第五章--反比例函数的图像与性质1
反比例函数的图像和性质课件

曲线运动问题
通过给定物体的速度和运 动轨迹的曲率半径,利用 反比例关系求解物体在不 同位置的速度。
浓度问题建模与求解
溶液稀释问题
通过给定溶液的初始浓度 和稀释后的体积,利用反 比例关系求解稀释后的浓 度。
溶液混合问题
通过给定两种不同浓度的 溶液的体积和浓度,利用 反比例关系求解混合后的 浓度。
物质溶解问题
通过给定三角形的面积和底边长度,利用反比例关系求解高。
平行四边形面积问题
03
通过给定平行四边形的面积和一组对边的长度,利用反比例关
系求解另一组对边的长度。
速度问题建模与求解
01
02
03
匀速直线运动问题
通过给定物体的速度和运 动时间,利用反比例关系 求解物体运动的距离。
变速直线运动问题
通过给定物体的加速度和 运动时间,利用反比例关 系求解物体在不同时间点 的速度。
在第一象限和第三象限内,随着 $x$ 的增大 ,$y$ 值逐渐减小。
函数图像关于原点对称。
函数值变化规律
01
当 $k < 0$ 时
在第二象限和第四象限内,随着 $x$ 的增大,$y$ 值逐渐增大。
无论 $k$ 取何值,反比例函数 在其定义域内总是连续的,且在 其定义域内没有极值点。
02
03
04
函数图像关于原点对称。
2
反比例型复合函数图像
反比例型复合函数的图像形状和位置取 决于 $f(x)$ 的性质和取值范围。一般来 说,其图像可能不再是双曲线,但仍然 具有一些反比例函数的特性。
3 反比例型复合函数性质
反比例型复合函数具有一些特殊的性质 ,如单调性、奇偶性等,这些性质与 $f(x)$ 的性质和取值范围密切相关。在 实际应用中,需要根据具体情况进行分 析和判断。
《反比例函数的图象图与性质》(北师大)PPT课件(北师大版)

x
D ( x4,y4 ) C ( x3,y3 )
当k>0 时,在 每个象限 内, y随x的增大而 减少 。
当k>0 时,在 每个象限 内, y随x的增大而 增大 。
探索新知
反比例 函数
y=
k x
(k > 0)
k y= x
(k < 0)
图象
图象的
位置
y
在第一、 0 x 三象限内
图象的
对称性
两个分 支关于原 点成中心 对称
第五章·反比例函数
反比例函数的图象 图与性质
复习引入
你还记得一次函数的图象与性质吗? 一次函数y=kx+b(k≠0)的图象是一条直线,称直线y=kx+b。
复习引入
当k>0时,
y
当k<0时,
y
b>0
b=0
o
x
b<0
b>0
b=0
o
x
b<0
y随x的增大而增大;
y随x的增大而减小。
探索新知
一般地,如果两个变量x, y之间的关系可以表示成
当k>0时,在每一象限内,y随x的增大而减小;
当k<0时,在每一象限内,y随x的增大而增大。
探索新知
反比例函数 y k ( k 0 )的图象:
x
k 0
k 0
y
y
O
( x3,y3 C) ( x4,yD4 )
A ( x1,y1 ) B ( x2,y2 )
x
( x1,y1 )
( x2,y2 ) A B
列表(在自变量取值范围内取一些值,并计算相应的函数值)
x
-8
反比例函数的图象和性质(1)PPT课件

2
复习提问
下列函数中哪些是反比例函数?
① y = 3x-1 ② y = 2x2
③ y=
1 x
④
y
=
2x 3
⑤ y = 3x
⑥ y=
1 x
⑦
y
=
1 3x
⑧
y=
3 2x
反比例函数的图象又会是什么样子呢?
你还记得作函数图象的一般步骤吗?
用图象法表示函数关系时,首先在自变 量的取值范围内取一些值,列表,描点, 连线(按自变量从小到大的顺序,用一 条平滑的曲线连接起来).
7
讨 论 反比例函数的性质
实验 请 1.当大k家>0结时合,图反象比的例两函个数 的 分 限y 函 支 内= 数 分 ;6x图 别和象在,第y围一= 绕、以三x6 下象 两个问题分析反比例函 数的性质。
2①.当当kk<>00时时,图,象双的曲两线个两分分支支分 别各在在第哪二个、象四限象?限内。
y
0x
(A) y = -5x -1
( B)y=
x 2
(C)y=-2x+2; (D)y=4x.
