北师大版九年级数学定理及知识点总汇
九年级数学圆知识点总结北师大版

九年级数学圆知识点总结北师大版点的连线与切线所夹角为直角.1.垂径定理及推论:在一个圆中,如果一条直线通过圆心且垂直于另一条直线,则这条直线被称为垂径,而另一条直线被称为弦。
根据垂径定理,垂径平分弦,并且中垂定理、中径定理和弧径定理都可以由垂径定理推导而来。
2.平行线夹弧定理:当两条平行弦穿过一个圆时,它们所夹的弧是相等的。
3.“角、弦、弧、距”定理:在同一个圆或等圆中,如果两个角相等,则它们所对的弦也相等;如果两个弦相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果两个弧相等,则它们所对的角也相等;如果两个弦的弦心距相等,则它们也相等。
4.圆周角定理及推论:圆周角的度数等于它所对的弧的度数的一半;一条弧所对的圆周角等于它所对的圆心角的一半;如果两个弧相等,则它们所对的角也相等;如果两个角相等,则它们所对的弧也相等;如果一个三角形的一条边的中线等于这条边的一半,则这个三角形是直角三角形。
5.圆内接四边形性质定理:圆内接四边形的对角线互补,并且任何一个外角都等于它的内对角。
6.切线定理及性质:如果一条直线通过圆的外部一点并且与圆相切,则这条直线被称为切线。
根据切线定理,经过半径的外端并且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点且垂直于切线的直线必经过圆心。
7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线与切线所夹角为直角。
点的连线平分两条切线的夹角。
因为AB是切线,所以OC垂直于AB。
(3)几何表达式举例:因为PA、PB是切线,所以PA=PB。
因为PO过圆心,所以∠APO=∠BPO。
弦切角定理及其推论:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半。
(如图)相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项。
北师大版初中数学定理知识点

北师大版初中数学定理知识点一、数的性质与运算1.整数性质:整数的概念、整数的比较、绝对值的性质等。
2.小数性质:小数的概念、小数的比较、循环小数的性质等。
3.分数的性质:分数的概念、分数的比较、分数的大小关系、分数的约分等。
4.指数与科学记数法:指数与幂的概念、指数的运算规律、科学记数法的转化等。
5.百分数与比例:百分数的概念、百分数与分数、百分数与小数的相互转化、比例的概念与性质等。
6.基本运算:四则运算的规则、整数的四则运算、小数的四则运算、分数的加减乘除等。
二、图形与几何1.平面图形与空间图形:平面图形的分类与性质、空间图形的分类与性质等。
2.直线与角:角的概念与分类、同位角、相交角、对顶角、邻补角、互补角等。
3.三角形的性质:三角形的分类、三角形的内角和、三角形的外角和、三角形的中线、高等性质等。
4.四边形的性质:四边形的分类、四边形的性质、四边形的对角线等。
5.勾股定理和应用:勾股定理的概念与证明、勾股定理的应用等。
三、数据统计与概率1.数据的收集与整理:调查问题、数据的整理与统计、数据的图表表示等。
2.数据的分析与应用:平均数的概念与计算、中位数、众数、范围等。
3.概率的概念与计算:随机事件、样本空间、概率计算公式、事件的关系等。
四、函数与方程1.函数的概念与性质:函数的定义、自变量与因变量、函数的图像、函数的增减性等。
2.一次函数与二次函数:一次函数的概念与性质、一次函数的图像、函数的应用等。
3.一元一次方程与一元二次方程:方程的概念、解方程的基本方法、方程的应用等。
五、空间与立体几何1.立体几何的基本概念:立体的分类、正多面体、棱柱、棱锥、球、圆锥等。
2.空间直角坐标系:三维坐标、点、直线、平面等的坐标表示方法。
北师大版九年级数学知识点汇总(总16页)

北师大版九年级数学知识点汇总(总16页)第一章整式与代数式一、定义1、定义1:整式整式是由常数和未知数的乘积以及未知数的幂次构成的一个或多个项的表达式。
2、定义2:代数式代数式是数学中由常数、未知数、及他们的运算符号组成的符号表达式的总称。
二、运算1、加减运算在加减运算中,同类项要求具有相同的底数和指数,再将它们的系数相加减,整式中一些未知数有相同指数,可以合并为一项。
2、乘除运算乘除运算中,同一式子中的若干未知数及其指数要求相同,否则将它们拆开,系数则相乘、相除,未知数则相乘、相除。
三、同类因式1、定义:同类因式是指有相同底数和指数的项。
2、形式当底数相同,有两种形式出现:(1)乘积形式,如:(a+b)2;(2)对比形式,如a2:b2;当指数相同,有三种形式出现:(1)口诀形式,如:a2b2;(2)引号形式,如:(a+b)2;(3)下标形式,如:a2/b2。
