”. 2.独立性检验的基本思想(1)利用2K 进行独立性检验,可以对推断的正确性的概率作出估计,样本容量n 越大,这个估计值越准确,如果抽取的样本容量很小,那么利用2K 进行独立性检验的结果就不具有可靠性. (2)独立性检验的思想就是在假设0H 成立的条件下,如果出现一个与0H 相矛盾的小概率事件,就推断0H 不成立,且该推断犯错误的概率不超过这个小概率.【重难点突破】(1)利用三维柱形图、二维条形图、等高条形图直观判断两个分类变量之间是否有关系. (2)利用2×2列联表以及随机变量2K 对两个变量进行独立性检验. 4.随堂检测1.在研究两个分类变量之间是否有关时,可以粗略地判断两个分类变量是否有关的是( ) A.散点图 B.等高条形图 C.2×2列联表 D.以上均不对 【知识点:独立性检验】解:B2.性别与身高列联表如下:A.0.043B.0.367C.22D.26.87【知识点:独立性检验】解:C3.给出列联表如下:()A.0.4B.0.5C.0.75D.0.85【知识点:独立性检验】解:B4.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:()A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关【知识点:独立性检验】解:D5.若由一个2×2列联表中的数据计算得K2=4.013,那么在犯错误的概率不超过0.05的前提下认为两个变量______(填“有”或“没有”)关系.【知识点:独立性检验】解:有(三)课后作业基础型自主突破1.在吸烟与患肺病是否有关的研究中,下列属于两个分类变量的是()A.吸烟,不吸烟B.患病,不患病C.是否吸烟、是否患病D.以上都不对【知识点:独立性检验】解:C“是否吸烟”是分类变量,它的两个不同取值;吸烟和不吸烟;“是否患病”是分类变量,它的两个不同取值:患病和不患病.可知A、B都是一个分类变量所取的两个不同值.故选C.【知识点:独立性检验】解:C 由题设知:a=45,b=10,c=30,d=15,=-255×45×75×25≈3.030由附表可知,有90%以上的把握认为“该市居民能否做到‘光盘’与性别有关”,故选C. 3.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )① 若K 2的观测值满足K 2≥6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知有99%的把握认为吸烟与患病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;③从统计量中得知有95%的把握认为吸烟与患肺病有关系,是指有5%的可能性使得推断出现错误A.①B.① ③C.③D.②【知识点:独立性检验】解:C ①推断在100个吸烟的人中必有99人患有肺病,说法错误,排除A ,B ,③正确.排除D.4.在一个2×2列联表中,由其数据计算得K 2的观测值679.7 k ,则这两个变量间有关系的可能性为( ) A.99%B.99.5%C.99.9%D.无关系【知识点:独立性检验】解:A K 2的观测值6.635<k <7.879,所以有99%的把握认为两个变量有关系.5. 在600人身上实验某种新药预防感冒的作用,把一年中的记录与另外600个未用新药的人作比较,结果如下问该种新药起到预防感冒的作用的可能性为( ) A. 99%B. 90%C.99.9%D.小于90%【知识点:独立性检验】 解:D6.分析两个分类变量之间是否有关系的常用方法有________;独立性检验的基本思想类似于____.【知识点:独立性检验】解:.频率比较法、图形分析法(三维柱形图、二维条形图、等高条形图)、独立性检验;反证法能力型 师生共研7.有人发现,多看电视容易使人变冷漠,下表是一个调查机构对此现象的调查结果:则有多少的把握认为多看电视与人变冷漠有关系( )A.95%B.99%C. 5%D. 99.9%【知识点:独立性检验】解:B8. 两个分类变量X 和Y 可能的取值分别为{}21,x x 和{}21,y y ,其样本频数满足10=a ,21=b ,35=+d c .若“X 和Y 有关系”犯错误的概率不超过0.05,则c 的值可能等于( )A. 4B. 5C. 6D. 7【知识点:独立性检验】解:A9. 为了考察长头发与女性头晕是否有关联,随机抽取了301名女性,得到如下列联表.试根据表格中已有数据填空.空格中的数据应分别为①________;②________;③________;④________. 【知识点:独立性检验】解:86; 180; 229; 30110. 为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射14天内的结果如表所示:进行统计分析时的统计假设是_______. 【知识点:独立性检验】解:小白鼠的死亡与剂量无关 探究型 多维突破11.调查339名50岁以上有吸烟习惯与患慢性气管炎的人的情况,获数据如下试问:(1)有吸烟习惯与患慢性气管炎病是否有关? (2)用假设检验的思想给予说明. 【知识点:独立性检验】解:(1)根据列联表的数据,得到 6.6356.674))()()(()(22>=++++-=d b c a d c b a bd ac n K 所以有99%的把握认为“吸烟与患慢性气管炎病有关”.(2)假设“吸烟与患病之间没有关系”,由于事件A ={635.62≥K }的概率P(A)≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.10. 20国集团峰会于2016年月9日至4日在中国杭州进行,为了搞好接待工作,组委会招幕了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10人和6人会德语,其余人不会德语.(1)根据以上数据完成以下2×2列联表:(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与会德语有关?