实数知识点详细总结
数学实数知识点总结归纳

数学实数知识点总结归纳一、实数的基本概念1.有理数有理数包括整数、分数和负数。
整数包括自然数和零,是没有小数部分的数;分数是一个整数除以另一个整数得到的数,可以用分数形式表示;负数是小于零的数,可以表示为“-”加上一个正数。
2.无理数无理数是不能表示为有理数的数,如根号2、圆周率π等。
这些数不能用有限小数表示,并且不能被表示为两个整数的比例。
3.实数的表示实数可以用小数表示,包括有限小数和无限循环小数。
有限小数是小数部分有限位数的实数,可以用有限位数的小数表示;无限循环小数是小数部分无限位数的实数,可以用循环小数形式表示。
二、实数的运算1.加法和减法实数的加法和减法规则和有理数的运算规则相同,即同号相加、异号相减。
加法和减法的结果仍然是实数。
2.乘法和除法实数的乘法和除法规则和有理数的运算规则相同,即同号相乘得正数,异号相乘得负数。
乘法和除法的结果仍然是实数。
3.乘方和开方实数的乘方和开方是实数的特殊运算,乘方是指一个数自身相乘若干次,开方是指一个数的平方根。
乘方和开方的结果仍然是实数。
三、实数的性质1.实数的代数性质实数包括有理数和无理数,它们满足代数运算的基本性质,如交换律、结合律、分配律等。
2.实数的比较性质实数可以进行大小比较,满足大小比较的基本性质,如传递性、反对称性、三角不等式等。
3.实数的稠密性质实数满足稠密性质,即在任意两个不相等的实数之间,都可以找到一个实数。
四、实数的应用1.实数在数学中的应用实数在数学中的应用非常广泛,涉及到各种数学问题和计算中,如代数、几何、概率、统计等。
2.实数在物理中的应用实数在物理中的应用也非常广泛,涉及到各种物理问题和计算中,如力学、热力学、光学、电磁学等。
3.实数在工程中的应用实数在工程中的应用也非常广泛,涉及到各种工程问题和计算中,如土木工程、机械工程、电子工程、通信工程等。
总之,实数是数学中的一个重要概念,包括有理数和无理数两个部分。
实数在数学、物理、工程等领域都有广泛的应用,掌握实数的相关知识对于提高数学水平和解决实际问题是非常重要的。
实数知识点总结

实数知识点总结实数是数学中的一个重要概念,它是包括有理数和无理数在内的所有数的集合。
实数具有许多独特的性质和特征,是数学的基础和核心。
一、实数的基本性质1. 实数的有序性:实数集中的任意两个数可以通过大小来比较。
实数集上定义了一个偏序关系,即a≤b,如果b-a是一个非负数。
2. 实数的稠密性:实数集中的任意两个数之间都存在另一个实数。
也就是说,实数集是无空隙的,无论两个实数如何接近,它们之间总有一个其他实数。
3. 实数的完备性:实数集中的每一个非空有界数集都有一个上确界和下确界,即实数集中没有“漏洞”。
4. 实数的数轴表示:实数可以通过一个数轴来表示,其中每一个实数对应于数轴上的一个点。
二、有理数有理数是可以表示为两个整数的比值的数,包括正整数、负整数、分数和零。
有理数具有以下性质:1. 有理数的加法和乘法封闭性:两个有理数的和或积仍然是有理数。
2. 有理数的有序性:有理数可以通过大小进行比较。
3. 有理数的数值性质:有理数可以准确地表示为一个分数或小数。
三、无理数无理数是指无法表示为两个整数的比值的数,无理数不能用分数精确表示,并且无限不循环的小数是无理数。
常见的无理数有根号2、根号3、圆周率π等。
无理数具有以下性质:1. 无理数的近似性:无理数可以通过有理数的序列进行无限逼近,但无法精确表示。
2. 无理数的无限性:无理数的小数表示是无限不循环的,不会在某一位上终止。
四、实数的运算1. 实数的加法和乘法:实数的加法和乘法满足交换律、结合律和分配律。
2. 实数的减法和除法:减法可以通过加法的逆运算来实现,除法可以通过乘法的逆运算来实现。
3. 实数的幂运算:实数的乘方可以通过连乘的方式来实现。
4. 实数的开方运算:实数的开方运算可以将一个实数的平方根表示为另一个实数。
五、实数的连续性实数具有连续性,也就是说实数集没有断点。
这一性质可以通过实数的稠密性来推导出来。
实数连续性在微积分和实分析等领域中起到了重要作用。
实数的知识点总结

实数的知识点总结实数的知识点总结篇1一、实数的有关概念1、无理数:无限不循环小数叫做无理数,这说明无理数有两个基本特征:一是小数位数无限多,二是不循环。
