《人工智能导论》课程复习
人工智能导论复习资料

人工智能导论复习资料(课程代码:07844)知识点汇总:1.人工智能是一门综合性的交叉学科和边缘学科。
2.人工智能的含义最早由一位科学家于1950年提出,并且同时提出一个机器智能的测试模型,请问这个科学家是图灵。
3.人工智能的远期目标是制造智能机器,近期目标是实现机器智能。
4.要想让机器具有智能,必须让机器具有知识。
因此,在人工智能中有一个研究领域,主要研究计算机如何自动获取知识和技能,实现自我完善,这门研究分支学科叫机器学习。
5.编译原理不属于人工智能的研究的一个领域。
6.AI的英文缩写是Artifical intelligence。
7.“图灵实验”是为了判断一台机器是否具备智能的实验,实验由三个封闭的房间组成,分别放置主持人、参与人和机器。
8.语义网络表达知识时,有向弧AKO 链、ISA 链是用来表达节点知识的继承性。
9.(A->B)∧A => B是假言推理10.命题是可以判断真假的陈述句11.问题归约法是指已知初始问题的描述,通过一系列变换把此问题最终变为一个子问题集合,这些子问题的解可以直接得到,从而解决了初始问题。
12.仅个体变元被量化的谓词称为一阶谓词13.MGU是最一般合一14.关系不在人工智能系统的知识包含的4个要素中15.当前归结式是空子句时,则定理得证。
16.或图通常称为状态图17.不属于人工智能的学派是机会主义18.所谓不确定性推理就是从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的结论的思维过程。
( )19.用户不是专家系统的组成部分20.产生式系统的推理不包括简单推理21.C(B|A) 表示在规则A->B中,证据A为真的作用下结论B为真的信度22.在图搜索中,选择最有希望的节点作为下一个要扩展的节点,这种方法叫做有序搜索23.人工神经网络属于反馈网络的是BP网络24.使用一组槽来描述事件的发生序列,这种知识表示法叫做剧本表示法25.产生式系统的推理不包括简单推理26.从已知事实出发,通过规则库求得结论的产生式系统的推理方式是正向推理。
云南-人工智能导论(07844)复习资料

人工智能导论(07844)复习资料一、单项选择题(本大题共**小题,每小题2分,共**分)1.现在的科技十分发达,警察破案大多数是通过指纹系统来辨认真凶,这是运用人工智能技术应用的。
【】A.机器学习B.自然语言系统C.专家系统D.人类感官模拟2.基于规则的正向演绎系统的子集形式是。
【】A.子句的析取式(析取范式)B.子句的合取式(合取范式)C.文字的析取式D.文字的合取式3.普遍推广机器学习的第一人是。
【】A.约翰·冯·诺依曼B. 唐纳德·赫布C.约翰·麦卡锡D.亚瑟·塞缪尔4.我国于年发布了《国务院关于印发新一代人工智能发展规划的通知》。
【】A.2016年B.2017年C.2018年D.2019年5.专家系统是一个复杂的智能软件,它处理的对象是用符号表示的知识,处理的过程是的过程。
【】A.思维B.思考C.递推D.推理6.专家系统是以为基础,以推理为核心的系统。
【】A.专家B.知识C.软件D.解决问题7.人工智能的目的是让机器能够,以实现某些脑力劳动的机械化。
【】A.具有完全的智能B.和人脑一样考虑问题C.完全代替人D.模拟、延伸和扩展人的智能8.在图灵测试中,如果有超过的测试者不能分清屏幕后的对话者是人还是机器,就可以说这台计算机通过了测试并具备人工智能。
【】A. 30%B. 40%C. 50%D. 60%9.2016年8月,日本电视台报道称,东京大学医学研究所通过运用IBM的人工智能平台Watson仅用10分钟就诊断出了资深医师难以判别出来的。
【】A.甲状腺癌B.胰腺癌C.白血病D.淋巴癌10.不属于艾莎克.阿莫西夫提出的“机器人三定律”内容是。
【】A.机器人不得伤害人,或任人受到伤害而无所作为B.机器人应服从人的一切命令,但命令与A相抵触时例外C.机器人必须保护自身的安全,但不得与A,B相抵触D.机器人必须保护自身安全和服从人的一切命令,一旦冲突发生,以自保为先11.我国学者吴文俊院士在人工智能的领域作出了贡献。
《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点选择题知识点1.人工智能、人工神经网络、机器学习等人工智能中常用词的英文及其英文缩写。
