北师大版九年级数学上册知识点总结
北师大版初三数学知识点总结

北师大版初三数学知识点总结北师大版初三数学知识点总结1直角三角形的判定方法:判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。
如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。
〔勾股定理的逆定理〕。
判定3:假设一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角〔两角相加等于90°〕的三角形是直角三角形。
判定5:假设两直线相交且它们的斜率之积互为负倒数,那么两直线互相垂直。
那么判定6:假设在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,那么这个三角形为直角三角形。
〔与判定3不同,此定理用于斜边的三角形。
〕北师大版初三数学知识点总结2全套教科书包含了课程标准(实验稿)规定的“数与代数〞“空间与图形〞“统计与概率〞“实践与综合应用〞四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。
九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。
本册书内容分析如下:第21章二次根式学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。
解决与数量关系有关的问题还会遇到二次根式。
“二次根式〞一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。
“二次根式的乘除〞一节的内容有两条开展的线索。
一条是用具体计算的例子体会二次根式乘除法那么的合理性,并运用二次根式的乘除法那么进行运算;一条是由二次根式的乘除法那么得到并运用它们进行二次根式的化简。
北师大版《数学》(九年级上册)知识点总结

北师大版《数学》(九年级上册)知识点总结第一章 证明(二)一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS ”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS ”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。
(4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”)。
二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称:等边对等角)(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。
等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b <a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A=180°—2∠B ,∠B=∠C=2180A ∠-︒ 2、等腰三角形的判定(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
(2)有两条边相等的三角形是等腰三角形.三、等边三角形性质:(1)等边三角形的三个角都相等,并且每个角都等于60°。
(2)三线合一判定:(1)三条边都相等的三角形是等边三角形(2)三个角都相等的三角形是等边三角形(3):有一个角是60°的等腰三角形是等边三角形。
四、直角三角形(一)、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半4、勾股定理:直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 其它性质:1、直角三角形斜边上的高线将直角三角形分成的两个三角形和原三角形相似。
北师大版九年级数学上册知识点总结

九(上)数学知识点第一章证明(一)1、你能证明它吗?(1)三角形全等的性质及判定全等三角形的对应边相等,对应角也相等判定:SSS、SAS、ASA、AAS、(2)等腰三角形的判定、性质及推论性质:等腰三角形的两个底角相等(等边对等角)判定:有两个角相等的三角形是等腰三角形(等角对等边)推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形(1)勾股定理及其逆定理定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)3、线段的垂直平分线(1)线段垂直平分线的性质及判定性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线(1)角平分线的性质及判定定理性质:角平分线上的点到这个角的两边的距离相等;判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
新北师大版初中数学九年级上册第1章 特殊平行四边形《第3课 正方形的性质与判定》

请证明你的结论,并与同伴交流.
正方形的判定( 随堂练习1)
定理:有一个角是直角的菱形是正方形.
已知:四边形ABCD是菱形,∠A=900. A
D
求证:四边形ABCD是正方形.
证明:
∵四边形ABCD是菱形,∠A=900,
B
C
∴AB=BC,∠C=∠A=900,∠B=1800-∠A=900.
CG=DG=
1
2 CD,DH=AH=
1
AC
2
∴AE=BE2=BF=CF=CG=DG2=HG=AH
∴△AHE≌△BEF≌△CFG≌△DHG
A
E
B
13 2
H
F
D
G
C
∴EF=FG=GH=HE∴四边形EFGH是菱形
∵∠1=∠2=45°∴∠3=90 °
∴四边形EFGH是正方形
(1)以菱形或矩形各边的中点为顶点可以组成一个什 么图形?先猜一猜,再证明.如果以平行四边形各边 的中点为顶点呢?
例1.如图 1-18,在正方形 ABCD
中,E 为 CD 边上一点,F 为 BC 延长线上一点,且 CE = CF.BE
M
与 DF 之间有怎样的关系?请说明
理由.
解:BE = DF,且 BE⊥DF. 理由如下:
(2)延长 BE 交 DF 于点 M. ∵ △BCE ≌ △DCF,∴ ∠ CBE = ∠ CDF. ∵ ∠ DCF = 90°,∴ ∠ CDF + ∠ F = 90°. ∴ ∠ CBE + ∠ F = 90°. ∴ ∠ BMF = 90°.∴ BE⊥DF.
北师大版九年级数学(上)
第一章 特殊平行四边形
北师大版九年级数学上册 知识点归纳