2、无理数的表现形式在中学阶段,无理数的表现形式有几下三种:①开方开不尽而得到的数,如、、等②含有π的数,如π、等③无限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)二、实数的分类有理数、无理数统称实数;它可以按以下两种方式分类实数或实数三、实数的重要性质1、有理数范围内的一些定义,概念和性质在实数范围内仍旧适用,如绝对值、相反数、倒数等。
2、两个实数大小的比较;正数大于0;0大小一切负数;二个负实数,绝对值大的反而小3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算畅通无阻,在开方运算中,正实数和0总能进行开方运算,负实数只能开立方,不能开平方,4、在有理数范围内的运算顺次和运算律在实数范围内仍旧适用。
四、实数和数轴的关系实数和数轴上的点存在着一一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。
因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个无理数用数轴上的点表示出来。
实数的知识点总结篇2实数:—有理数与无理数统称为实数。
有理数:整数和分数统称为有理数。
无理数:无理数是指无限不循环小数。
自然数:表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴:规定了圆点、正方向和单位长度的直线叫做数轴。
相反数:符号不同的两个数互为相反数。
倒数:乘积是1的两个数互为倒数。
绝对值:数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。
实数的知识点总结篇3一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。
关于实数的知识点总结

关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
实数基础知识点总结

实数基础知识点总结一、实数的定义实数是包括有理数和无理数的数集。
有理数是可以表示为两个整数的比的数,例如1/2、2、-3等。
无理数是无法表示为有理数的数,例如π、√2等。
实数包括所有有理数和无理数,用符号R表示。
二、实数的分类1. 有理数有理数包括整数、正整数、负整数、分数等。
整数包括所有的正整数、负整数和0。
有理数可以用分数形式表示,并且有限位或者无限循环小数。
2. 无理数无理数是无法表示为有理数的数。
无理数通常用小数形式表示,且不会出现循环。
典型的无理数包括圆周率π、自然对数底e、开方2、开方3等。
三、实数的性质1. 传递性:对于任意的实数a、b、c,如果a小于b,b小于c,则有a小于c。
2. 对称性:对于任意的实数a、b,如果a等于b,则b等于a。
3. 传统性:对于任意的实数a、b,如果a小于b,则a加上一个正数得到的结果小于b加上这个正数得到的结果。
4. 密度性:在任意两个不相等的实数a、b之间,必然存在有理数和无理数。
四、实数的运算1. 加法运算:实数a与实数b的和等于a加b。
2. 减法运算:实数a与实数b的差等于a减b。
3. 乘法运算:实数a与实数b的积等于a乘b。
4. 除法运算:实数a与实数b的商等于a除b。
5. 幂运算:实数a的n次方等于a自乘n次。
五、实数的绝对值实数a的绝对值是a到原点的距离,记作|a|。
如果a大于0,则|a|等于a;如果a小于0,则|a|等于-a。
六、实数的有序性实数有序,任意两个实数a、b之间可以进行大小比较,即a小于b、a等于b或者a大于b。
七、实数的计算规律1. 加法交换律:对于任意的实数a、b,有a加b等于b加a。
2. 乘法交换律:对于任意的实数a、b,有a乘b等于b乘a。
3. 加法结合律:对于任意的实数a、b、c,有a加b加c等于a加(b加c)。
4. 乘法结合律:对于任意的实数a、b、c,有a乘b乘c等于a乘(b乘c)。
5. 分配律:对于任意的实数a、b、c,有a乘(b加c)等于a乘b加a乘c。
实数常识知识点归纳总结

实数常识知识点归纳总结一、有理数有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数。