第二章平方差一、定义1、定义1:平方平方是数学中指一个数的平方,也可以表示为n²。
2、定义2:差差是指在数学中表示两个或多个数之间的差,也可以表示为a-b。
二、运算1、解平方差要解方程:x²-a=b,须将a和b分别平方,变为x²-a²=b²,再根据等式左右两边分别加或减a²,变为:x²±2a x±a²=b²,再用平方根法求出x的值。
2、完全平方差要解方程:ax²+2bx+c=0,首先设:x²+2px+q=0,其中p=b/a,q=c/a,再将上式化为完全平方差的形式:(x+p)²=q-p²,最后解出 x=–p±√q–p² 。
三、巧解平方差当a、b、c的数值比较简单且不能完全平方差时,则可用巧解方法。
只要将a、b、c 做互质处理,即将a与b、c求公约数,将a、b、c分解为两个数的乘积,如果形式中乘积可以分解完全平方式,则可用巧解方法解方程。
(完整)北师大版九年级数学定理及知识点总汇,推荐文档

北师大版初中数学定理知识点汇总[九年级(上册)第一章证明(二)※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
※等边三角形是特殊的等腰三角形, 作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30o ,这它所对的直角边必然等于斜边的一半。
※有一个角等于60o 的等腰三角形是等边三角形。
※如果知道一个三角形为直角三角形首先要想的定理有: ① 勾股定理:a 2 b 2 c (注意区分斜边与直角边) ② 在直角三角形中,如有一个内角等于30o ,那么它所对的直角边等于斜边的一半③ 在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线是垂直于一条线段.并且平分这条线段的直线.。
(注意着重号的意义)<直线与射线有垂线,但无垂直平分线 >※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO )AAB J^CB 」※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
(如图2所示,OD=OE=OF )第二章一元二次方程※只含有一个未知数的整式方程,且都可以化为 ax 2 bx c 0 (a 、b 、c 为常数,0)的形式,这样的方程叫一元二次方程。
2※把ax bx c 0 (a 、b 、c 为常数,a * 0)称为一元二次方程的一般形式, a 为二次项系数;b 为一次项系数;c 为常数项。
※解一元二次方程的方法:①配方法< 即将其变为(x m )2 0的形式>③分解因式法 把方程的一边变成 0,另一边变成两个一次因式的乘积来求解。
完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。
有理数和无理数统称为实数。
2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。
实数和数轴上的点一一对应。
3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。
a的相反数是-a,-a的相反数是a。
5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。
如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。
如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。
8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。
9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。
一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。
10.开平方:求一个数a的平方根的运算,叫做开平方。
11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。
12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。
北师大版九年级数学上册和下册定理知识点汇总

北师大版九年级数学上册和下册定理知识点汇总上册定理知识点汇总1. 勾股定理•定理内容:直角三角形斜边的平方等于两直角边的平方和。
•符号表示:设直角三角形的三边分别为 a、b、c,直角边为 a 和 b,则有c2=a2+b2。
•应用场景:求直角三角形的斜边长或两直角边长。
2. 三角形中位线定理•定理内容:连接三角形某两顶点的中线长度等于第三边的一半。