2020年10月2日
17
2020年10月2日
18
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
10
例1
已知反比例函数y=k/x(k≠0)的图象的 一支如图。
反比例函数图像和性质ppt课件

反比例函数的定义域和值域
定义域
反比例函数的定义域是 x ≠ 0 的所有实数,即 x 可以取任何实数值,除了 0。
值域
反比例函数的值域是除了 y = 0 以外的所有实数,即 y 可以取任何实数值,但 永远不会等于 0。
02
反比例函数的性质
反比例函数的单调性
总结词
反比例函数在其定义域内并非单 调,但在各自象限内具有单调性。
表达式形式
反比例函数的一般形式为 y = k/x (k ≠ 0),其中 x 和 y 是自变量和 因变量,k 是常数。
反比例函数图像的绘制
图像绘制方法
反比例函数的图像通常在二维坐标系 中绘制,通过选择不同的 k 值,可 以绘制出不同的反比例函数图像。
图像特性
反比例函数的图像位于 x 轴和 y 轴的 有限区域,呈现出双曲线的形状,随 着 x 的增大或减小,y 的值会无限接 近于 0 但永远不会等于 0。
积分是数学中计算面积和体积的方法,分为定积分和不定积分。
反比例函数的不定积分
反比例函数y=1/x的不定积分为ln|x|+C(C为常数),这表明反比例函数可以通过对ln|x|进行不定积分得 到。
反比例函数与复数的关系
复数的概念
复数是实数和虚数的组合,形式为a+bi(a,b为实数)。
反比例函数在复数域的表现
投资回报
投资回报与投资风险成反比,即投资风险越大,投资回报越小;反之亦然。
反比例函数在日常生活中的应用
药物剂量
在药物治疗过程中,药物剂量与药效 成反比关系,即当药物剂量增加时, 药效可能会减弱。
体育训练
在体育训练中,训练强度与训练效果 成反比关系,即当训练强度增加时, 训练效果可能会减弱。
考点05 反比例函数的图像和性质(解析版)

考点五反比例函数的图像和性质知识点整合一、反比例函数的概念1.反比例函数的概念一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围反比例函数ky x=(k 是常数,k ≠0)的自变量x 的取值范围是不等于0的任意实数,函数值y 的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式ky x=(k 是常数,k ≠0)kk >0k <0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x 的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为-1典例引领变式拓展故答案为:2.考向二反比例函数的图象和性质当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y随x的增大而减小.当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y随x的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例引领根据图象可知,114x x>+的解集是-正确的有②③;故选:B .【点睛】本题考查了反比例函数的性质,平移的性质,反比例函数图象与几何变换,掌握性质,数形结合是解题的关键.2.如图,点(1,2)A 和点(,)B a b 是反比例函数右侧,则下列说法中,不正确的是(A .该反比例函数解析式B .矩形OCBD 的面积为C .该反比例函数的另一个分支在第三象限,且【详解】解:根据题意,10k ->,解得1k <,∴0k =满足题意,故选:D .变式拓展二、填空题三、解答题把上表中的坐标系中描出这些点,并用光滑的曲线连接起来,得到如图所示的(1)请在该平面直角坐标系中作出(2)观察函数图象,并结合表中的数据:①猜测1y与x之间的函数关系,并求②求2y关于x的函数表达式;(2)①观察表格可知,1y 是x 设1k y x=,把()30,10代入得:1030k =,∴300k =,∴612x ≤≤.考向三反比例函数解析式的确定1.反比例函数的解析式k y x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例引领【答案】30【分析】此题主要考查了平移的性质和反比例函数图象上点的坐标特征,题关键.利用平行四边形的面积公式得出得出k 的值.【详解】∵将该函数图像向上平移x 【答案】52【分析】本题主要考查了矩形的性质及待定系数法求反比例函数解析式,根据矩形的边与y 轴平行,()1,B m ,D【答案】8 yx =【分析】本题主要考查了求反比例函数解析式、正方形的性质等知识点,确定点是解题的关键.