有理数的性质包括:1. 有理数的加减乘除运算规律;2. 有理数的乘方和开方运算规律;3. 有理数的大小比较和大小关系;4. 有理数的取整和绝对值等基本运算。
二、无理数无理数是不能由两个整数的比值来表示的数,它们是无限不循环的小数。
无理数的性质包括:1. 无理数与有理数的加减乘除运算规律;2. 无理数的乘方和开方运算规律;3. 无理数的大小比较和大小关系;4. 无理数的取整和绝对值等基本运算。
三、实数实数是有理数和无理数的总称,实数的性质包括:1. 实数与实数的加减乘除运算规律;2. 实数的乘方和开方运算规律;3. 实数的大小比较和大小关系;4. 实数的取整和绝对值等基本运算。
四、实数的表示实数可以用各种方式来表示,包括有限小数、循环小数、无限不循环小数和根式等形式。
在表示实数时,需要注意保留足够的有效数字和小数点后的位数。
五、实数的运算实数的加减乘除运算是数学中最基本的运算,要掌握实数的运算规律,包括正负数相加减、乘法法则、除法运算。
另外还有实数的乘方和开方运算,这也是实数的重要运算。
六、实数的大小比较实数的大小比较是数学中的一个重要概念,掌握了实数的大小比较,才能够更好地理解和运用实数。
实数的大小比较包括有理数和无理数的大小比较,以及实数的大小关系。
七、实数的应用实数在数学中有着广泛的应用,包括代数计算、几何运算、函数图像和方程求解等方面。
实数的应用可以帮助我们解决各种数学问题,提高数学运算能力和解题能力。
总结:实数是数学中的一个重要概念,掌握了实数的常识知识点,才能够更好地理解和运用数学知识。
实数的常识知识点包括有理数、无理数、实数的性质、表示、运算、大小比较和应用等方面,需要不断地进行学习和实践,才能够掌握实数的知识,提高数学运算能力。
总结整理实数知识点

总结整理实数知识点一、实数的定义实数是可以用来表示实际物理量的数。
实数包括有理数和无理数两种类型。
有理数是可以表示为两个整数之比的数,而无理数是不能表示为有理数的数。
二、实数的性质1. 实数的大小比较实数有一个非常重要的性质,就是可以比较大小。
实数可以按照大小顺序进行比较,任意两个实数可以进行大小比较,可以判断哪一个大哪一个小。
2. 实数的运算实数可以进行加法、减法、乘法和除法运算。
实数的运算满足交换律、结合律和分配律等基本性质。
任意两个实数的和、差、积和商也是实数。
3. 实数的绝对值实数的绝对值是实数到零点的距离,可以表示为非负数。
任意实数的绝对值是其本身或者其相反数。
4. 实数的平方实数的平方是实数乘以自己,结果也是实数。
实数的平方一定大于等于零。
5. 实数的开方非负实数的开方是唯一确定的非负实数。
负实数的开方是虚数。
6. 实数的范围无限范围不可数的实数非常多,它们可以两两进行大小的比较,任意两个实数之间都存在无穷个实数。
但是,实数的范围是有限的,任意有限范围的实数之间不存在无穷个实数。
7. 实数的连续性实数是连续的,任意两个实数之间都存在无穷个实数,实数形成了一条连续的数轴。
三、实数的表示方式1. 实数的小数表示实数可以表示为小数,小数是实数的一种常见表示方式。
小数可以是有限小数,也可以是无限小数,有限小数可以用有限位数的小数点表示,而无限小数需要使用循环符号或者无限位数的小数点表示。
2. 实数的分数表示实数可以表示为分数,分数是实数的另一种常见表示方式。
分数是有理数的一种,可以表示为两个整数之比。
3. 实数的根式表示实数可以表示为根式,根式是无理数的一种。
无理数是不能表示为有理数的数,它们通常用根式表示,如开方的形式表示。
四、实数的应用实数是数学中的基本概念,任何其他数学分支都要用到实数的概念。
实数的应用非常广泛,可以用来表示实际物理量,如长度、面积、体积、速度、质量等等,还可以用来表示实际经济量,如货币、价格、利率、利润等等,还可以用来表示实际科学量,如时间、温度、压力、密度等等。
实数知识点总结归纳

实数知识点总结归纳一、实数的定义1. 实数的定义实数是指包括有理数和无理数在内的所有数的集合。
有理数是可以表示为两个整数的比值的数,包括整数、分数和循环小数等;无理数是不能表示为有理数的数,如π和根号2等。
实数的概念是对一切可以在数轴上标出的点的统称。
2. 实数的表示实数可以用十进制数表示,包括整数部分和小数部分。