【知识点:独立性检验】解:(1)(2)假设:是否会德语与性别无关,由已知数据可求得:706≈k1575.2.1<因此,在犯错误的概率不超过0.10的前提下不能判断会德语与性别有关.自助餐1.为了评价某个电视栏目改革效果,在改革前后分别从居名点抽取了100居民进行调查,经过计算得2K的观测值99=k.根据这一数据分析,下列说法正确的是().0A.有99%的人认为该栏目优秀B.有99%的人认为该栏目是否优秀与改革无关C.有99%的把握认为该栏目是否优秀与改革有关系D.没有充分理由认为该栏目是否优秀与改革有关系【知识点:独立性检验】解:D2.硕士学位与博士学位的一个随机样本给出了关于所获取学位类别与学生性别的分类数据,如下表所示下列各项说法正确的是()A.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别有关B.在犯错误的概率不超过0.01的前提下认为性别与获取学位类别无关C.性格决定获取学位的类别D.以上都是错误的【知识点:独立性检验】解:A3.经过对随机变量2K的研究,得到了若干临界值,当其观测值072k时,对于两个事件A与B,.2我们认为()A. 有95%的把握认为A与B有关系B. 有99%的把握认为A与B有关系C. 没有充分理由说明事件A与B有关系D. 确定事件A与B没有关系【知识点:独立性检验】解:C4. 以下关于独立性检验的说法中,错误的是()A. 独立性检验依据小概率原理B. 独立性检验得到的结论一定正确C. 样本不同,独立性检验的结论可能有差异D. 独立性检验不是判定两分类变量是否相关的唯一方法【知识点:独立性检验】解:B6.某班主任对全班50名学生进行了作业量多少的调查,数据如下表则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为( ) A. 99% B. 97.5%C. 90%D. 无充分依据【知识点:独立性检验】解:B7. 给出下列实际问题:①一种药物对某种病的治愈率;②两种药物治疗同一种病是否有区别;③吸烟者得肺病的概率;④吸烟人群是否与性别有关系;⑤网吧与青少年的犯罪是否有关系.其中用独立性检验可以解决的问题有_______. 【知识点:独立性检验】 解:②④⑤8.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:250(1320107) 4.84423272030k ⨯⨯-⨯=≈⨯⨯⨯因为2 3.841K ≥,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________. 【知识点:独立性检验】 解:0.059. 为加强素质教育,使学生各方面全面发展,某学校对学生文化课与体育课的成绩进行了调查统计,结果如下:在探究体育课成绩与文化课成绩是否有关时,根据以上数据可以得到2K 的观测值为________.(精确到0.001) 【知识点:独立性检验】 解:1.25510. 某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:由表中数据直观分析,收看新闻节目的观众是否与年龄有关;________(填“是”或“否”) 【知识点:独立性检验】 解:是11. 为了了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:(平均每天喝500ml 以上为常喝,体重超过50kg 为肥胖)已知在30人中随机抽取一人,抽到肥胖的学生的概率为154. (1)请将上面的列联表补充完整(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由 参考数据:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,古典概型】解:(1)设常喝碳酸饮料肥胖的学生有x 人,154302=+x ,6=x (2)由已知数据可求得: 879.7523.82>≈K ,因此有99.5%的把握认为肥胖与常喝碳酸饮料有关.12. 某大学高等数学老师这学期分别用B A ,两种不同的教学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:(1)依茎叶图判断哪个班的平均分高?(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率;(3)学校规定:成绩不低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关”.下面临界值表仅供参考:(参考公式:))()()(()(22d b c a d c b a bd ac n K ++++-=,其中d c b a n +++=)【知识点:独立性检验,简单抽样,概率】解(1)甲班高等数学成绩集中于60-90分之间,而乙班数学成绩集中于80-100分之间,所以乙班的平均分高.(2)记成绩为86分的同学为A,B ,其他不低于80分的同学为C,D,E,F“从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学”的一切可能结果组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)、(C,D)、(C,E)、(C,F)、(D,E)、(D,F)、(E,F)一共15个.“抽到至少有一个86分的同学”所组成的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,F)、(B,C)、(B,D)、(B,E)、(B,F)共9个,故93155P ==. (3)2240(3101017) 5.584 5.024********K ⨯⨯-⨯=≈>⨯⨯⨯,因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关. 数学视野在实际问题中,经常会面临需要推断的问题,比说研制出一种新药,需要推断此药是否有效;有人怀疑吸烟的人更易患肺癌,需要推断患肺癌是否与吸烟有关;等等.在对类似问题作出推断时,我们不能仅凭主观意愿得出结论,需要通过试验来手机数据,并依据独立性检验的原理作出合理的推断.。