先根据坐标与图形得到A【答案】5 yx =-【分析】本题考查反比例函数图像的性质,键.变式拓展【答案】28【分析】利用反比例函数图像上的坐标特点,即可得出答案.【详解】解:∵ABCD 是矩形,∴90DAB ABC ∠∠==【答案】24a <<【分析】本题考查利用待定系数法求反比例函数解析式,及解不等式.先求出双曲线解析式,由题意可用长.再由线段BC 与双曲线有交点且与点考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx=中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例引领A .4-B .6【答案】C 【分析】本题考查反比例函数与一次函数的交点问题,题的关键.利用APC 与PBD 相似即可解决问题.【详解】解:PC x ⊥ 轴,PD ⊥PDB PCA ∴∠=∠,PD x 轴,BPD PAC ∴∠=∠,APC PBD ∴ ∽,∴AC PC PD BD=.二、填空题【答案】-3【分析】本题考查的是反比例函数系数k 的几何意义,的面积是是解答此题的关键.作AD OB ⊥OA =12OB ,然后通过证得AOD BOA ∽何意义即可求得k 的值.∵Rt OAB 中,30ABO ∠=︒,∴OA =12OB ,∵90ADO OAB ∠∠==︒,AOD BOA ∠∠=∴AOD BOA ∽,∴214AOD S OA S OB ⎛⎫== ⎪⎝⎭ ,【答案】5-【分析】此题主要考查了反比例函数的图象,比例函数的图象,理解反比例函数比例系数的几何意义是解决问题的关键.连接AB y ∥轴,得ABC 和AB y ∥轴,ABC ∴ 和AOB ∆关于AB 边上的高相等,52ABC AOB S S ∆∆∴==,根据反比例函数比例系数的几何意义得:变式拓展(1)用含m 的代数式表示(2)若3OMN S =△,则【答案】24m k =90OAB ∠=︒,∴N 点的横坐标为m ,反比例函数()0k y x x=>的图象过点N ,∴N 点的纵坐标为4m , OME OAN S S =△△,OMN OME OAN MEAN MEAN S S S S S=+-=△△△梯形梯形,3OMN S =△,三、解答题【答案】(2,4)C 或(8,1)C 【分析】本题考查了反比例函数的图象与性质,形的判定与性质;由反比例函数的对称性得四边形设点8,C m m ⎛⎫ ⎪⎝⎭,分别过点∵点A 、C 在反比例函数∴1842AOE COF S S ∆∆==⨯=,当04m <<时,则AOE S ∆∴6ACFE AOC S S ∆==梯形,k=【答案】6【分析】本题考查了反比例函数⊥轴,垂足为点E,连接等.作AE x到三角形AOB的面积,两个面积之和为⊥轴,垂足为点【详解】解:作AE x,AE x⊥轴,AB AC=∴=,BE CE,=5OC OB(1)求k和m的値;(2)当8x≥时,求函数值【答案】(1)10k=,m(2)5 04y<≤.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例引领(1)若2k =,4b =-,则(2)若CE DE =,则b 与【答案】12k +【分析】本题考查了一次函数和反比例函数的交点问题,系是解此题的关键.【答案】12【分析】本题主要考查了反比例函数的综合应用,解析式,解题的关键是数形结合,熟练掌握相关的性质.过点⊥轴于点E,过点CB作BE x()DE=---=,证明AD∥132联立43y x y x =+⎧⎪⎨=-⎪⎩,解得:1131x y =-⎧⎨=⎩,2113x y =-⎧⎨=⎩,∴()3,1A -,()1,3B -,二、解答题(1)求反比例函数与一次函数的函数表达式;(2)连接OA OB ,,求OAB 的面积;(3)请结合图象直接写出不等式m kx b x+<【答案】(1)6y x =,y =x +1(2)52AOB S =对于1y x =+,当0y =时,=1x -;当0x =∴()1,0C -,()0,1D ∴1,OC =1,OD =∴111112*********AOB S =⨯⨯+⨯⨯+⨯⨯=+ (3)解:由图象可知:不等式m kx b x+<的解集为:(1)求反比例函数和一次函数的解析式;(2)设D 为线段AC 上的一个动点(不包括图象于点E ,当CDE 的面积最大时,求点【答案】(1)反比例函数解析式为y =(2)点E 坐标为()2,3-.变式拓展(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出不等式【答案】(1)y x =--(2)6(3)<4x -或02x <<【分析】(1)先把点A 代入反比例函数解析式,即可求出(2)先求出直线y =-(3)观察函数图象即可求得不等式的解集.