例如,数3.14是一个实数,3是它的整数部分,0.14是它的小数部分。
3. 实数的性质实数具有有限性、稠密性、连续性和比较性等基本性质。
有理数与无理数的性质有所不同,但它们都是实数的一部分。
二、实数的性质1. 实数的顺序性实数集合中任意两个数都可以比较大小,即对于任意a,b∈R,要么a<b,要么a= b,要么a>b。
2. 实数的稠密性实数集合中任意两个不相等的实数之间都有无穷多个实数。
例如,任意两个有理数之间必存在无理数,任意两个无理数之间必存在有理数。
3. 实数的加法性质实数的加法运算满足交换律、结合律和分配律。
对于任意a,b,c∈R,有a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
4. 实数的乘法性质实数的乘法运算也满足交换律、结合律和分配律。
对于任意a,b,c∈R,有ab=ba,(ab)c=a(bc),a(b+c)=ab+ac。
另外,实数0的乘法恒等于0,实数1的乘法恒等于自身。
5. 实数的整除性实数可以相互整除,如果a,b∈R,且a≠0,则必存在一个实数c,使得a=bc。
这个性质表明了实数的整除性。
6. 实数的实数运算实数的加法、减法、乘法和除法都是封闭的,即对于任意a,b∈R,a+b,a-b,ab,a/b∈R。
这意味着实数的四则运算可以得到实数。
7. 实数的有理数和无理数性质有理数和无理数的性质有所不同,其中有理数可以表示为有限小数、循环小数或分数,而无理数不能用这些形式表示。
三、实数的应用1. 实数在数轴上的表示实数可以用数轴上的点表示,数轴是一个无限延伸的直线,用来表示实数的大小和相对位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4章 实数
知识结构:
实数
1.平方根
(1)定义:如果x 2=a(a ≥0),那么x 叫做a 的平方根
(1)一个正数有两个平方根,它们互为相反数
(2)性质 (2)0的平方根是0
(3)负数没有平方根 (3)开平方:求一个数的平方根的运算叫做开平方
(4)算术平方根
(1)定义:正数a 的正的平方根叫做a 的算术平方根
(2)规定:0的算术平方根是0
(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 (5)意义:
(√a )2=a(a ≥0)
a(a ≥0)
√a 2=∣a ∣=
-a(a <0)
2.立方根
(1)定义:如果x 3=a,那么x 叫做a 的立方根
(2)性质
(1)正数的立方根是正数 (2)0的立方根是0 (3)负数的立方根是负数
(3)开立方:求一个数的立方根的运算叫做开立方
(4)意义
√a 33
=a
(√a 3
)3=a
3.实数
(1)实数的分类
1.按性质 (1)正实数 (2)0 (3)负实数
2.按概念
(1)有理数
(2)无理数-----无限不循环小数
(2)实数的性质
实数范围内的相反数、倒数、绝对值意义与有理数范围内完全一样 实数与数轴上的点是一一对应关系
有理数的大小比较方法在实数范围内仍然适用 与有理数的运算法则、运算律相同
4.近似数
定义:接近准确数而不等于准确数的数叫做近似数 精确度:常用四舍五入法对近似数进行精确
4.1平方根
一、平方根的概念及表示
拓展延伸:(1)由平方根的意义可知,x=±√a,把x=±√a代入x2=a,得(±√a)2=a(a≥0).
(2)当a≥0时,我们说式子√a有意义,当a<0时,式子√a无意义。
二、平方根的性质
1.正数有两个平方根,它们互为相反数。
如果a>0,那么a的平方根为±√a
2.0有一个平方根,就是0,即√0=0
3.负数没有平方根
三、开平方
注意:开平方是求一个非负数的平方根的运算,开平方与平方互为逆运算,只不过一个数的平方是一个数,而一个数(正数)的平方根是一对相反数。
四、算术平方根的概念及性质
算术平方根
(1)定义:正数a 的正的平方根叫做a 的算术平方根 (2)规定:0的算术平方根是0
(3)性质:√a 具有双重非负性,即√a ≥0,a ≥0 当a ≥0时,√a 2=a
五、算术平方根与平方根的区别与联系
联系:(1)具有包含关系;
(2)存在条件相同:被开方数为非负数; (3)0的平方根、算术平方根都是0.