人工智能Artificial Intelligence,AI人工神经网络Artificial Neural Network,ANN机器学习Machine Learning,ML深度学习Deep Learning,DL2.什么是强人工智能?强人工智能观点认为有可能制造出真正能推理(Reasoning)和解决问题(Problem_solving)的智能机器,并且,这样的机器将被认为是有知觉的,有自我意识的。
可以独立思考问题并制定解决问题的最优方案,有自己的价值观和世界观体系。
有和生物一样的各种本能,比如生存和安全需求。
在某种意义上可以看作一种新的文明。
3.回溯算法的基本思想是什么?能进则进。
从一条路往前走,能进则进,不能进则退回来,换一条路再试。
4.面向对象、产生式系统、搜索树的定义?面向对象(Object Oriented)是软件开发方法,一种编程范式。
面向对象的概念和应用已超越了程序设计和软件开发,扩展到如数据库系统、交互式界面、应用结构、应用平台、分布式系统、网络管理结构、CAD技术、人工智能等领域。
面向对象是一种对现实世界理解和抽象的方法,是计算机编程技术发展到一定阶段后的产物。
面向对象是相对于面向过程来讲的,面向对象方法,把相关的数据和方法组织为一个整体来看待,从更高的层次来进行系统建模,更贴近事物的自然运行模式。
把一组产生式放在一起,让它们相互配合,协同工作,一个产生式生成的结论可以供另一个产生式作为前提使用,以这种方式求得问题的解决的系统就叫作产生式系统。
对于需要分析方法,诸如深度优先搜索和广度优先搜索(穷尽的方法)以及启发式搜索(例如最佳优先搜索和A*算法),这样的问题使用搜索树表示最合适。
5.机器学习的基本定义是什么?机器学习是一门研究及其获取新知识和新技能,并识别现有知识的学问。
【2024版】人工智能导论复习

可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。
3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。
6.用与 / 或树方法表示三阶Hanoi 塔问题。
第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。
3.用代价树的深度优先搜索求解下面的推销员旅行问题。
第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。
《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。
基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。
二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。
包括规则学习、支持向量机以及深度学习。
2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。
它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。
3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。
它是一种智能系统,包括图像处理、识别和分析等功能。
三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。
1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。
人工智能导论期末复习习题集

第二章知识表示2.8设有如下语句,请用相应的谓词公式分别把他们表示出来:(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词P(x):x是人L(x,y):x 喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:(3 x )(P(x)f L(x,梅花)V L(x,菊花)V L(x,梅花)A L(x,菊花))(2)有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:(3x )(V y) (A(y)-B(x) A P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(V x) (NC(x)f F(x)A B(x))(4)不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x 喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:-(V x) (S(x)f L(x, pragramming)A U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x 喜欢y将知识用谓词表示为:(V x) (P(x) A L(x,pragramming)f L(x, computer))2.9用谓词表示法求解机器人摞积木问题。