人教A版 选修1-2 1.2 独立性检验的基本思想及初步应用 教案

人教A版 选修1-2  1.2 独立性检验的基本思想及初步应用   教案

[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 10~P 15的内容,回答下列问题. 阅读教材P 10“探究”的内容,思考: (1)是否吸烟、是否患肺癌是什么变量? 提示:分类变量.(2)吸烟与患肺癌之间的关系还是前面我们研究的线性相关关系吗? 提示:不是.(3)如何研究吸烟是否对患肺癌有影响? 提示:独立性检验. 2.归纳总结,核心必记 (1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)列联表①定义:列出的两个分类变量的频数表称为列联表. ②2×2列联表一般地,假设有两个分类变量X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(称为2×2列联表)为(3)等高条形图①图形与表格相比,更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.②通过直接计算或观察等高条形图发现a +b a 和c +d c相差很大,就判断两个分类变量之间有关系.(4)独立性检验(1)有人说:“在犯错误的概率不超过0.01的前提下认为吸烟和患肺癌有关,是指每100个吸烟者中就会有99个患肺癌的.”你认为这种观点正确吗?为什么?提示:观点不正确.犯错误的概率不超过0.01说明的是吸烟与患肺癌有关的程度,不是患肺癌的百分数.(2)应用独立性检验的基本思想对两个变量间的关系作出的推断一定是正确的吗? 提示:不一定.所有的推断只代表一种可能性,不代表具体情况. (3)下面是2×2列联表.则表中a ,b 提示:a =46-13=33,b =33+a =33+33=66.[课前反思](1)分类变量的定义是什么?(2)列联表的定义是什么?2×2列联表中的各个数据有什么意义?(3)什么是等高条形图,有什么作用?(4)独立性检验的内容是什么?讲一讲1.在对人们饮食习惯的一次调查中,共调查了124人,其中六十岁以上的70人,六十岁以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用a +b a 与c +d c判断二者是否有关系.[尝试解答] 2×2列联表如下:年龄在六 十岁以上 年龄在六 十岁以下 总计 饮食以蔬菜为主 43 21 64 饮食以肉类为主27 33 60 总计7054124a +b a =6443=0.671 875.c +d c =6027=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.(1)作2×2列联表时,关键是对涉及的变量分清类别.计算时要准确无误.(2)利用2×2列联表分析两个分类变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将a +b a 与c +d c c +d d的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.练一练1.假设有两个分类变量X 与Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其2×2列联表为:y 1y 2x 1 1018 x 2m26则当m 取下面何值时,X 与Y A .8 B .9 C .14 D .19解析:选C 由10×26≈18m ,解得m ≈14.4,所以当m =14时,X 与Y 的关系最弱.讲一讲2.某学校对高三学生作了一项调查发现:在平时的模拟考试中,性格内向的学生426人中有332人在考前心情紧张,性格外向的学生594人中有213人在考前心情紧张,作出等高条形图,利用图形判断考前心情紧张与性格类型是否有关系.[尝试解答] 作列联表如下:性格内向 性格外向 总计 考前心情紧张 332 213 545 考前心情不紧张94 381 475 总计4265941 020图中阴影部分表示考前心情紧张与考前心情不紧张中性格内向的人数的比例,从图中可以看出考前心情紧张的样本中性格内向的人数占的比例比考前心情不紧张样本中性格内向的人数占的比例高,可以认为考前紧张与性格类型有关.利用等高条形图判断两个分类变量是否相关的步骤:练一练2.在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?解:根据题目给出的数据作出如下的列联表:色盲不色盲总计男38442480女6514520总计449561000从等高条形图来看,在男人中患色盲的比例要比在女人中患色盲的比例大得多,因此,我们认为患色盲与性别是有关系的.讲一讲3.研究人员选取170名青年男女大学生为样本,对他们进行一种心理测验.发现有60名女生对该心理测验中的最后一个题目的反应是:作肯定的有22名,否定的有38名;110名男生在相同的项目上作肯定的有22名,否定的有88名.问:性别与态度之间是否存在某种关系?用独立性检验的方法判断.(链接教材P 13-例1)附:P (K 2≥k 0)0.10 0.05 0.025 k 02.7063.8415.024[尝试解答]肯定 否定 总计 男生 22 88 110 女生 22 38 60 总计44126170根据2×2k =110×60×44×126170×(22×38-22×88≈5.622>5.024.