非线性规划的MATLAB解法及其应用

合集下载

matlab解决非线性规划问题(凸优化问题)

matlab解决非线性规划问题(凸优化问题)

matlab解决⾮线性规划问题(凸优化问题)当⽬标函数含有⾮线性函数或者含有⾮线性约束的时候该规划问题变为⾮线性规划问题,⾮线性规划问题的最优解不⼀定在定义域的边界,可能在定义域内部,这点与线性规划不同;例如:编写⽬标函数,定义放在⼀个m⽂件中;编写⾮线性约束条件函数矩阵,放在另⼀个m⽂件中;function f = optf(x);f = sum(x.^2)+8;function [g, h] = limf(x);g = [-x(1)^2+x(2)-x(3)^2x(1)+x(2)^2+x(3)^3-20]; %⾮线性不等式约束h = [-x(1)-x(2)^2+2x(2)+2*x(3)^2-3]; %⾮线性等式约束options = optimset('largescale','off');[x y] = fmincon('optf',rand(3,1),[],[],[],[],zeros(3,1),[],...'limf',options)输出为:最速下降法(求最⼩值):代码如下:function [f df] = detaf(x);f = x(1)^2+25*x(2)^2;df = [2*x(1)50*x(2)];clc,clear;x = [2;2];[f0 g] = detaf(x);while norm(g)>1e-6 %收敛条件为⼀阶导数趋近于0p = -g/norm(g);t = 1.0; %设置初始步长为1个单位f = detaf(x+t*p);while f>f0t = t/2;f = detaf(x+t*p);end %这⼀步很重要,为了保证最后收敛,保持f序列为⼀个单调递减的序列,否则很有可能在极值点两端来回震荡,最后⽆法收敛到最优值。

x = x+t*p;[f0,g] = detaf(x);endx,f0所得到的最优值为近似解。

MATLAB优化应用非线性规划

MATLAB优化应用非线性规划

MATLAB优化应用非线性规划非线性规划是一类数学优化问题,其中目标函数和约束条件都是非线性的。

MATLAB作为一种强大的数值计算软件,提供了丰富的工具和函数,可以用于解决非线性规划问题。

本文将介绍如何使用MATLAB进行非线性规划的优化应用,并提供一个具体的案例来演示。

一、MATLAB中的非线性规划函数MATLAB提供了几个用于解决非线性规划问题的函数,其中最常用的是fmincon函数。

fmincon函数可以用于求解具有等式约束和不等式约束的非线性规划问题。

其基本语法如下:x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)其中,fun是目标函数,x0是变量的初始值,A和b是不等式约束的系数矩阵和右端向量,Aeq和beq是等式约束的系数矩阵和右端向量,lb和ub是变量的上下界,nonlcon是非线性约束函数,options是优化选项。

二、非线性规划的优化应用案例假设我们有一个工厂,需要生产两种产品A和B,目标是最大化利润。

产品A 和B的生产成本分别为c1和c2,售价分别为p1和p2。

同时,我们需要考虑两种资源的限制,分别是资源1和资源2。

资源1在生产产品A和B时的消耗分别为a11和a12,资源2的消耗分别为a21和a22。

此外,产品A和B的生产量有上下限限制。

我们可以建立以下数学模型来描述这个问题:目标函数:maximize profit = p1 * x1 + p2 * x2约束条件:c1 * x1 + c2 * x2 <= budgeta11 * x1 + a12 * x2 <= resource1a21 * x1 + a22 * x2 <= resource2x1 >= min_production_Ax2 >= min_production_Bx1 <= max_production_Ax2 <= max_production_B其中,x1和x2分别表示产品A和B的生产量,budget是预算,min_production_A和min_production_B是产品A和B的最小生产量,max_production_A和max_production_B是产品A和B的最大生产量。