4.2立方根
一、立方根的概念及表示
一般地,如果x 3=a,那么x 叫做a 的立方根,数a 的立方根记作“√a 3
”,读作“三次根号a ”,其中a 是被开方数,3是根指数(注意:根指数3不能省略)。
注意:理解x 3=a 时,要弄清a 是x 的立方,x 是a 的立方根,千万不要把a 与x 的意义弄反。
二、开立方
1.求一个数的立方根的运算叫做开立方。
开立方与立方互为逆运算,因此,求一个数的立方根可以通过立方运算来求。
2.重要公式:(1) (√a 3
)3=√a 33
=a
(2)√−a 3
=-√a 3
求负数的立方根时,可先求出这个负数的绝对值的立方根,然后再取它的相反数,即三次根号内的负号可以移到根号外面。
例如:√−1253
=-√1253
=-5
三、立方根的性质
正数的立方根是正数; 负数的立方根是负数; 零的立方根是零。
注意:立方根的性质可以概括为立方根的唯一性,即一个数的立方根是唯一的。
4.3实数
一、无理数
无限不循环小数叫做无理数。
注意:(1)无理数可分为正无理数和负无理数,要判断一个数是不是无理数,一要看它是不
是无限小数,二要看它是不是不循环小数,只有同时满足“无限”和“不循环”这两个条件的小数才是无理数。
(2)无理数的常见形式有以下几种:
①开方开不尽的数的相应方根是无理数,如√2,√7,√53
等; ②圆周率π及一些含有π的数,如2π,3π+1等;
③以无限不循环小数形式写出的数,如0.1010010001…(两个1之间依次多一个0)等。
二、实数的概念
有理数和无理数统称为实数。
实数可以分类如下:
实数
有理数
正有理数
0 整数、有限小数或无限循环小数 负有理数
无理数
正无理数
无限不循环小数 负无理数
三、实数与数轴的关系
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即数轴上的点与实数一一对应。
四、实数范围内的有关概念
五、实数的大小比较
有理数大小比较的方法在实数范围内仍然适用。
两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的较大;两个负实数,绝对值大的反而小;在数轴上表示的两个实数,右边的
数总比左边的数大。
此外,还有如下方法:
(1)通过比较两数的平方(立方)后的大小,进而确定原来实数的大小关系,如比较√13与3的大小,由于(√13)2=13,32=9,13>9,故√13>3
(2)用估算的方法求无理数的近似值,然后再比较大小。
(3)利用计算器计算出它们的近似值,然后再比较大小。
六、实数的运算
在实数范围内,可以进行加、减、乘、除(除数不为零)、乘方及开立方运算,任何非负实数都可以进行开平方运算。
有理数的运算性质和运算律在实数范围内仍然适用,实数混合运算的顺序与有理数混合运算的顺序基本相同,先乘方、开方,再乘除,最后加减。
同级运算按从左到右的顺序进行,有括号先算括号里的。
在实数运算中,当遇到无理数时,可运用计算器进行求值。
4.4近似数
一、近似数与准确数
与实际接近的数称为近似数;与实际情况完全符合的数叫做准确数。
实际生产生活中的许多数据都是近似数。
例如:测量工具,计算时间、速度所得的结果都是近似数,且由于测量工具不同,测量的精确程度也不同。
在实际计算中,对于像π这样的数,也常常取它的近似数。
二、近似数的取法
对较大的数取近似值时,结果一般要用科学记数法来表示。
在一些计算或测量中,我们有时需要对近似值进行处理,通常应用四舍五入法对近似数进行精确。
如果结果只取整数,那么就叫做精确到个位,如π≈3.如果结果取1位小数,那么就叫做精确到十分位(或精确到0.1),如π≈3.1.如果结果取2位小数,那么就叫做精确到百分位(或精确到0.01),如π≈3.14.
=3.333…,若要求精确到十分注意:对于“精确到哪一位”,是指四舍五入到哪一位。
如31
3
≈3.3
位,是指四舍五入到十分位,则31
3。