所以在犯错误的概率不超过0.025的前提下,认为“性别与态度有关系”.根据题意列出2×2列联表,计算K 2的观测值,如果K 2的观测值很大,说明两个分类变量有关系的可能性很大;如果K 2的观测值比较小,则认为没有充分的证据显示两个分类变量有关系.练一练3.在一次天气恶劣的飞机航程中,调查了男女乘客在飞机上晕机的情况:男乘客晕机的有24人,不晕机的有31人;女乘客晕机的有8人,不晕机的有26人.请你根据所给数据判定:在天气恶劣的飞机航程中,男乘客是否比女乘客更容易晕机?附:P (K 2≥k 0)0.10 0.05 k 02.7063.848解:根据题意,列出 晕机 不晕机 总计由公式可得K 2的观测值k =(a +b n(ad -bc=55×34×32×5789(24×26-31×8≈3.689>2.706,故在犯错误的概率不超过0.10的前提下,认为“在天气恶劣的飞机航程中男乘客比女乘客更容易晕机”.——————————————[课堂归纳·感悟提升]——————————1.本节课的重点是用2×2列联表、等高条形图分析两个分类变量间的关系以及独立性检验.2.本节课要重点掌握的规律方法(1)用2×2列联表分析两分类变量间的关系,见讲1; (2)用等高条形图分析两分类变量间的关系,见讲2; (3)独立性检验,见讲3.3.解决一般的独立性检验问题的步骤:(1)通过列联表确定a ,b ,c ,d ,n 的值,根据实际问题需要的可信程度确定临界值k 0; (2)利用K 2=(a +b n(ad -bc 求出K 2的观测值k ;(3)如果k ≥k 0,就推断“两个分类变量有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“两个分类变量有关系”.其中第(2)步易算错K 2的值,是本节课的易错点.课下能力提升(二) [学业水平达标练]题组1 用2×2列联表分析两分类变量间的关系 1.分类变量X 和Y 的列联表如下:A .ad -bc 越小,说明X 与Y 关系越弱B .ad -bc 越大,说明X 与Y 关系越强C .(ad -bc )2越大,说明X 与Y 关系越强 D .(ad -bc )2越接近于0,说明X 与Y 关系越强解析:选C |ad -bc |越小,说明X 与Y 关系越弱,|ad -bc |越大,说明X 与Y 关系越强.2.假设有两个变量X 与Y ,它们的取值分别为x 1,x 2和y 1,y 2,其列联表为:( ) A .a =50,b =40,c =30,d =20 B .a =50,b =30,c =40,d =20 C .a =20,b =30,c =40,d =50 D .a =20,b =30,c =50,d =40解析:选D 当(ad -bc )2的值越大,随机变量K 2=(a +b n(ad -bc的值越大,可知X 与Y 有关系的可能性就越大.显然选项D 中,(ad -bc )2的值最大.3.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:填“是”或“否”).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即a +b b =5818,c +d d =4227,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是题组2 用等高条形图分析两分类变量间的关系4.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的百分比为80%C .男生比女生喜欢理科的可能性大些D .男生不喜欢理科的比为60%解析:选C 从图中可以分析,男生喜欢理科的可能性比女生大一些. 5.观察下列各图,其中两个分类变量x ,y 之间关系最强的是( )解析:选D 在四幅图中,D 图中两个深色条的高相差最明显,说明两个分类变量之间关系最强.6.为了研究子女吸烟与父母吸烟的关系,调查了一千多名青少年及其家长,数据如下:解:等高条形图如图所示:由图形观察可以看出父母吸烟者中子女吸烟的比例要比父母不吸烟者中子女吸烟的比例高,因此可以在某种程度上认为“子女吸烟与父母吸烟有关系”.题组3 独立性检验7.在一项中学生近视情况的调查中,某校男生150名中有80名近视,女生140名中有70名近视,在检验这些中学生眼睛近视是否与性别有关时用什么方法最有说服力( ) A.平均数与方差 B.回归分析C.独立性检验 D.概率解析:选C 判断两个分类变量是否有关的最有效方法是进行独立性检验.8.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大,即k越小,“X与Y有关系”的可信程度越小.9.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.解析:K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①不正确;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.答案:③10.为了解决高二年级统计案例入门难的问题,某校在高一年级的数学教学中设有试验班,着重加强统计思想的渗透,下面是高二年级统计案例的测验成绩统计表(单位:分)的一部分,试分析试验效果.附:k =(a +b n(ad -bc=50×50×44×56100(32×38-18×12≈16.234. 