九年级数学上册知识点归纳第一章特殊平行四边形1.菱形的性质与判定菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。
四条边都相等的四边形是菱形。
2.矩形的性质与判定※矩形的定义:有一个角是直角的平行四边形叫矩形..。
矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。
(矩形是轴对称图形,有两条对称轴)※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。
四个角都相等的四边形是矩形。
※推论:直角三角形斜边上的中线等于斜边的一半。
3.正方形的性质与判定正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。
(正方形是轴对称图形,有两条对称轴)※正方形常用的判定:有一个内角是直角的菱形是正方形;邻边相等的矩形是正方形;对角线相等的菱形是正方形;对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
※三角形的中位线平行于第三边,并且等于第三边的一半。
※夹在两条平行线间的平行线段相等。
※在直角三角形中,斜边上的中线等于斜边的一半第二章一元二次方程1.认识一元二次方程※只含有一个未知数的整式方程,且都可以化为02=bxax(a、+c+b、c为常数,a≠0)的形式,这样的方程叫一元二次方程......。
※把02=bxax(a、b、c为常数,a≠0)称为一元二次方程的一+c+般形式,a为二次项系数;b为一次项系数;c为常数项。
导图系列(5):九年级上册数学(北师大版)各章知识点思维导图集合

中心对称 两组对角分别相等的四边形
面积 底×高
对角线互相平分的四边形
对角相等, 邻角互补
四边相等的四边形
互相垂直平分; 中心对称
每一条对角线
+
有一组邻边相等的平行四边形
平分一组对角 轴对称 对角线互相垂直的平行四边形
底×高; 对角线乘积
的一半
四个角 都是直角
相等且 互相平分
有三个角是直角的四边形
第五章 投影与视图
第六章 反比例函数
九年级上册数学(北师大版) 思维导图集合
第一章 特殊的平行四边形
图形 边
平行 对边平行 四边形 且相等
菱形
对边平行, 四条边相等
矩形
对边平行 且相等
对边平行, 正方形
四条边相等
第一章 特殊的平行四边形
性质 角
ห้องสมุดไป่ตู้
对角线
对角相等, 邻角互补
互相平分
对称性
判定
两组对边分别相等的四边形 两组对边分别平行的四边形 一组对边平行且相等的四边形
中心对称
+
有一个角是直角的平行四边形
轴对称 对角线相等的平行四边形
长×宽
四个角 都是直角
有一个角是直角的菱形
相等且
中心对称 对角线相等的菱形
互相垂直平分;
+
每一条对角线
轴对称 有一组邻边相等的矩形
平分一组对角
对角线互相垂直的矩形
边长×边长
第二章 一元二次方程
第三章 概率的进一步认识
第四章 图形的相似
九年级上册数学知识点归纳总结北师大版

九年级上册数学知识点归纳总结北师大版3.九班级上册数学学问点归纳总结北师大版篇三1.直线与圆有公共点时,叫做直线与圆相切。
2.三角形的外接圆的圆心叫做三角形的外心。
3.弦切角等于所夹的弧所对的圆心角。
4.三角形的内切圆的圆心叫做三角形的内心。
5.垂直于半径的直线必为圆的切线。
6.过半径的外端点并且垂直于半径的直线是圆的切线。
7.垂直于半径的直线是圆的切线。
8.圆的切线垂直于过切点的半径。
4.九班级上册数学学问点归纳总结北师大版篇四单项式与多项式仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。
单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。
当一个单项式的系数是1或—1时,“1”通常省略不写。
一个单项式中,全部字母的指数的和叫做这个单项式的次数。
假如在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项全部的常数都是同类项。
1、多项式有有限个单项式的代数和组成的式子,叫做多项式。
多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。
单项式可以看作是多项式的特例把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。
在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。
2、多项式的值任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。
3、多项式的恒等对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a 时,假如它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。
性质1假如fx==gx,那么,对于任一个数值a,都有fa=ga。
性质2假如fx==gx,那么,这两个多项式的个同类项系数就肯定对应相等。
北师大版九年级上册数学复 习知识点及例题