【详解】(1)解:∵(A(1)求一次函数和反比例函数的关系式;(2)若点E 是点C 关于x 轴的对称点,求【答案】(1)一次函数解析式1y x 4=-(2)32ABE S =△【分析】(1)利用点A 的坐标,代入可求出反比例函数解析式,进而求出点待定系数法可求出一次函数的解析式;当点P在BC上运动时,则PB∵2sin ==2PH B PB ,即PH =∴(1132822y DB PH =⋅=⨯⋅()304;x x ⎧≤≤由图像可得,函数图像有最大值为(3)解:根据函数图像可得:当【点睛】本题主要考查了函数图像与性质、求函数解析式、画函数图像、三角形面积、运用函数图像解不等式等知识点,求得函数解析式以及数形结合思想是解题的关键.(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求a ,k 的值.(2)利用图像信息,直接写出不等式1102k x x+-≥的解集(3)如图2,直线CD 过点A ,与反比例函数图像交于点C ,与x 轴交于点,OA OC ,求OAC 的面积.【答案】(1)4a =,12k =;(2)4x ≥(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当(3)将直线1y向下平移2围.根据函数图象可得:当11.如图,在平面直角坐标系例函数2myx=(m为常数,且(1)求反比例函数与一次函数的解析式.(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,坐标.【答案】(1)8 yx =(2)()4,2 C90∠=∠=∠=ABO BOE AEO∴四边形ABOE是矩形,∴==,OB AE2OE AB==45,∠=︒ADO∴ 是等腰直角三角形,AED∴==,DE AE4。
反比例函数的图象与性质(1)

k x
我们来画反比例函数 y
的图象.
列表:由于自变量x的取值范围是所有非零实数,因此,让x取一些 负数和一些正数值,并且计算出相应的函数值,列成下表:
x
y 2 x
列表
x
y 2 x
… …
-4
ห้องสมุดไป่ตู้
-2 -1
1 2
1 3
1 3
1 2
1 2
2 1
4 0.5
… …
-0.5 -1 -2
-4
-6
6
4
6 描点:在平面直角坐标系内,以x取 的值为横坐标,相应的函数值为纵 坐标,描出相应的点.如图.
4
-6 -4 -2 2 2 -2 4 6
连线:我们可以把y轴右边的各点
-4
-6
左边的各点,分别用一条光滑的曲
线连起来.(左边也如此)
观察和分析
自变量x的变化与函数y值的关系?
6
4
y轴右边的点,当横坐标x逐渐 增大时,纵坐标y反而减小
陵水民族中学 林秀文
1.什么是函数的图象?
建立平面直角坐标系,以自变量 取的每一个值为横坐标,相应的 函数值为纵坐标,描出对应的点, 由所有这些点组成的图形称为这 个函数的图象
2.正比例函数
y=ax (a≠0) 的图象是什么样子?
正比例函数的图象 是一条经过原点的 直线
反比例函数 y (k为常数,k 0)的图象是什么样子呢?
-1
1 2
1 2
1 2
1
1 2
2
1 4
3
1 6
-1
1
6 描点 -6 -4 -2 连线
4
反比例函数的图像和性质ppt课件

7、若点(-2,y1)、(-1,y2)、(2,y3)在
反比例函数 y = - 1 0 0 的图象上,则(
xቤተ መጻሕፍቲ ባይዱ
B
)
A、y1>y2>y3 C、y3>y1>y2
B、y2>y1>y3 D、y3>y2>y1
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
已知点A(2,y1), B(5,y2)C是(反-3比,y例3)函是数y 象上的两点.请比较y1,y2的,y大3的小大.小.
4 x
图
y
⑴代入求值
y1 A B
-3 y2 O2 5
C y3
⑵利用增减性
⑶根据图象判断
x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1、反比例函数y= - 5 的图象大致是( D )
y
x
y
A:
o
x
B:
o
x
y
C:
o
x
D:
y
o x
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
2、我校食堂有5吨煤,用y表示可以用的天数
,用x表示每天的烧煤量,则y关于x的函数的
10
1、这几个函数图象有 8 什么共同点?
2、函数图象分别位于 6 哪几个象限?