非线性规划的MATLAB解法及其应用

非线性规划的MATLAB解法及其应用

题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划是20世纪50年代才开始形成的一门新兴学科。

70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。

例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。

对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

本实验就是用matlab 软件来解决非线性规划问题。

(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。

题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。

Matlab求解非线性规划,fmincon函数的用法总结

Matlab求解非线性规划,fmincon函数的用法总结

Matlab求解⾮线性规划,fmincon函数的⽤法总结Matlab求解⾮线性规划,fmincon函数的⽤法总结1.简介在matlab中,fmincon函数可以求解带约束的⾮线性多变量函数(Constrained nonlinear multivariable function)的最⼩值,即可以⽤来求解⾮线性规划问题matlab中,⾮线性规划模型的写法如下min\ f(x) \\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} A \cdot x \leq b \\ Aeq\cdot x =beq\\ c(x)\leq0 \\ ceq(x)=0 \\ lb \leq x \leq ub\end{array} \right. \end{equation} \\ ~\\ f(x)是标量函数,x,b,beq是向量,A,Aeq是矩阵 \\ c(x)和ceq(x)是向量函数2.基本语法[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)x的返回值是决策向量x的取值,fval的返回值是⽬标函数f(x)的取值fun是⽤M⽂件定义的函数f(x),代表了(⾮)线性⽬标函数x0是x的初始值A,b,Aeq,beq定义了线性约束 ,如果没有线性约束,则A=[],b=[],Aeq=[],beq=[]lb和ub是变量x的下界和上界,如果下界和上界没有约束,则lb=[],ub=[],也可以写成lb的各分量都为 -inf,ub的各分量都为infnonlcon是⽤M⽂件定义的⾮线性向量函数约束options定义了优化参数,不填写表⽰使⽤Matlab默认的参数设置3.实例⽰例,求下列⾮线性规划:min\ f(x)=x_1^2+x_2^2+x_3^2+8\\ s.t. \begin{equation} \left\{ \begin{array}{**lr**} x_1^2-x_2+x_3^2\geq0\\ x_1+x_2^2+x_3^2\leq20\\ -x_1-x_2^2+2=0\\ x_2+2x_3^2=3\\ x_1,x_2,x_3\geq0 \end{array} \right. \end{equation}(1)编写M函数fun1.m 定义⽬标函数:function f=fun1(x);f=x(1).^2+x(2).^2+x(3).^2+8;(2)编写M函数fun2.m定义⾮线性约束条件:function [g,h]=fun2(x);g=[-x(1).^2+x(2)-x(3).^2x(1)+x(2).^2+x(3).^3-20];h=[-x(1)-x(2).^2+2x(2)+2*x(3).^2-3];(3)编写主程序函数[x,y]=fmincon('fun1',rand(3,1),[],[],[],[],zeros(3,1),[],'fun2')所得结果为:x_1=0.5522,x_2=1.2033,x_3=0.9478\\ 最⼩值y=10.651Processing math: 0%。

Matlab中的数学优化与非线性规划方法

Matlab中的数学优化与非线性规划方法

Matlab中的数学优化与非线性规划方法数学优化和非线性规划是数学领域中的重要分支,广泛应用于各个科学领域和工程实践中。

Matlab作为一种常用的数学建模和计算软件,对于解决优化和非线性规划问题具有强大的功能和丰富的工具包。

本文将介绍Matlab中的数学优化和非线性规划方法,探讨其原理和应用。

一、Matlab中的数学优化方法数学优化方法旨在寻找一个函数的最大值或最小值,常用的方法包括线性规划、整数规划和非线性规划等。

在Matlab中,优化问题可以通过建立目标函数和约束条件的数学模型来求解。

1.1 线性规划线性规划是一种求解带有线性约束条件的优化问题的有效方法。

在Matlab中,可以使用linprog函数来求解线性规划问题。

该函数采用单纯形法或者内点法等算法,在给定线性约束条件下,寻找目标函数的最小值。

例如,我们考虑一个简单的线性规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:-5 <= x1 <= 5-3 <= x2 <= 32x1 + 3x2 >= 6首先,我们需要将目标函数和约束条件表示为Matlab中的向量和矩阵形式。