性角 质
对 角 线
四个角都是 直角
互相平分且 相等
对角相等
四个角都是直角
互相垂直平分, 且每条对角线平 分一组对角
互相垂直平分且相等,每 条对角线平分一组对角
判定
·有三个角 是直角; ·是平行四 边形且有一 个角是直角; ·是平行四
·四边相等的四 边形; ·是平行四边形 且有一组邻边相 等; ·是平行四边形
·是矩形,且有一组邻 边相等; ·是菱形,且有一个角 是直角。
边形且两条 且两条对角线互 对角线相等. 相垂直。
对称性
既是轴对称图形,又是中心对称图形
一.矩形 矩形定义:有一角是直角的平行四边形叫做矩形.
【强调】 矩形(1)是平行四边形;(2)一一个角是直角.
矩形的性质
性质1 矩形的四个角都是直角; 性质2 矩形的对角线相等,具有平行四边形的所以性质。;
①有一组邻边相等的平行四边形 (菱形) ②有一个角是直角的平行四边形 (矩形) 正方形不仅是特殊的平行四边形,并且是特殊的矩形,又是特殊的
菱形. 正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫
做正方形. 正方形是中心对称图形,对称中心是对角线的交点,正方形
又是轴对称图形,对称轴是对边中点的连线和对角线所在直线,共有 四条对称轴;
因为正方形是平行四边形、矩形,又是菱形,所以它的性质是它们 性质的综合,正方形的性质总结如下:
边:对边平行,四边相等; 角:四个角都是直角; 对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 注意:正方形的一条对角线把正方形分成两个全等的等腰直角三角 形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等 的等腰直角三角形,这是正方形的特殊性质.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九(上)数学知识点答案
第一章证明(一)
1、你能证明它吗?
(1)三角形全等的性质及判定
全等三角形的对应边相等,对应角也相等
判定:SSS、SAS、ASA、AAS、
(2)等腰三角形的判定、性质及推论
性质:等腰三角形的两个底角相等(等边对等角)
判定:有两个角相等的三角形是等腰三角形(等角对等边)
推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)(3)等边三角形的性质及判定定理
性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
判定定理:有一个角是60度的等腰三角形是等边三角形。
或者三个角都相等的三角形是等边三角形。
(4)含30度的直角三角形的边的性质
定理:在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。
2、直角三角形
(1)勾股定理及其逆定理
定理:直角三角形的两条直角边的平方和等于斜边的平方。
逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)命题包括已知和结论两部分;逆命题是将倒是的已知和结论交换;正确的逆命题就是逆定理。
(3)直角三角形全等的判定定理
定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
3、线段的垂直平分线
(1)线段垂直平分线的性质及判定
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线
(1)角平分线的性质及判定定理
性质:角平分线上的点到这个角的两边的距离相等;
判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
(2)三角形三条角平分线的性质定理
性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
(3)如何用尺规作图法作出角平分线
第二章 一元二次方程
1、花边有多宽
(1)整式方程及一元二次方程的概念
整式方程:方程两边都是关于未知数的整式;
一元二次方程:只含有一个未知数x 的整式方程,并且都可以化作ax 2+bx+c=0(a,b,c 为常数,a ≠0)的形式。
(2)一元二次方程的一般式及各系数含义
一般式:ax 2+bx+c=0(a,b,c 为常数,a ≠0),其中,a 是二次项系数,b 是一次项系数,c 是常数项。
2、配方法
(1)直接开平方法的定义
利用平方根的定义直接开平方求一元二次方程的解的方法叫直接开平方法。