设机器人有一只机械手,要处理的世界有一张桌子,桌上可堆放若干相同的方积木块。
机械手有4个操作积木的典型动作:从桌上拣起一块积木;将手中的积木放到桌之上;在积木上再摞上一块积木;从积木上面拣起一块积木。
积木世界的布局如下图所示。
图机器人摞积木问题解:(1)先定义描述状态的谓词CLEAR(x):积木x上面是空的。
ON(x, y):积木x在积木y的上面。
ONTABLE(x):积木x在桌子上。
人工智能导论(本科生) 复习大纲 -参考答案

目录绪论 (1)搜索技术 (1)遗传算法 (8)谓词逻辑 (8)结构化知识表示 (12)绪论1、什么是人工智能?答:人工智能又称机器智能,是用计算机模拟或实现的智能;(人工智能是研究如何制造出人造的智能机器或系统,来模拟人类智能活动的能力,以延伸人们智能的科学)2、什么是符号智能与计算智能?并举例说明。
答:符号智能是模拟闹智能的人工智能,是以符号形式的知识和信息为基础,主要通过逻辑推理,运用知识进行问题求解。
如搜索技术、专家系统、定理证明等;计算智能是模拟群智能的人工智能,以数值数据为基础,主要通过数值计算,运用算法进行问题求解。
搜索技术1.状态图是由什么组成的?答:状态图是由节点与有向边组成;2.简述图搜索的方式和策略。
答:搜索方式:线式搜索和树式搜索;搜索策略:盲目搜索和启发式搜索;3.阐述图搜索策略中OPEN表与CLOSED表的作用。
答:OPEN表用来保存当前待考察的节点,并按照某种排列,来控制搜索的方向和顺序;CLOSED表用来记录搜索过程中已考察过的节点,保存全局搜索信息,并可根据节点返回指针得到搜索解路径。
4.简述广度优先策略与深度优先策略的不同点。
答:广度优先搜索是始终在同一级节点中考查,当同一级节点考查完毕,才考查下一级节点。
因此,是自顶向下一层一层逐渐搜索的,属于横向搜索策略,其搜索是完备的,得到的解为最优解;深度优先搜索是在搜索树的每一层始终只扩展一个子节点,不断向纵深前进,直到不能再前进时,才从当前节点返回到上一级节点,沿另一方向又继续前进。
因此,是从树根开始一枝一枝逐渐搜索的,属于纵向搜索策略,其搜索是不完备的,得到的解不一定为最优解。
5.什么是启发式搜索?并以八数码难题为例,说明其原理。
答:启发式搜索是利用问题拥有的启发信息来引导搜索,达到减少搜索范围,降低问题复杂度的目的。
对于八数码难题,可以利用不在位将牌数或者与目标距离信息来作为启发函数,可以加快搜索目标的步数。
6.简述启发函数的单调性判别。
南京信息工程大学人工智能导论复习资料

人工智能导论复习资料一、单项选择题1-5CDBBB6-10BAABC11-15CCDDB16-20BCDBA1、与大数据密切相关的技术是:()A、wifiB、蓝牙C、云计算D、博弈论2、把环境数据转化为嵌入式系统可以识别的电信号的是()A、红外线B、读写器C、互联网I)、传感器3、在M-P神经元模型中,利用神经元模型的公式,假设xl=l,x2=2,x3=0,权重值依次是1,2,-2,阈值是0.4,在未加上激活函数的时候,当前输出是结果是()oA、3.4B、4.6C、4.4D、5.94、每个神经元与其他多个神经元相连,当它“兴奋”时,就会通过轴突向其他神经元发送(),从而改变这些神经元内的();如果某个神经元的()超过了某个特定值(),那么它就会被(),即进入“兴奋”状态,向下一个神经元发送()oA、电流、化学物质、电位、阈值、激活、电流B、化学物质、电位、电位、阈值、激活、化学物质C、电压、化学物质、电位、电量、激活、电压D、化学物质、电位、电位、电量、激活、电压;5、物联网的实践最早可以追溯到1990年施乐公司的什么产品?()A、鼠标B、网络可乐贩售机C、抓娃娃机D、扫描仪6、行为主义,又称进化主义或控制论学派,其原理为()A、进化主义及感知信息系统B、控制论及感知动作型控制系统C、相对论及感知信息系统D、进化主义及感知控制系统7、下列哪种情况是图灵测试的内容?()A、机器与人作为一方,分别与另一方询问者对话,双方相互质问,询问者分不清对方是人还是机器,说明机器通过了图灵测试B、当机器骗过测试者,使得询问者分不清是人还是机器时,说明它通过了图灵测试C、当人与人对话,其中一人的智力超过另一人时,说明智者通过了图灵测试D、两机对话,其中一机的智力超过另一机时,说明智者机器通过了图灵测试8、人工神经网络的相关研究最早可以追溯到上世纪40年代,由心理学家麦卡洛克和数学逻辑学家皮茨提出的()。