4
3、y随的x变化有怎
反比例函数的图像和性质ppt课件

探究新知
k
一般地,反比例函数 y 的图象是双曲线,它具有以下性质:
x
(1)当k>0时,图象的两个分支分别在第一、三象限内,在
每一象限内,y的值随x值的增大而减小;
(2)当k<0时,图象的两个分支分别在第二、四象限内,在
每一象限内,y的值随x值的增大而增大.
k 的正负决定反比例函数所在的象限和增减性
大而减小.
探究新知
k
当k=-2,-4,-6时,反比例函数 y
的图象(如图),它们有哪
x
些共同特征?
y
6
2
y=
x
6
4
y=
4
x
2
–6
–4
–2 O
–2
y
y
y=
4
6
x
2
4
6
–6
–4
–2 O
–2
4
2
2
ቤተ መጻሕፍቲ ባይዱ
x
6
x
2
4
6
–6
–4
–2 O
–2
–4
–4
–4
–6
–6
–6
追问(1):函数图象分别位于哪几个象限内?
函数的图象都位于二、四象限.
随堂练习
1.(1)已知点(-6,y1), (-4,y2)在反比例函数 =
试比较 y1, y2的大小
(2)已知点(6,y3), (4,y4)在反比例函数 =
比较 y3, y4的大小
函数 =
−6
的图像上,试
y
(3)已知点(-4,y5), (6,y6)在反比例
−6
的图像上,试比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的图像与性质(一)
一、学生知识状况分析
对于大部分学生来说,独立作出反比例函数图像,是一个具有挑战性的探索过程。
这是因为,以往只作过线性函数的图像,并且以往出现过的函数曲线都是无间断点的连续曲线。
学生初步遇到作非线性函数的图像,而且反比例函数的图像是由断开的两支曲线组成,因此本节课对于学生来说具有一定的困难。
二、教学任务分析
本节课的内容是反比例函数的图象与性质,旨在进一步熟悉作函数图象的主要步骤即列表、描点、连线。
理解函数的三种表示方法及相互转换,逐步明确研究函数的一般要求,反比例函数的图象具体展现了反比例函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动的直观工具,通过对反比例函数图象的全面观察和比较,发现函数自身的规律,在相互交流中锻炼从图象中获取信息的能力,同时可以使学生更牢固地掌握由他们自己发现的反比例函数的主要性质. 在教学中,应主动让学生进行操作活动,通过列表、描点、连线了解反比例函数的图象是两支双曲线,且是独立的两支双曲线,并且由于k值的不同,所分布的象限不同。
由学生自己得出的结果更容易掌握及记忆牢固,学生自己进行语言描述能发展学生的语言表达能力,同时通过互相补充修改,可以增进彼此间的合作交流意识和友谊.
(一)知识目标:
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.
2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.
3.逐步提高从函数图象中获取信息的能力,探索并掌握反比例函数的主要性质.
(二)能力训练目标
通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.
(三)情感与价值观目标
让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知
欲.
教学重点:
画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.
教学难点:
反比例函数的图象特点及性质的探究.
教学方法:
教师引导学生探究法.
教具准备:
多媒体课件
三、教学过程分析
本节课设计了五个教学环节:第一环节:复习引入;第二环节:活动探究;第三环节:自我检测;第四环节:课堂小结;第五环节:布置作业。
第一环节:复习引入
内容:通过上一节课的学习,我们知道了什么是反比例函数,以及反比例函数的关系式。
我们研究函数的一般过程是定义(关系式)、图像、性质、应用,这节课我们继续来研究反比例函数的图像,先回答下列问题:
1、反比例函数的关系式:
2、正比例函数图像的形状是,k>0,图像过第、象限,y随x的增大而; k<0,过、象限,y随x的增大而;
3、画函数图像的三个步骤是、、
目的:通过3道复习题,让学生回顾画函数图像的具体步骤,并且通过复习正比例函数引导学生学会类比学习。
效果:通过知识回顾,唤醒学生对画函数图象的记忆。
第二环节:活动探究
活动一:
还记得一次函数(0)y kx b k =+≠的图像吗?(一条直线) 怎样得到它的图像的?今天我们来研究反比例函数(0)k
y k x
=
≠的图像。
教师引导学生画反比例函数4y x
= 列表: x
…… -8 -4 -3 -2 -1 -2
1 2
1 1
2 3
4 8 ……
y=x
4 …… -2
1
-1
-3
4
-2
-4
-8
8
4
2
3
4 1
2
1
……
强调注意: ① x ≠0
②列表时自变量取值易于计算,易于描点。
描点:以表中对应值为坐标,在平面直角坐标系内描出相应的点.