因为16.234>6.635,所以,在犯错误的概率不超过0.01的前提下认为高二年级统计案例的测试成绩与高一年级数学教学中增加统计思想的渗透有联系.[能力提升综合练]1.利用独立性检验对两个分类变量是否有关系进行研究时,若有99.5%的把握认为事件A 和B 有关系,则具体计算出的数据应该是( )A .k ≥6.635B .k <6.635C .k ≥7.879D .k <7.879解析:选C 有99.5%的把握认为事件A 和B 有关系,即犯错误的概率为0.5%,对应的k 0的值为7.879,由独立性检验的思想可知应为k ≥7.879.2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=(a +b n(ad -bc 算得,观测值k =60×50×60×50≈7.8. 附表:A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关” 解析:选A 由k ≈7.8及P (K 2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.3.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表3A .成绩B .视力C .智商D .阅读量解析:选D 因为K 12=16×36×32×2052×(6×22-14×10=16×36×32×2052×82,K 22=16×36×32×2052×(4×20-16×12=16×36×32×2052×1122,k 32=16×36×32×2052×(8×24-12×8=16×36×32×2052×962, K 42=16×36×32×2052×(14×30-6×2=16×36×32×2052×4082,则有K 42>K 22>K 32>K 12,所以阅读量与性别有关联的可能性最大. 4.下列关于K 2的说法中,正确的有________. ①K 2的值越大,两个分类变量的相关性越大; ②K 2的计算公式是K 2=(a +b n(ad -bc ;③若求出K 2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H 0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H 0的推断.解析:对于①,K 2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错;对于②,(ad -bc )应为(ad -bc )2,故②错;③④对.答案:③④5.某班主任对全班50名学生作了一次调查,所得数据如表:)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.解析:查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k 0=6.635,本题中,k ≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.答案:不能6.随着生活水平的提高,人们患肝病的越来越多,为了解中年人患肝病与经常饮酒是否有关,现对30名中年人进行了问卷调查得到如下列联表:已知在全部30人中随机抽取1人,抽到肝病患者的概率为15.(1)请将上面的列联表补充完整,并判断是否有99.5%的把握认为患肝病与常饮酒有关?说明你的理由;(2)现从常饮酒且患肝病的中年人(恰有2名女性)中,抽取2人参加电视节目,则正好抽到一男一女的概率是多少?参考数据:解:(1)设患肝病中常饮酒的人有x 人,30=15,x =6.由已知数据可求得K 2=10×20×8×22≈8.523>7.879,因此有99.5%的把握认为患肝病与常饮酒有关.(2)设常饮酒且患肝病的男性为A ,B ,C ,D ,女性为E ,F ,则任取两人有AB ,AC ,AD ,AE ,AF ,BC ,BD ,BE ,BF ,CD ,CE ,CF ,DE ,DF ,EF ,共15种.其中一男一女有AE ,AF ,BE ,BF ,CE ,CF ,DE ,DF ,共8种.故抽出一男一女的概率是P =158.7.某食品厂为了检查甲乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本频率分布直方图.表1 甲流水线样本频数分布表(1)根据上表数据作出甲流水线样本频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据作出2×2列联表,并回答在犯错误的概率不超过多少的前提下认为“产品的包装质量与两条要自动包装流水线的选择有关”.解:(1)甲流水线样本频率分布直方图如下:(2)由表1知甲样本合格品数为8+14+8=30,由图1知乙样本中合格品数为(0.06+0.09+0.03)×5×40=36, 故甲样本合格品的频率为4030=0.75, 乙样本合格品的频率为4036=0.9, 据此可估计从甲流水线任取1件产品, 该产品恰好是合格品的概率为0.75. 从乙流水线任取1件产品, 该产品恰好是合格品的概率为0.9. (3)2×2列联表如下:因为K2的观测值k=(a+b=66×14×40×40≈3.117>2.706,所以在犯错误的概率不超过0.1的前提下认为产品的包装质量与两条自动包装流水线的选择有关.。