然后,使用linprog函数求解最小值。

1.2 整数规划整数规划是一种求解带有整数变量的优化问题的方法。

在Matlab中,可以使用intlinprog函数来求解整数规划问题。

该函数使用分支定界法或者割平面法等算法,在给定整数约束条件下,寻找目标函数的最小值。

例如,我们考虑一个简单的整数规划问题:最小化目标函数 f = 3x1 + 4x2约束条件为:0 <= x1 <= 50 <= x2 <= 5x1 + x2 = 5在Matlab中,我们可以定义目标函数和约束条件,并使用intlinprog函数求解最小值。

1.3 非线性规划非线性规划是一类求解带有非线性约束条件的优化问题的方法。

在Matlab中,可以使用fmincon函数来求解非线性规划问题。

非线性规划的MATLAB解法

非线性规划的MATLAB解法
特点
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。

MATLAB优化工具箱--线性规划-非线性规划

MATLAB优化工具箱--线性规划-非线性规划
数学实验
linprog输入参数说明: f, A, b, Aeq, beq lb,ub 边界设置 说明: 如果x(i)无边界,则 lb(i) = -inf, ub(i) = inf
6
linprog 输出参数说明: x 决策变量取值 fval 目标函数最优值
exitflag > 0 成功找到最优解 0 达到最大迭代次数也没有找到最优解 < 0 该线性规划问题不可行或者linprog计
10
fmincon函数求解形如下面的有约束非线性规 划模型
一般形式:
min f ( X ) s.t. AX b
Aeq X beq l X u c(X ) 0 ceq ( X ) 0
Matlab求解有约束非线性最小化 1.约束中可以有等式约束 2.可以含线性、非线性约束均可
数学实验
输入参数语法:
例子:某农场种植两种作物A、B,需要甲、乙两种化肥。种植 每亩作物A和作物B分别需用的化肥数,可得利润及农场现有化
肥数量如下表所示:
问在现有条件下,如何安排种植,才能使利润最大?
作物
每亩所需化肥 (百公斤)
现有化肥
AB (百公斤)
化肥

23
100) 6 4
数学实验
例题建模
[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)
数学实验
输入参数的几点说明
模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[ ]作为 参数传入; nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数, nonlcon就是定义这些函数的程序文件名;
3

遗传算法解决非线性规划问题的Matlab程序

遗传算法解决非线性规划问题的Matlab程序

遗传算法解决非线性规划问题的Matlab程序首先,让我们来了解一下什么是非线性规划问题。

非线性规划问题是指目标函数或约束条件中至少有一个是非线性函数的规划问题。

与线性规划问题不同,非线性规划问题的求解往往没有通用的解析方法,需要借助数值优化算法来找到最优解或近似最优解。

遗传算法是一种基于自然选择和遗传机制的随机搜索算法。

它模拟了生物进化的过程,通过对种群中个体的选择、交叉和变异操作,逐步优化个体,从而找到问题的最优解。

在解决非线性规划问题时,遗传算法将问题的解编码为染色体,通过适应度函数来评估染色体的优劣,然后通过遗传操作不断进化种群,直到找到满意的解。

接下来,我们开始介绍如何在 Matlab 中实现遗传算法来解决非线性规划问题。

首先,我们需要定义问题的目标函数和约束条件。

假设我们要解决的非线性规划问题是:\\begin{align}&\min f(x) = x_1^2 + x_2^2 2x_1x_2 + 2x_1 4x_2 + 5\\&\text{st } x_1 + x_2 \leq 5\\&-2 \leq x_1 \leq 2\\&-3 \leq x_2 \leq 3\end{align}\在 Matlab 中,我们可以定义目标函数如下:```matlabfunction f = objective(x)f = x(1)^2 + x(2)^2 2x(1)x(2) + 2x(1) 4x(2) + 5; end```约束条件可以通过定义一个函数来判断:```matlabfunction c, ceq = constraints(x)c =;ceq =;if x(1) + x(2) > 5c = x(1) + x(2) 5;endend```然后,我们需要设置遗传算法的参数。