•符号表示:设三角形三边分别为 a、b、c,中线连接顶点 A 和 B,交于边 c 的中点 M,则有 $AM=BM=\\frac{1}{2}c$。
•应用场景:求三角形的中线长度或边长。
3. 平行四边形对角线定理•定理内容:平行四边形对角线互相平分。
•符号表示:设平行四边形的对角线分别为 AC 和 BD,交于点 O,则$\\overrightarrow{OA}=\\overrightarrow{OC}$ 且$\\overrightarrow{OB}=\\overrightarrow{OD}$。
•应用场景:求平行四边形的对角线长度或边长。
4. 圆的面积公式•定理内容:圆的面积等于圆的半径的平方乘以π。
•符号表示:设圆的半径为 r,则圆的面积为S=πr2。
•应用场景:求圆的面积。
下册定理知识点汇总1. 二次根式化简公式•定理内容:对于a>0和b>0,有$\\sqrt{ab}=\\sqrt{a}\\times\\sqrt{b}$。
•符号表示:无。
•应用场景:将二次根式简化为最简形式。
2. 平方差公式•定理内容:(a+b)(a−b)=a2−b2。
•符号表示:无。
•应用场景:将一个乘积式化简为平方式。
3. 一次函数斜率公式•定理内容:一次函数的斜率等于函数图像上任意两点之间的纵坐标差与横坐标差的比值。
•符号表示:设点(x1,y1)和(x2,y2)在一次函数上,则斜率$k=\\frac{y_2-y_1}{x_2-x_1}$。
•应用场景:求一条直线的斜率。
4. 相似三角形定理•定理内容:两个三角形对应角度相等,则两个三角形是相似的。
北师大版-九年级(下)-数学定理知识点汇总

图1九年级(下)数学定理知识点汇总第一章 直角三角形边的关系※一. 正切:定义:在Rt △ABC 中,锐角∠A 的对边与邻边的比叫做∠A 的正切..,记作tanA ,即的邻边的对边A A A ∠∠=tan ;①tanA 是一个完整的符号,它表示∠A 的正切,记号里习惯省去角的符号“∠”; ②tanA 没有单位,它表示一个比值,即直角三角形中∠A 的对边与邻边的比; ③tanA 不表示“tan”乘以“A”;④初中阶段,我们只学习直角三角形中,∠A 是锐角的正切; ⑤tanA 的值越大,梯子越陡,∠A 越大; ∠A 越大,梯子越陡,tanA 的值越大。
※二. 正弦..: 定义:在Rt △ABC 中,锐角∠A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即斜边的对边A A ∠=sin ;※三. 余弦:定义:在Rt △ABC 中,锐角∠A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即斜边的邻边A A ∠=cos ;※余切:定义:在Rt △ABC 中,锐角∠A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即的对边的邻边A A A ∠∠=cot ;※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
(通常我们称正弦、余弦互为余函数。
同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A 为锐角,则 ①)90cos(sin A A ∠-︒=;)90sin(cos A A ∠-︒=②)90cot(tan A A ∠-︒=; )90tan(cot A A ∠-︒= ※当从低处观测高处的目标时,视线与水平线 所成的锐角称为仰角.. ※当从高处观测低处的目标时,视线与水平线所成 的锐角称为俯角.. ※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。
北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结以下是北师大版初中数学的知识点总结,涵盖了初中阶段的主要数学概念、定理、公式和解题方法。
一、数与代数1.1 有理数•定义:有理数是可以表示为两个整数比值的数,形式为a/b,其中a、b为整数,b不为0。
•分类:正有理数、负有理数、零。
•性质:有理数加减乘除运算遵循交换律、结合律和分配律。
1.2 实数•定义:实数是包含有理数和无理数的数集。
•无理数:不能表示为两个整数比值的数,如π、√2等。
1.3 函数•定义:函数是一种关系,使得一个集合(定义域)中的每个元素对应到另一个集合(值域)中的唯一元素。
•表示方法:解析式、表格、图象。
二、几何2.1 点、线、面•点:没有长度、宽度和高度的物体。
•线:由无数个点连成的直线、射线和线段。
•面:由无数个线段围成的平面图形。
2.2 三角形•定义:由三条边和三个角组成的图形。
•分类:锐角三角形、直角三角形、钝角三角形。
•性质:三角形的内角和为180°,两边之和大于第三边。
2.3 四边形•定义:由四条边和四个角组成的图形。
•分类:矩形、平行四边形、梯形、菱形等。