高中数学1.2独立性检验的基本思想及其初步应用教学设计新人教A版选修1_2

高中数学1.2独立性检验的基本思想及其初步应用教学设计新人教A版选修1_2

课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。

2、了解我国书法发展的历史。

3、掌握基本笔画的书写特点。

重点:基本笔画的书写。

难点:运笔的技法。

教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。

2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。

二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。

换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。

三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。

2、教师边书写边讲解。

3、学生练习,教师指导。

(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。

在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。

5、学生练习,教师指导。

(发现问题及时指正)四、作业:完成一张基本笔画的练习。

板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。

这是书写的起步,让学生了解书写工具及保养的基本常识。

基本笔画书写是整个字书写的基础,必须认真书写。

课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。

课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。

2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。

重点:正确书写6个字。

难点:注意字的结构和笔画的书写。

教学过程:一、小结课堂内容,评价上次作业。

二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。

2、书写方法是:写一个字看一眼黑板。

(老师读,学生读,加深理解。

人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(9)

人教版高中选修1—2数学1.2独立性检验的基本思想及其初步应用教案(9)

1.2独立性检验的基本思想及其初步应用本周题目:独立性检验的基本思想及其初步应用本周重点:(1)通过对实际问题的分析探究,了解独立性检验(只要求2×2列联表)的基本思想、方法及初步应用.;了解独立性检验的常用方法:三维柱形图和二维条形图,及其K²(或R²)的大小关系.(2)通过典型案例的探究,了解实际推断原理和假设检验的基本思想、方法及初步应用。

(3)理解独立性检验的基本思想及实施步骤,能运用自己所学的知识对具体案例进行检验.本周难点:(1)了解独立性检验的基本思想;(2)了解随机变量的含义,太大认为两个分类变量是有关系的;(3)能运用自己所学的知识对具体案例进行检验与说明.本周内容:一、基础知识梳理1.独立性检验利用随机变量来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验。

2.判断结论成立的可能性的步骤:(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。

(2)可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。

二、例题选讲例1.为了探究患慢性气管炎是否与吸烟有关,调查了339名50岁以上的人,调查结果如下表所示:试问:50岁以上的人患慢性气管炎与吸烟习惯有关吗?分析:最理想的解决办法是向所有50岁以上的人作调查,然后对所得到的数据进行统计处理,但这花费的代价太大,实际上是行不通的,339人相对于全体50岁以上的人,只是一个小部分,已学过总体和样本的关系,当用样本平均数,样本方差去估计总体相应的数字特征时,由于抽样的随机性,结果并不唯一。

现在情况类似,我们用部分对全体作推断,推断可能正确,也可能错误。

如果抽取的339个调查对象中很多人是吸烟但没患慢性气管炎,而虽不吸烟因身体体质差而患慢性气管炎,能够得出什么结论呢?我们有95%(或99%)的把握说事件与事件有关,是指推断犯错误的可能性为5%(或1%),这也常常说成是“以95%(或99%)的概率”是一样的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

独立性检验的基本思想及其初步应用
一、教学目标
1、知识与技能:
通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题.
2、过程与方法:
通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。

通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力.
3、情感态度价值观:
通过本节课的学习,加强数学与现实生活的联系。

以科学的态度评价两个分类变量有关系的可能性。

培养学生运用所学知识,解决实际问题的能力。

对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。

教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。

二、教学重点
理解独立性检验的基本思想及实施步骤.
三、教学难点
1.了解独立性检验的基本思想;
2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。

四、教学方法
以“问题串”的形式,层层设疑,诱思探究。

用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容.
五、教学过程设计。

相关文档
最新文档