A 、M-P 神经元模型 B 、B-P 神经元模型C 、M-N 神经元模型 D 、Nd 神经元模9、每个神经元与其他多个神经元相连,当它“兴奋”时,就会通过轴突向其他神经元发送),从而改变这些神经元内的();如果某个神经元的()超过了某个特定值11、数字图像是用一个数字阵列来表示图像,数字阵列中的每个数字,表示数字图像的一个最小单位,称为( )Λ^色号B 、像素C 、尺寸标记12、自然语言理解是人工智能的重要应用领域,下面列举中的()不是它要实现的目 标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 经典逻辑推理
• 推理的基本概念
– 推理 – 推理的分类
• 命题逻辑的归结推理
– 归结原理证明定理成立的思想和步骤 – 概念:子句,归结式
• 一阶谓词逻辑定理的归结证明
– 子句集:斯柯林标准型,合取范式 ,消去存在量词 – 谓词逻辑的归结 – 置换和合一 – 归结策略
• 与/或形演绎推理(不要求)
– 算法和过程 – 搜索效率
• 外显率 • 有效分枝因数
第二章 搜 索
状态空间的盲目搜索
广度优先搜索法
思想,搜索过程,数据结构,特点
深度优先搜索法 有界深度优先搜索法 分支界限搜索法(代价树的广度优先搜索法) 瞎子爬山法(代价树的深度优先搜索法) 代价树的有界深度搜索法
《人工智能导论》 课程复习
中国科学技术大学 自动化系 郑志刚
课程主要内容
• 第一章 绪论
– 人工智能产生发展历史,AI的几个时期中出现的著名 人物和事件
– 人工智能的学科范畴
• 研究任务 • 研究路线 • 核心问题 • 学派
– 智能和人工智能的含义 – 人工智能中的研究和应用领域
• 模式识别 • 自然语言理解 • 博弈 •…
• 边:归约 • 节点:问题
– 归约策略
• 关键状态法 • 关键操作法
第二章 搜 索
• 博弈问题的状态空间
– 节点表示棋局
• 开局,终局,中间棋局 • MAX走棋:或节点 • MIN走棋:与节点
– 边表示走法
– 博弈问题的状态空间
第二章 搜 索
• 搜索
– 搜索的基本概念 – 搜索分类
• 盲目搜索及其特点 • 启发式搜索及其特点
第五章 人工智能语言
• 不要求
第六章 非精确性推理
• 非精确性推理的含义 • 非精确性推理系统的几个基本问题
– 非精确性度量 – 非精确性传播 – 条件部分非精确性的确定 – 非精确性的匹配算法与阈值选择
• 可信度方法
– 规则的不确定性度量 – 证据的非精确性度量 – 非精确性的传播
• 主观Bayes方法
状态空间的启发式搜索
概念 估计函数和启发式函数 最好择优法和局部择优法
Байду номын сангаас
第二章 搜 索
• 与/或树的搜索
– 基本概念:端节点,终止节点,可解节点,应用可解 过程,解树,不可解节点,应用不可解过程,部分解 树,解树的代价
– 与/或树的搜索的一般过程 – 赋值树的广度优先搜索
• 部分解树,一般搜索过程
– 赋值树的启发式搜索
• 希望解树,估计函数,一般过程
• 博弈树的启发式搜索
– 极大极小分析方法 – α-β剪枝
第三章 知识与知识表示方式
1. 基本概念
知识 知识表示法
2. 一阶谓词逻辑表示法的方式和特点 3. 产生式表示法… 4. 框架表示法… 5. 语义网络表示法… 6. 脚本表示法… 7. 过程表示法…
第七章 专家系统
• 专家系统的功能,特点 • 专家系统的类型 • 专家系统的一般结构和工作原理
考试时间、地点
• 12月5日9:45在3C304教室考试
第二章 搜 索
• 状态空间表示法
– 状态 • 定义,一些特定的状态
– 操作 • 定义,要素:条件和动作
– 状态空间 – 问题的解 – 状态空间的隐式图
• 状态描述的知识 • 状态变换的知识
第二章 搜 索
• 与/或图表示法
– 本原问题 – 归约法求解问题的思路 – 与图(分解)和或图(替换)表示归约的过程 – 与或图