这些参数包括种群大小、最大迭代次数、交叉概率、变异概率等。

```matlabpopSize = 50; %种群大小maxGen = 100; %最大迭代次数pc = 08; %交叉概率pm = 01; %变异概率```接下来,我们需要对个体进行编码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题 目 非线性规划的MATLAB 解法及其应用(一) 问题描述非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划是20世纪50年代才开始形成的一门新兴学科。

70年代又得到进一步的发展。

非线性规划在工程、管理、经济、科研、军事等方面都有广泛的应用,为最优设计提供了有力的工具。

在经营管理、工程设计、科学研究、军事指挥等方面普遍地存在着最优化问题。

例如:如何在现有人力、物力、财力条件下合理安排产品生产,以取得最高的利润;如何设计某种产品,在满足规格、性能要求的前提下,达到最低的成本;如何确定一个自动控制的某些参数,使系统的工作状态最佳;如何分配一个动力系统中各电站的负荷,在保证一定指标要求的前提下,使总耗费最小;如何安排库存储量,既能保证供应,又使储存 费用最低;如何组织货源,既能满足顾客需要,又使资金周转最快等。

对于静态的最优化 问题,当目标函数或约束条件出现未知量的非线性函数,且不便于线性化,或勉强线性化后会招致较大误差时,就可应用非线性规划的方法去处理。

具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。

非线性规划研究一个n 元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。

目标函数和约束条件都是线性函数的情形则属于线性规划。

本实验就是用matlab 软件来解决非线性规划问题。

(二) 基本要求掌握非线性规划的MATLAB 解法,并且解决相关的实际问题。

题一 :对边长为3米的正方形铁板,在四个角剪去相等的正方形以制成方形无盖水槽,问如何剪法使水槽的容积最大?题二: 某厂生产一种产品有甲、乙两个牌号,讨论在产销平衡的情况下如何确定各自的产量,使总利润最大. 所谓产销平衡指工厂的产量等于市场上的销量.符号说明:z(x 1,x 2)表示总利润;p 1,q 1,x 1分别表示甲的价格、成本、销量; p 2,q 2,x 2分别表示乙的价格、成本、销量; a ij ,b i ,λi ,c i (i ,j =1,2)是待定系数.题三:设有400万元资金, 要求4年内使用完, 若在一年内使用资金x 万元, 则可得效益x 万元(效益不能再使用),当年不用的资金可存入银行, 年利率为10%. 试制定出资金的使用计划, 以使4年效益之和为最大.(三) 数据结构题一:设剪去的正方形的边长为x ,则水槽的容积为:x x )23(2-;建立无约束优化模型为:min y=-x x )23(2-, 0<x<1.5题二:总利润为: z(x1,x2)=(p1-q1)x1+(p2-q2)x2若根据大量的统计数据,求出系数b1=100,a11=1,a12=0.1,b2=280,a21=0.2,a22=2,r1=30,λ1=0.015,c1=20, r2=100,λ2=0.02,c2=30,则问题转化为无约束优化问题:求甲,乙两个牌号的产量x1,x2,使总利润z 最大.为简化模型,先忽略成本,并令a12=0,a21=0,问题转化为求:z1 = ( b1 - a11x1 ) x1 + ( b2 - a22x2 ) x2的极值. 显然其解为x1 = b1/2a11 = 50, x2 = b2/2a22 = 70,我们把它作为原问题的初始值.题三:设变量i x 表示第i 年所使用的资金数,则有 4,3,2,1,04.5321.121.1331.14841.121.14401.1400..max 43213212114321=≥≤+++≤++≤+≤+++=i x x x x x x x x x x x t s x x x x z i(四) 源程序题一:编写M 文件fun0.m:function f=fun0(x)f=-(3-2*x).^2*x;主程序为wliti2.m:[x,fval]=fminbnd('fun0',0,1.5);xmax=xfmax=-fval题二:建立M-文件fun.m:function f = fun(x)y1=((100-x(1)- 0.1*x(2))-(30*exp(-0.015*x(1))+20))*x(1); y2=((280-0.2*x(1)- 2*x(2))-(100*exp(-0.02*x(2))+30))*x(2); f=-y1-y2;输入命令:x0=[50,70];x=fminunc(‘fun ’,x0),z=fun(x)题三:建立M 文件 fun44.m,定义目标函数:function f=fun44(x)f=-(sqrt(x(1))+sqrt(x(2))+sqrt(x(3))+sqrt(x(4)));建立M 文件mycon1.m 