(2)配方法的步骤和方法
一、移项,把方程的常数项移到等号右边;二、配,方程两边都加上一次项系数的一半的平方,把原方程化为(x+m )2=n(n ≥0)的形式;三、直接用开平方法求出它的解。
3、公式法
(1)求根公式
b 2
-4ac ≥0时,x=a ac b b 242-±- (2)求一元二次方程的一般式及各系数的含义
一、将方程化为一元二次方程的一般ax 2+bx+c=0(a,b,c 为常数,a ≠0);二、计算b 2
-4ac 的值,当b 2-4ac ≥0时,方程有实数根,否则方程无实数根;三、代入求根公式,求出方程的根;四、写出方程的两个根。
4、分解因式法
(1)分解因式的概念
当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,根据a ·b=0,那么a=0或b=0,这种解一元二次方程的方法称为分解因式。
(2)分解因式法解一元二次方程的一般步骤
一、将方程右边化为零;二、将方程左边分解为两个一次因式的乘积;三、设每一个因式分别为0,得到两个一元二次方程;四、解这两个一元二次方程,它们的解就是原方程的解。
5、为什么是0.618
(1)什么叫黄金比
线段AB 上一点C 分线段AB 成两条线段AC ,BC ,若
AB AC =AC BC ,则C 点叫线段AB 的黄金分割点,其中AB
AC 叫黄金比,其值为0.618。
(2)列一元二次方程解应用题的一般步骤
一、审题;二、设求知数;三、列代数式;四、列方程;五、解方程;六、检验;七、答
第三章 证明(三)
1、平行四边行
(1)平行四边形的定义、性质及判定
定义:两组对边分别平行的四边形叫平行四边形
性质:平行四边形的对边分别平行;平行四边形的对边分别相等;平行四边形的对角分别相等;平行四边形的对角线互相平分。
判定:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边行。
(2)等腰梯形的性质及判定
性质:等腰梯形在同一底上的两个角相等;等腰梯形的两条对角线相等。
判定:同一底上的两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形。
(3)三角形中位线定义及性质
定义:连接三角形两边中点的线段叫做三角形的中位线。
性质:三角形的中位线平行于第三边,且等于第三边的一半。
2、特殊平行四边形
(1)矩形、菱形、正方形、直角三角形的性质及判定
第四章 视图与投影
1、视图
(1)三视图的种类及三种视图之间的关系
三视图有主视图、左视图和俯视图;
三种视图间的关系:主、俯长对正;主、左高平齐;俯、左宽相等;
(2)会画圆柱、圆锥、球的三视图
2、太阳光与影子
(1)投影与平行投影的含义、平行投影的性质
一般地,用光线照射物体,在某个平面上得到的影子叫做投影;由平行光线形成的投影是平行投影。
平行投影的性质:物体上的点以及影子上的对应点的连线互相平行;当物体与投影面平行时,所形成的影子与物体全等;同一时刻,在平行光线下,互相平行的物体的高度与影子长度的比值相等。
(2)物体影长的变化规律,会将影长与相似结合起来进行计算
在太阳光的照射下,不同时刻,物体影子的长短也不一样,早晚影子长,中午影子短。
(3)平行投影与视图之间的关系
视图实际上就是该物体在某一平行光线下的投影。
3、灯光与影子
(1)中心投影的概念及应用,区别平行投影与中心投影
从一点发出的光线形成的投影称为中心投影。
(2)视点、视线与盲区的概念
眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。
第五章 反比例函数
1、反比例函数
(1)反比例函数的概念
一般地,如果两个变量x,y 之间的关系可以表示成y=
x
k 的形式,那么称y 是x 的反比例函数。
反比例函数的自变量x 不能为0。
(2)掌握求反比例函数的解析式的方法
将一组x,y 的值代入解析式中确定k 的值即可。
2、反比例函数的图象与性质
(1)反比例函数图象的画法
一般采用描点法:先列表,再描点,再连线。
(2)反比例函数的图象及性质,其表达式与图象的关系,函数值大小的比较(表5-1)
3、反比例函数的应用
(1)用反比例函数解决实际问题的一般思路
1、根据问题情境,设出所求的反比例函数表达式;
2、由问题中的已知数据,代入所求表达式,列出方程(或方程组),求出方程的解,确定出待定系数的值,从而确定函数表达式;
3、根据函数表达式,去解决实际问题。
(2)反比例函数与正比例函数的区别及综合应用(表5-1)
表5-1。