•性质:四边形的内角和为360°。
2.4 圆•定义:平面上到一个固定点(圆心)距离相等的所有点的集合。
•性质:圆的半径相等,圆心到圆上任意一点的距离等于半径。
2.5 立体几何•定义:研究三维空间中的点、线、面及其相互关系的几何学。
•主要概念:平面、直线、球、锥、柱等。
三、统计与概率3.1 统计•定义:研究数据收集、整理、分析和解释的方法。
•主要内容:图表、平均数、中位数、众数等。
3.2 概率•定义:描述事件发生可能性大小的数学概念。
•计算方法:频率、树状图、列表等。
四、综合应用•定义:将数学知识应用到实际问题中的能力。
•主要类型:几何问题、概率问题、应用题等。
以上就是北师大版初中数学的知识点总结,希望能对您的学习有所帮助。
学习建议1.重视基础:掌握数学基础知识是解决复杂问题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版初中数学定理知识点汇总[九年级(上册)第一章 证明(二)※等腰三角形的“三线合一”:顶角平分线、底边上的中线、底边上的高互相重合。
※等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
※有一个角等于60º的等腰三角形是等边三角形。
※如果知道一个三角形为直角三角形首先要想的定理有: ①勾股定理:222c b a =+(注意区分斜边与直角边)②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半 ③在直角三角形中,斜边上的中线等于斜边的一半(此定理将在第三章出现) ※垂直平分线.....是垂直于一条线段..并且平分这条线段的直线..。
(注意着重号的意义) <直线与射线有垂线,但无垂直平分线>※线段垂直平分线上的点到这一条线段两个端点距离相等。
※线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
※三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
(如图1所示,AO=BO=CO )※角平分线上的点到角两边的距离相等。
※角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
角平分线是到角的两边距离相等的所有点的集合。
※三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
(如图2所示,OD=OE=OF)第二章 一元二次方程 ※只含有一个未知数的整式方程,且都可以化为02=++c bx ax (a 、b 、c 为 常数,a ≠0)的形式,这样的方程叫一元二次方程......。
※把02=++c bx ax (a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式,a 为二次项系数;b 为一次项系数;c 为常数项。
※解一元二次方程的方法:①配方法 <即将其变为0)(2=+m x 的形式>②公式法 aacb b x 242-±-= (注意在找abc 时须先把方程化为一般形式)③分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
(主要包括“提公因式”和“十字相乘”)A CB O 图1 图2 OA C BD E F※配方法解一元二次方程的基本步骤:①把方程化成一元二次方程的一般形式;②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方;⑤把方程转化成0)(2=+m x 的形式;⑥两边开方求其根。
※根与系数的关系:当b 2-4ac>0时,方程有两个不等的实数根;当b 2-4ac=0时,方程有两个相等的实数根;当b 2-4ac<0时,方程无实数根。
※如果一元二次方程02=++c bx ax 的两根分别为x 1、x 2,则有:ac x x ab x x =⋅-=+2121。
※一元二次方程的根与系数的关系的作用: (1)已知方程的一根,求另一根;(2)不解方程,求二次方程的根x 1、x 2的对称式的值,特别注意以下公式:①2122122212)(x x x x x x -+=+ ②21212111x x x x x x +=+ ③212212214)()(x x x x x x -+=-④21221214)(||x x x x x x -+=- ⑤||22)(|)||(|2121221221x x x x x x x x +-+=+⑥)(3)(21213213231x x x x x x x x +-+=+ ⑦其他能用21x x +或21x x 表达的代数式。