连线:按照自变量由小到大的顺序,把所描的点用平滑的曲线连接起来.
在作图像的过程中,学生会出现不同的作法,在
这些作法中有些是不符合做图像的要求,这时教师可以将不同作法进行展示,请同学们指出错误的原因是什么?例如:
问题:你认为画反比例函数图像时应注意哪些问题?
总结:作反比例函数图象注意的问题
(1).列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对数),
(2).一定要养成按自变量从小到大的顺序依次画线,连线时必须用光滑的曲线连接各点,不能用折线连接。
(3).图像是延伸的,注意不要画成有明确端点。
(4).曲线的发展趋势是无限靠近坐标轴,但不和坐标轴相交
目的:通过作反比例函数4
y x
=
的图像,让学生再次熟悉做图像的过程 效果:学生通过列表、描点、连线三步让能够更清晰作图像的步骤,并且通过讨论画反比例函数图像时注意的问题,在以后做图像时会避免出错。
活动二:
做一做
请大家用同样的方法作反比例函数4
y x
-=的图象. X
……
-8
-4 -3
-2 -1 -
2
1 2
1 1
2
3
4 8 ……
y=x
4- ……
2
1 1
3
4 2
4
8
-8
-4
-2
-3
4
1
-
2
1
…… 描点、连线
目的:让学生巩固作反比例函数图像的步骤,并且初步感受反比例函数图像的特征。
效果:通过作反比例函数4
y x
=
和4y x -=的图像过程,学生除了能够更熟
练的掌握作图的要求,而且能够感悟反比例函数图像的特征。
活动三:
反比例函数图像的性质:
观察
4
y
x
=和
4
y
x
-
=的图象的形状和位置,有什么相同点和不同点。
(图象
见课件)
1.自己观察图象找出相同点和不同点。
2.小组展开讨论反比例函数
4
y
x
=和
4
y
x
-
=的图象在哪两个象限,由什么确定。
3.引导总结。
结论:
形状:
图像分别都是由两支曲线组成,因此称反比例函数的图象为双曲线。
位置:
函数
4
y
x
=的两支曲线分别位于第一、三象限内.
函数
4
y
x
-
=的两支曲线分别位于第二、四象限内.
反比例函数的图象由k决定。
当k>0时,两支双曲线分别位于一,三象限内;
当k<0时,两支双曲线分别位于二,四象限内;
目的:本环节的设置的目的是培养学生观察总结的能力,研究函数重点是研究函数的性质,性质的得出,我们都是借助于图像。
效果:让学生自己观察总结并且进行小组交流讨论,这种课堂模式能够充分体现以学生为主体的,并且调动学生学习的积极性,培养学生学习的兴趣。
活动四:
想一想:反比例函数图像是中心对称图形吗?是轴对称图形吗?
教师可以引导学生从两支曲线上对称的点出发,来发现图形的对称关系。
目的:本环节设置的目的让学生能够从图形的角度来研究反比例函数的图像。
第三环节:自我检测
1、x y 3
-=(x >0)的图像叫 ,图像位于 象限,
2、写出一个图象分布在二、四象限内的反比例函数解析式 .
3、已知函数229
(2)m m y m x --=-是反比例函数,且图像经过一、三象限,求m
的值。
4、u 与t 成反比,且当u =6时,81
=t ,这个函数关系式为
目的:题目1的设置巩固本节课所得出的性质,题目2是一道开放性题目,培养学生逆向思维的能力,题目3和4难度较大,对于学困生可以不做要求。
第四环节: 课堂小结
反比例函数(0)k
y k x
=
≠的图象由k 决定。
当k>0时,两支双曲线分别位于一,三象限内;
当k<0时,两支双曲线分别位于二,四象限内;
第五环节: 布置作业 习题5.2
(课外探究)已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且当x=2与x=3时,y 的值都等于19.y 与x 间的系数关系式,并求x =4时y 的值.
附:板书设计
反比例函数的图象与性质(一)
反比例函数(0)
k
y k x =≠的图像
反比例函数
(0)k
y k x =
≠的性质。