定义非线性约束:function [g,ceq]=mycon1(x)g(1)=x(1)-400;g(2)=1.1*x(1)+x(2)-440;g(3)=1.21*x(1)+1.1*x(2)+x(3)-484;g(4)=1.331*x(1)+1.21*x(2)+1.1*x(3)+x(4)-532.4;ceq=0主程序youh4.m 为:x0=[1;1;1;1];vlb=[0;0;0;0];vub=[];A=[];b=[];Aeq=[];beq=[];[x,fval]=fmincon('fun44',x0,A,b,Aeq,beq,vlb,vub,'mycon1')(五) 运行结果题一:运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边长为0.5米时水槽的容积最大,最大容积为2立方米.题二:运行结果为:x=23.9025, 62.4977, z=6.4135e+003即甲的产量为23.9025,乙的产量为62.4977,最大利润为6413.5.题三:运行结果为:x1=86.2;x2=104.2;x3=126.2;x4=152.8;z=43.1(六) 相关知识用Matlab 解无约束优化问题一元函数无约束优化问题21),(m in x x x x f ≤≤常用格式如下:(1)x= fminbnd (fun,x1,x2)(2)x= fminbnd (fun,x1,x2 ,options)(3)[x ,fval]= fminbnd (...)(4)[x ,fval ,exitflag]= fminbnd (...)(5)[x ,fval ,exitflag ,output]= fminbnd (...)其中(3)、(4)、(5)的等式右边可选用(1)或(2)的等式右边。

函数fminbnd 的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解。

多元函数无约束优化问题标准型为:min F(X)命令格式为:(1)x= fminunc (fun,X0 );或x=fminsearch (fun,X0 )(2)x= fminunc (fun,X0 ,options );或x=fminsearch (fun,X0 ,options )(3)[x ,fval]= fminunc (...);或[x ,fval]= fminsearch (...)(4)[x ,fval ,exitflag]= fminunc (...);或[x ,fval ,exitflag]= fminsearch(5)[x ,fval ,exitflag ,output]= fminunc (...);或[x ,fval ,exitflag ,output]= fminsearch (...)说明:fminsearch 是用单纯形法寻优. fminunc 的算法见以下几点说明:(1) fminunc 为无约束优化提供了大型优化和中型优化算法。

由options 中的参数LargeScale 控制:LargeScale=’on ’(默认值),使用大型算法LargeScale=’off ’(默认值),使用中型算法(2) fminunc 为中型优化算法的搜索方向提供了4种算法,由 options 中的参数HessUpdate 控制:HessUpdate=’bfgs ’(默认值),拟牛顿法的BFGS 公式;HessUpdate=’dfp ’,拟牛顿法的DFP 公式;HessUpdate=’steepdesc ’,最速下降法(3) fminunc 为中型优化算法的步长一维搜索提供了两种算法,由options 中参数LineSearchType 控制:LineSearchType=’quadcubic ’(缺省值),混合的二次和三次多项式插值; LineSearchType=’cubicpoly ’,三次多项式插使用fminunc 和 fminsearch 可能会得到局部最优解.非线性规划二次规划用MATLAB 软件求解,其输入格式如下:1. x=quadprog(H,C,A,b);2. x=quadprog(H,C,A,b,Aeq,beq);3. x=quadprog(H,C,A,b,Aeq,beq,VLB,VUB);4. x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0);5. x=quadprog(H,C,A,b, Aeq,beq ,VLB,VUB,X0,options);6. [x,fval]=quaprog(...);7. [x,fval,exitflag]=quaprog(...);8. [x,fval,exitflag,output]=quaprog(...);(七) 总结通过本次实验,让我更加熟练的使用MATLAB 软件,加强了对线性规划的认识,在小组合作中,我们一起讨论,一起查找资料,合作的非常开心,过程中虽然遇到了点问题,但都很快解决。

标准型为: Min Z= 21X T HX+c T X s.t. AX<=b beq X Aeq =⋅VLB ≤X ≤VUB。

相关文档
最新文档