(3)已知方程的两根x 1、x 2,可以构造一元二次方程:0)(21221=++-x x x x x x (4)已知两数x 1、x 2的和与积,求此两数的问题,可以转化为求一元二次方程0)(21221=++-x x x x x x 的根※在利用方程来解应用题时,主要分为两个步骤:①设未知数(在设未知数时,大多数情况只要设问题为x ;但也有时也须根据已知条件及等量关系等诸多方面考虑);②寻找等量关系(一般地,题目中会含有一表述等量关系的句子,只须找到此句话即可根据其列出方程)。
※处理问题的过程可以进一步概括为: 解答检验求解方程抽象分析问题→→ 第三章 证明(三)※平行四边的定义:两线对边分别平行的四边形叫做平行四边形.....,平行四边形不相邻的两顶点连成的线段叫做它的对角线...。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。
一组对边平行且相等的四边形是平行四边形。
两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。
这个距离称为平行线之间的距离。
菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
鹏翔教图3※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第四章视图与投影※三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象※视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
※在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
※在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影..。
太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影....。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中.心投影...。
※区分平行投影和中心投影:①观察光源;②观察影子。
眼睛的位置称为视点..;由视点发出的线称为视线..。
..;眼睛看不到的地方称为盲区※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。
第五章 反比例函数※反比例函数的概念:一般地,xky =(k 为常数,k ≠0)叫做反比例函数,即y 是x 的反比例函数。
(x 为自变量,y 为因变量,其中x 不能为零) ※反比例函数的等价形式:y 是x 的反比例函数 ←→ )0(≠=k xky ←→ )0(1≠=-k kx y ←→ )0(≠=k k xy ←→ 变量y 与x 成反比例,比例系数为k.※判断两个变量是否是反比例函数关系有两种方法:①按照反比例函数的定义判断;②看两个变量的乘积是否为定值<即k xy =>。
(通常第二种方法更适用)※反比例函数的图象由两条曲线组成,叫做双曲线 ※反比例函数的画法的注意事项:①反比例函数的图象不是直线,所“两点法”是不能画的;②选取的点越多画的图越准确;③画图注意其美观性(对称性、延伸特征)。
※反比例函数性质:①当k>0时,双曲线的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; ②当k<0时,双曲线的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大; ③双曲线的两支会无限接近坐标轴(x 轴和y 轴),但不会与坐标轴相交。
※反比例函数图象的几何特征:(如图4所示) 点P(x,y)在双曲线上都有|21||||S k xy S AOB OAPB ===∆矩形第六章 频率与概率※在频率分布表里,落在各小组内的数据的个数叫做频数..; 每一小组的频数与数据总数的比值叫做这一小组的频率..; 即:实验次数频数数据总数频数频率==在频率分布直方图中,由于各个小长方形的面积等于相应各组的频率,而各组频率的和等于1。
因此,各个小长方形的面积的和等于1。
※频率分布表和频率分布直方图是一组数据的频率分布的两种不同表示形式,前者准确,后者直观。
用一件事件发生的频率来估计这一件事件发生的概率。
可用列表的方法求出概率,但此方法不太适用较复杂情况。
※假设布袋内有m 个黑球,通过多次试验,我们可以估计出布袋内随机摸出一球,它为白球的概率;※要估算池塘里有多少条鱼,我们可先从池塘里捉上100条鱼做记号,再放回池塘,之后再从池塘中捉上200条鱼,如果其中有10条鱼是有标记的,再设池塘共有x 条鱼,则可依照20010100=x 估算出鱼的条数。
(注意估算出来的数据不是确切的,所以应谓之“约是XX ”)※生活中存在大量的不确定事件,概率是描述不确定现象的数学模型,它能准确地衡量出事件发生的可能性的大小,并不表示一定会发生。